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-----------------------------------------------------------------------------------------

Part | of - Distributed optimization and consensus (e.g. gossip algorithms)

This Talk

----------------------------------------------------------------------------

Part |l of
Tiris Taﬁ< ® Social Networks (e.g. Facebook)

- Game theoretical modeling and analysis (e.g. best reply, logit-respose)



- Part | -
Message Passing in Communication Networks

- Focus on medium access for wireless networks
Joint work with Devavrat Shah (MIT)

- Later describe how the result is extended
Joint work with Yung Yi (KAIST), Seyoung Yun,(MSR), Tonghoon Suk (Gatech)
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® Design a provably’ optimal medium access algorithm
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- For simplicity, | will considers a simple model
(i.e. discrete-time, single-hop, single-channel)

- However, the same story goes through for other models
(i.e. continuous-time,multi-hop, multi-channel, collisions, time-varying)
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® W/ireless network = Collection of queues

- Each queue represents a communication link (e.g. A—B)

- Interference graph G

-----------------------------------------------------------------------------------------------------------------

: “Queues form vertices & two queues share an edge if they cannot transmit simultaneously” :
. ;

-----------------------------------------------------------------------------------------------------------------
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® \We assume

-  Packets arrive at queue i with rate A(i) e.g. Bernoulli stochastic process

- Time is discrete & at most one packet can depart from each queue at each time instance
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® We assume
-  Packets arrive at queue i with rate A(i) e.g. Bernoulli stochastic process

- Time is discrete & at most one packet can depart from each queue at each time instance

® At each time instance, each queue attempts to transmit or keeps silent

- The decision is made by a medium access algorithm

- A packet departs if queue attempts and no neighbor attempts to transmit simultaneously
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® We assume \

-  Packets arrive at queue i with rate A(i) e.g. Bernoulli stochastic process

- Time is discrete & at most one packet can depart from each queue at each time instance

® At each time instance, each queue attempts to transmit or keeps silent

- The decision is made by a medium access algorithm

- A packet departs if queue attempts and no neighbor attempts to transmit simultaneously

® Next: Example of simple medium access algorithm
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® Much Research starting from1970s in various setups

[Abramson and Kuo 73] [Metcalfe and Bogg 76] [Mosely and Humble 85] [Kelly and MacPhee
87] [Aldous 87] [Tsybakov and Likhanov 87] [Hastad, Leighton, Rogoff 96] [Tassiulas 98]
[Goldberg and MacKenzie 99] [Goldberg, Jerrum, Kannan and Paterson 00] [Gupta and
Stolyar 06] [Dimakis and Walrand 06] [Modiano, Shah and Zussman 06] [Marbach 07]
[Eryilmaz, Marbach and Ozdaglar 07] [Leconte, Ni and Srikant 09] ...

= Till 1990s : complete interference graph (e.g. Ethernet)

= From 1990s : general interference graph (e.g. wireless networks)

® No simple distributed throughput-optimal protocol is known

for general interference graph

- Next : Recent progress for this open question
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- And ‘&)njecture’ that pi(t) converges to pi(G, A), and hence throughput optimal

® [Jiang, Shah, S. and Walrand 2008]* provide provable T and €
® Further improvements have been made, for example

- [Liu,Yi, Proutiere, Chiang and Poor 2009] proved that even T=1 works.

- [Chaporkar and Proutiere 2013] developed an algorithm even in SNR model

- [Lee, Lee,Yi, Chong, Nardelli, Knightly and Chiang 2013] implemented them in 802.1 |
* Distributed Random Access Algorithm [Jiang, Shah, Shin and Walrand] IEEE Transactions on Information Theory 2010
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if f grow slower than the logarithm of the convergence time of an iterative method
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® [Yun,S.andYi 20137]* Suppose channel states are time-varying

Designing a high performance medium access algorithm

o= EEEEm - -y

-----------

o= EEmEmEm--—-

-----------

Medium access algorithm (Queue-based CSMA) = Distributed Iterative sampling mechanism

=  We prove that throughput-optimality is guaranteed
if f(x)=(log x) where c is the current channel state

-  We also prove that log f(x) should be linear with respect to ¢ for throughput-optimality

