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Goal: Approximating the Partition Function

Forney-style graphical model (GM) express distributions by graph G =
(V, E)), where (binary) variable correspond to edge and factor to vertex:
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e Partition function Z is essential, but #P-hard to approximate.
e Forney-style representation is universal, i.e., any high-order GM can
be expressed as Forney style.

Most popular variational algorithms for approximating Z:
e Mean-field (MF) approach
Lower bounding algorithm with relatively bad approximation quality.
o Belief propagation (BP)
Good approximation quality, no guarantee on bounding Z.

Gauge Transformation of Graphical Model

Gauge transformation (GT) is linear transformation of factors, leaving
partition function Z invariant.
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e GT is defined with respect to pairs of 2 x 2 matrices (Gap, Gpa)
called gauges, associated with each edge (a,b) € E:
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e Given G = {Gup,Gpq : (a,b) € E}, factor is transformed as follows:

fa,(X('?a) — fa,g(x(’?a) — Z fa(Xéa) HbE@a Gab(ajaba mZLb)v

xéaE{O,l}aa

e Distribution of GM: p(x) — pg(x)
e E.g., in above figure, fi.g = Gpo [uG., fa.g =

— Haev(Xga)/Zg where Zg = /.
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Our Contribution

By introducing GT as an additional degree of freedom, we propose im-
proved version of MF and BP as follows:

e Gauged-Mean Field improves approximation quality of MF.

e Gauged-Belief Propagation corrects BP to lower bound ~Z.

Gauged-Mean Field (G-MF)

We propose G-MF, which maximize MF lower bound of log Z while
searching GT for GM with tight MF lower bound:
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such that ¢q(x) = H( er ¢(zar), G Gpo=1 VY(a,b)€E.
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e Reduce to MF when every GT is identity matrix, e.g., G, = L.

e Becomes an uncontrained optimization by plugging Gpq <+ (G )~}

e We alternatively optimized MF distributions (g) and gauges (G) , via
standard MF algorithm and generic (e.g., IPOPT) solver respectively.

Gauged-Belief Propagation (G-BP)

GT express BP approximation for log Z as stationary points of following
optimization problem:
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suchthat G, ,Gpe =1 V(a,b) € E.

e Equivalent to maximizing a single term in GM.
e No gaurantee on lower bounding log Z since factors may be negative.
We propose G-BP, adding non-negativity constraints on factors:
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e We add log-barrier terms corresponding to non-negative constraints,
and then optimize via generic solver.

Correction schemes for G-BP

We also propose schemes for improving the G-BP lowerbound, i.e
[l.cv fa,g(0,0,---) < Z, as follows:

e G-BP-single: Counting additional, multiple ‘correction’ terms:
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where x\") = [z, = 1,2, = 0,V # i].
o G-BP-sequential: Considering (|E|) correction terms, 1.e., consider

both x(9) and x(i1:%2) — [xeil =1,2e,, = 1,2, =0,Vj # i1, 42].

e G-BP-sequential: Conditioning to obtain auxiliary GM with Z’:
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where G-BP is appliedto 2" =} _, ]].cv fa,6(X0a) again.
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Optimality of G-MF and G-BP

Theorem. (Ahn, Chertkov, Shin 2017) Gauged-MF and Gauged-BP
formulation outputs the exact partition function Z for:

1. GMs defined on any line graph.

2. alternating cycle GM (where MF, BP perform bad).

e Example of alternating cycle GM:
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Experiments

e We consider G-MF, G-BP, and corrected versions of G-BP (i.e., G-
BP-single, G-BP-multiple, G-BP-sequential).
e Factors are prepared by ‘interaction strength’ parameters {5, }acv:

fa(X5a) = exp(Ba|(# of ‘O’'sinxy,) — (#0f ‘1’'sin x54)]).

Experiment results on 3-regular (left) and grid(right) graphs:
e With varying graph size |V|:
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Conclusion

We propose two gauge optimizations:

e Gauged-MF, improving approximation quality of MF.
e Gauged-BP, modifying BP to provide lower bounds of Z.

Our results have large potential for generalization.



