
Message Passing Algorithms:

Jinwoo Shin

KAIST EE 

Communication, Inference and Optimization

Message Passing Algorithms in My Research

• Communication Networks (e.g. Internet)

Message Passing Algorithms in My Research

• Communication Networks (e.g. Internet)

• Statistical Networks (e.g. Bayesian networks)

• Social Networks (e.g. Facebook)

Message Passing Algorithms in My Research

• Communication Networks (e.g. Internet)

- Scheduling (e.g. medium access, packet switching, optical-core networks)

• Statistical Networks (e.g. Bayesian networks)

• Social Networks (e.g. Facebook)

N. Abramson
(1970s)

Message Passing Algorithms in My Research

• Communication Networks (e.g. Internet)

- Scheduling (e.g. medium access, packet switching, optical-core networks)

- Distributed optimization and consensus (e.g. gossip algorithms)

• Statistical Networks (e.g. Bayesian networks)

• Social Networks (e.g. Facebook)

N. Abramson
(1970s)

J. Tsitsiklis
(1980s)

Message Passing Algorithms in My Research

• Communication Networks (e.g. Internet)

- Scheduling (e.g. medium access, packet switching, optical-core networks)

- Distributed optimization and consensus (e.g. gossip algorithms)

• Statistical Networks (e.g. Bayesian networks)

- Inference (e.g. Markov chain monte carlo, belief propagation)

• Social Networks (e.g. Facebook)

N. Abramson
(1970s)

J. Tsitsiklis
(1980s)

N. Metropolis
(1950s)

Message Passing Algorithms in My Research

• Communication Networks (e.g. Internet)

- Scheduling (e.g. medium access, packet switching, optical-core networks)

- Distributed optimization and consensus (e.g. gossip algorithms)

• Statistical Networks (e.g. Bayesian networks)

- Inference (e.g. Markov chain monte carlo, belief propagation)

• Social Networks (e.g. Facebook)

- Game theoretical modeling and analysis (e.g. best reply, logit-respose)

N. Abramson
(1970s)

J. Tsitsiklis
(1980s)

N. Metropolis
(1950s)

J. Nash
(1950s)

Message Passing Algorithms in My Research

• Communication Networks (e.g. Internet)

- Scheduling (e.g. medium access, packet switching, optical-core networks)

- Distributed optimization and consensus (e.g. gossip algorithms)

• Statistical Networks (e.g. Bayesian networks)

- Inference (e.g. Markov chain monte carlo, belief propagation)

• Social Networks (e.g. Facebook)

- Game theoretical modeling and analysis (e.g. best reply, logit-respose)

N. Metropolis
(1950s)

Message Passing Algorithms in My Research

• Communication Networks (e.g. Internet)

- Scheduling (e.g. medium access, packet switching, optical-core networks)

- Distributed optimization and consensus (e.g. gossip algorithms)

• Statistical Networks (e.g. Bayesian networks)

- Inference (e.g. Markov chain monte carlo, belief propagation)

• Social Networks (e.g. Facebook)

- Game theoretical modeling and analysis (e.g. best reply, logit-respose)

N. Metropolis
(1950s)

Part I of
This Talk

Part II of
This Talk

- Part I -  
Message Passing in Communication Networks

- Focus on medium access for wireless networks 
Joint work with Devavrat Shah (MIT)

- Later describe how the result is extended 
Joint work with Yung Yi (KAIST), Seyoung Yun,(MSR), Tonghoon Suk (Gatech)

Motivation : Wireless Network

• A and C cannot send packets to B simultaneously

- ‘A->B’ and ‘C->B’ interfere with each other & packets collide

A B C DA B C D

A B C D

• However, ‘A->B’ and ‘D->C’ do not interfere with each other

A B C D

Motivation : Wireless Network

A B C D

• Question : How to avoid interference?

- While transmitting as many packets as possible

Motivation : Wireless Network

A B C D

A B C D

• Question : How to avoid interference?

- While transmitting as many packets as possible

Motivation : Wireless Network

A B C D

• Need a contention resolution protocol

- Also called medium access algorithm

- e.g. CSMA/CA, ALOHA, TDMA, CDMA, etc.

A B C D

• Question : How to avoid interference?

- While transmitting as many packets as possible

Motivation : Wireless Network

However, no protocol is known  
to be optimal in a certain sense

A B C D

• Need a contention resolution protocol

- Also called medium access algorithm

- e.g. CSMA/CA, ALOHA, TDMA, CDMA, etc.