* Distributed Medium Access over Time-varying Channels [Yun, Shin and Yi] ACM MOBIHOC 2013
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- Part Il -
Message Passing in Statistical Networks

- Convergence and Correctness of Belief Propagation

Joint work with Sungsoo Ahn (KAIST), Michael Cherktov (LANL) and Sejun Park
(KAIST)
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® A graphical model (GM) is a way to represent probabilistic
relationships between random variables through a graph

A joint distribution of n (binary) random variables Z = [Z;] € {0, 1}" is called a Graphical Model (GM)
if it factorizes as follows: for z = [z;] € Q7"

Pr|Z = 2] «

acl

where {1;, 1, } are (given) non-negative functions, the so-called factors; F' is a collection of subsets

® Factor Graph for GM

Figure 1: Factor graph for the graphical model Pr(z] o ¥q, (21, 23)0a, (21, 22, 24)Vas (22, 23, 24), i.€.,
F = {a;, 09,03} and n = 4. Each «; selects a subset of 2. For example, o selects {2y, 23}.
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Belief Propagation for Marginal Probability

® Consider a random variable X=[X,]€{0,1}" and a tree graph G

pIX] =~ TT 1-XuXo :

(u,v)eE

- Goal : Compute marginal probabilities p[X\=1] for all v /\ /\ /\
- (Divide & Conquer) Solve similar problems in sub-trees i.e. |

------------------------

. . Xv= | /
P[Xv= |] _ I_I Ivl]lu—vv — I*/garginal ratio EEX\FO; in sub-tree UA

- Mu—bv E
p[Xv=0] ueN(v) : |

| + n Mw—ru "— Marginal ratio in sub-sub-tree ,
weN(u)/v ]

------------------------

o+ |
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- BP for computing marginal probabilities is called “Sum-product BP (SBP)”

- BP for computing MAP is called “Max-product BP (MBP)”

® One can run BP for general graphical models

- BP =‘approximate’ Dynamic programming

----------

- However, its performance is not guaranteed if the underlying graph is not a tree Why 2

---------

® Somewhat surprisingly, ‘loopy’ BPs have shown strong heuristic
performance in many applications

- e.g.error correcting codes (turbo codes), combinatorial optimization, statistical physics ...

= It becomes a popular heuristic algorithm since it is €dSY to implement
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® First, M'converges to a fixed point of fasp (and how fast)?

- A fixed point always exists due to the Brouwer fixed point theorem, but BP often diverges

- Convergence conditions : [Weiss 00] [Tatikonda and Jordan 02] [Heskes 04] [Ihler et al. 05]

- However, they are very sensitive w.r.t potential functions and the underlying graph structure

® Second, a fixed (i.e. convergent) point of fgp is good !

- Several efforts : [Wainwright et al. 03] [Heskes 04] [Yedidia et al. 04] [Chertkov et al. 06]

- However, they provide different ‘views’ instead of simple conditions
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How to understand Sum-product BP !

- Question : Exist an algorithm which can always compute a fixed point of fgp in poly-time ?

- Converging algorithms [Teh and Welling 01] [Yuille 02], but no convergence rate

. [S.2012]* Message passing algorithm always converging to a fixed point of fgp in
. O(22 n?) iterations for general (undirected) graphical model with max-degree A!

----------------------------------------------------------------------------------------------------------------------
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T Computing Indep. Sets using Bethe Approximation [Shin et al.] SIDMA 201 |
* Complexity of Bethe Approximation [Shin] IEEE Transactions on Information Theory 2014
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® Equivalent to find a zero-gradient point of Fgethe [ Yedidia et al. 04]

D
=  Fgethe : D = Ris called the Bethe free energy function [Bethe 35] /\

- The underlying domain D is a polytope

- lItis not clear whether it is easy to find (or PLS-hard) since it is non-convex

® Natural attempt : Gradient-descent algorithm

Xt = xt + x V FBethe(Xt) for some (step-size) x>0

- Does it find to a zero-gradient point? If not, why?
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Proof Strategy : How to find a fixed point of LBP

® When does gradient-descent algorithm work for general F?

