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Goal: Approximating the Partition Function
Forney-style graphical model (GM) express distributions by graphG =
(V,E), where (binary) variable correspond to edge and factor to vertex:

p(x) =
1

Z

∏
a∈V

fa(x∂a),

Z :=
∑

x∈{0,1}E

∏
a∈V

fa(x∂a),

• Partition function Z is essential, but #P-hard to approximate.
• Forney-style representation is universal, i.e., any high-order GM can

be expressed as Forney style.

Most popular variational algorithms for approximating Z:
• Mean-field (MF) approach

Lower bounding algorithm with relatively bad approximation quality.
• Belief propagation (BP)

Good approximation quality, no guarantee on bounding Z.

Gauge Transformation of Graphical Model
Gauge transformation (GT) is linear transformation of factors, leaving
partition function Z invariant.

• GT is defined with respect to pairs of 2× 2 matrices (Gab, Gba)
called gauges, associated with each edge (a, b) ∈ E:

Gab =

[
Gab(0, 0) Gab(0, 1)
Gab(1, 0) Gab(1, 1)

]
, Gba = (G>ab)

−1

• Given G = {Gab, Gba : (a, b) ∈ E}, factor is transformed as follows:

fa(x∂a)→ fa,G(x∂a) =
∑

x′
∂a∈{0,1}∂a

fa(x
′
∂a)
∏

b∈∂a
Gab(xab, x

′
ab),

• Distribution of GM: p(x)→ pG(x) =
∏
a∈V (x∂a)/ZG where ZG = Z.

• E.g., in above figure, fb,G = GbafbG
>
bc, fa,G = Gabfa, fc,G = Gcbfc,

ZG = (faG
>
ab)(GbafbG

>
bc)(Gcbfc) = Z.

Our Contribution
By introducing GT as an additional degree of freedom, we propose im-
proved version of MF and BP as follows:
• Gauged-Mean Field improves approximation quality of MF.
• Gauged-Belief Propagation corrects BP to lower bound Z.

Gauged-Mean Field (G-MF)
We propose G-MF, which maximize MF lower bound of logZ while
searching GT for GM with tight MF lower bound:

maximize
q,G

∑
x∈{0,1}E

q(x) log

∏
a∈V fa,G(x∂a)

q(x)

such that q(x) =
∏

(a,b)∈E
q(xab), G>abGba = I ∀(a, b) ∈ E.

• Reduce to MF when every GT is identity matrix, e.g., Gab = I.
• Becomes an uncontrained optimization by plugging Gba ← (G>ab)

−1.
• We alternatively optimized MF distributions (q) and gauges (G) , via

standard MF algorithm and generic (e.g., IPOPT) solver respectively.

Gauged-Belief Propagation (G-BP)
GT express BP approximation for logZ as stationary points of following
optimization problem:

maximize
G

log
∏

a∈V
fa,G(0, 0, · · · ),

such that G>abGba = I ∀(a, b) ∈ E.

• Equivalent to maximizing a single term in GM.
• No gaurantee on lower bounding logZ since factors may be negative.

We propose G-BP, adding non-negativity constraints on factors:

fa,G(x∂a) ≥ 0 ∀x∂a ∈ {0, 1}∂a.

• We add log-barrier terms corresponding to non-negative constraints,
and then optimize via generic solver.

Correction schemes for G-BP
We also propose schemes for improving the G-BP lowerbound, i.e.,∏
a∈V fa,G(0, 0, · · · ) ≤ Z, as follows:

• G-BP-single: Counting additional, multiple ‘correction’ terms:∏
a∈V

fa,G(0, 0, · · · ) +
∑|E|

i=1

∏
a∈V

fa,G(x
(i)
∂α),

where x(i) = [xei = 1, xej = 0,∀j 6= i].
• G-BP-sequential: Considering

(|E|
2

)
correction terms, i.e., consider

both x(i) and x(i1,i2) = [xei1 = 1, xei2 = 1, xej = 0,∀j 6= i1, i2].
• G-BP-sequential: Conditioning to obtain auxiliary GM with Z ′:∏

a∈V
fa,G(0, 0, · · · ) + Z ′,

where G-BP is applied to Z ′ =
∑

x:xei
=1

∏
a∈V fa,G(x∂a) again.

Optimality of G-MF and G-BP
Theorem. (Ahn, Chertkov, Shin 2017) Gauged-MF and Gauged-BP
formulation outputs the exact partition function Z for:
1. GMs defined on any line graph.
2. alternating cycle GM (where MF, BP perform bad).
• Example of alternating cycle GM:

fa =

[
2 1
1 2

]
, fb =

[
1 2
2 1

]
, fc =

[
2 1
1 2

]
.

Experiments
• We consider G-MF, G-BP, and corrected versions of G-BP (i.e., G-

BP-single, G-BP-multiple, G-BP-sequential).
• Factors are prepared by ‘interaction strength’ parameters {βa}a∈V :

fa(x∂a) = exp(βa|(# of ‘0’s in x∂a)− (# of ‘1’s in x∂a)|).

Experiment results on 3-regular (left) and grid(right) graphs:
• With varying graph size |V |:

• On log-supermodular factors with varying strengths, i.e., β > 0:

Conclusion
We propose two gauge optimizations:

• Gauged-MF, improving approximation quality of MF.
• Gauged-BP, modifying BP to provide lower bounds of Z.

Our results have large potential for generalization.