- lts domain is unbounded and |F|, |V F|, [V? F| are bounded — Possible to choose &

® Two issues for X**! = x* + & V Fgethe(X") -'.
i
- Domain D is bounded i.e. a projection may be required N/
- Derivatives are unbounded (close to boundary of D)

® QOur main idea to resolve the issues

Suppose V Fgethe always points “inside” close to boundary of D

= Then,it is possible choose small & so that

xt is always far from boundary D i.e.x* € D*cD

- Unfortunately, this (or similar) seems not true ... but

-------------------------------------------------------------------------------------

i We found a function G such that this property holds for G and
. one-to-one correspondence between zero-gradients of G and Fpethe
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® [Park and S.2015]* BP converges to the solution of LP if

- CI.LP has a unique and integral solution
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* Max-product Belief Propagation for Linear Programming [Park and Shin] UAI 2015



Our Contribution: BP can solve LP ?

® [Park and S.2015]* BP converges to the solution of LP if

- CI.LP has a unique and integral solution
- C2.Each variable is associated to at most two factors

- C3. For every factor v, every z, € {0, l}IQ with Y (z,) = 1, and every i € o with z; # x!, there
exists v C « such that
{7 € {i}Ur:|Fj| =2} <2

zr  ifk & {i} Uy

Yalz)) = 1, where | = _
x). otherwise

zr ifke{i}U~

z, otherwise

Ya(zl) = 1, where z!! = {

“C3 is a only non-trivial condition, but typically easy to check given GM.”

* Max-product Belief Propagation for Linear Programming [Park and Shin] UAI 2015



Our Contribution: BP can solve LP ?

® [Park and S.2015]* BP converges to the solution of LP if

- CI.LP has a unique and integral solution
- C2.Each variable is associated to at most two factors

- C3. For every factor v, every z, € {0, l}IQ with Y (z,) = 1, and every i € o with z; # x!, there
exists v C « such that
{7 € {i}Ur:|Fj| =2} <2

zr  ifk & {i} Uy

Yalz)) = 1, where | = _
x). otherwise

zr ifke{i}U~

z, otherwise

Ya(zl) = 1, where z!! = {

“C3 is a only non-trivial condition, but typically easy to check given GM.”

® Why BP can be better than simplex or interior-point methods ?

- BPis easy to parallelize and implement in a distributed & parallel programming model

* Max-product Belief Propagation for Linear Programming [Park and Shin] UAI 2015



Examples of LP solvable by BP

Shortest Path Minimum Weight (Perfect) Matching

w-T
subject to E Tp — E T,
ecd' (v)

minimize

w-T
subject to Z re =1, VveV

e€d’(v)

1 ifv=s
= ~lifv=t VYveV

0 otherwise

ecd(v)

z = [z.] € [0,1]'".
Vertex Cover Cycle Packing
minimize b-y
subject to Yu + Y > 1, (u,v) €EFE
y = [y] € [0,1]V1.

maximize

subject to

z = [z,] € [0,1]'Fl,y = [y,] € [0,1]'V.

Traveling Salesman Problem Network Flow
minimize - minimize

w-x
subject to subject to Z Lo — Z e =d,, YVVEV
ecdo(v) ecdt(v)

T = x| € R|+E|




My Contribution for Belief Propagation

® Sum-product BP

- Polynomial-time algorithm for computing a BP fixed-point
[S.] IEEE Transactions on Information Theory 2014

- Large-girth condition for correctness of BP
[S. et al.] SIAM Journal on Discrete Mathematics 201 |

® Max-product BP

- BP solves the LP for minimum weight matching using odd cycle constraints
[S., Gelfand and Chertkov] NIPS 2013

- Generic necessary condition so that BP solves LP
[Gelfand, Chertkov and S.] ISIT 2013

= Generic sufficient condition so that BP solves LP
[Park and S.] UAI 2015

- BP solves the IP for minimum weight matching
[Ahn, Chertkov, Park and S.] submitted
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. e Message Passing
(e.g. wireless communication)

Algorithms Statistical Inference
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Why Message Passing Algorithms ?

® They are crucial for numerous fields in engineering and
social science

=  Building blocks for communication (Internet) networks
e.g. medium access, packet switching

- Efficient estimation tools for statistical (Bayesian) networks
e.g. variational (or cavity) method, Markov chain monte carlo

-  Faithful behavioral models for societal systems
e.g. markets, auctions, recommendation systems

{My Research = Principles of Local Rules for Networked Systems]