Our Goal

• Design a `provably’ optimal medium access algorithm

Our Goal

• Design a `provably’ optimal medium access algorithm

Next : Describe a mathematical model

Our Goal

• Design a `provably’ optimal medium access algorithm

Next : Describe a mathematical model Next : Definition of `optimality’

Our Goal

• Design a `provably’ optimal medium access algorithm

Next : Describe a mathematical model Next : Definition of `optimality’

- For simplicity, I will considers a simple model  
(i.e. discrete-time, single-hop, single-channel)  

- However, the same story goes through for other models  
(i.e. continuous-time,multi-hop, multi-channel, collisions, time-varying)

• Wireless network = Collection of queues

- Each queue represents a communication link (e.g. A→B)

Model : Wireless Network

• Wireless network = Collection of queues

- Each queue represents a communication link (e.g. A→B)

Model : Wireless Network

- Interference graph G  
 
‘’Queues form vertices & two queues share an edge if they cannot transmit simultaneously’’

• We assume

- Packets arrive at queue i with rate λ(i) e.g. Bernoulli stochastic process

- Time is discrete & at most one packet can depart from each queue at each time instance

Model : Wireless Network

• Next : Example of simple medium access algorithm

• We assume

- Packets arrive at queue i with rate λ(i) e.g. Bernoulli stochastic process

- Time is discrete & at most one packet can depart from each queue at each time instance

Model : Wireless Network

• At each time instance, each queue attempts to transmit or keeps silent

- The decision is made by a medium access algorithm

- A packet departs if queue attempts and no neighbor attempts to transmit simultaneously

• Next : Example of simple medium access algorithm

• We assume

- Packets arrive at queue i with rate λ(i) e.g. Bernoulli stochastic process

- Time is discrete & at most one packet can depart from each queue at each time instance

Model : Wireless Network

• At each time instance, each queue attempts to transmit or keeps silent

- The decision is made by a medium access algorithm

- A packet departs if queue attempts and no neighbor attempts to transmit simultaneously

• Next : Example of simple medium access algorithm

Example of Medium Access Algorithm

• Each individual queue attempts to transmit at time t

- If success, attempt to transmit at time t+1

- Else, keep silent for a ‘random’ time interval

Example of Medium Access Algorithm

• Each individual queue attempts to transmit at time t

- If success, attempt to transmit at time t+1

- Else, keep silent for a ‘random’ time interval

How to decide the length
of the time interval ?

Example of Medium Access Algorithm

• Each individual queue attempts to transmit at time t

- If success, attempt to transmit at time t+1

- Else, keep silent for a ‘random’ time interval

• Back-off protocol

- The (expected) length of time interval is a function of consecutive failures

How to decide the length
of the time interval ?

Example of Medium Access Algorithm

• Each individual queue attempts to transmit at time t

- If success, attempt to transmit at time t+1

- Else, keep silent for a ‘random’ time interval

• Back-off protocol

- The (expected) length of time interval is a function of consecutive failures

- [Hastad, Leighton, Rogoff 1988] The back-off protocol is throughput-optimal if  
  
 “the function is a polynomial and the interference graph is ”

- Throughput-optimal = Keep queues finite under the largest possible arrival rates [λ(i)]

complete

How to decide the length
of the time interval ?

Example of Medium Access Algorithm

• Each individual queue attempts to transmit at time t

- If success, attempt to transmit at time t+1

- Else, keep silent for a ‘random’ time interval

• Back-off protocol

- The (expected) length of time interval is a function of consecutive failures

- [Hastad, Leighton, Rogoff 1988] The back-off protocol is throughput-optimal if  
  
 “the function is a polynomial and the interference graph is ”

- Throughput-optimal = Keep queues finite under the largest possible arrival rates [λ(i)]

If any algorithm can stabilize the network,  
the back-off protocol can also do it

complete

How to decide the length
of the time interval ?

Example of Medium Access Algorithm

• Each individual queue attempts to transmit at time t

- If success, attempt to transmit at time t+1

- Else, keep silent for a ‘random’ time interval

• Back-off protocol

- The (expected) length of time interval is a function of consecutive failures

- [Hastad, Leighton, Rogoff 1988] The back-off protocol is throughput-optimal if  
  
 “the function is a polynomial and the interference graph is ”

- Throughput-optimal = Keep queues finite under the largest possible arrival rates [λ(i)]

If any algorithm can stabilize the network,  
the back-off protocol can also do it

complete

How to decide the length
of the time interval ?

Open Question for General Interference Graph

• Much Research starting from1970s in various setups

[Abramson and Kuo 73] [Metcalfe and Bogg 76] [Mosely and Humble 85] [Kelly and MacPhee
87] [Aldous 87] [Tsybakov and Likhanov 87] [Hastad, Leighton, Rogoff 96] [Tassiulas 98]
[Goldberg and MacKenzie 99] [Goldberg, Jerrum, Kannan and Paterson 00] [Gupta and
Stolyar 06] [Dimakis and Walrand 06] [Modiano, Shah and Zussman 06] [Marbach 07]
[Eryilmaz, Marbach and Ozdaglar 07] [Leconte, Ni and Srikant 09] ...

- Till 1990s : complete interference graph (e.g. Ethernet)

- From 1990s : general interference graph (e.g. wireless networks)

Open Question for General Interference Graph

• Much Research starting from1970s in various setups

[Abramson and Kuo 73] [Metcalfe and Bogg 76] [Mosely and Humble 85] [Kelly and MacPhee
87] [Aldous 87] [Tsybakov and Likhanov 87] [Hastad, Leighton, Rogoff 96] [Tassiulas 98]
[Goldberg and MacKenzie 99] [Goldberg, Jerrum, Kannan and Paterson 00] [Gupta and
Stolyar 06] [Dimakis and Walrand 06] [Modiano, Shah and Zussman 06] [Marbach 07]
[Eryilmaz, Marbach and Ozdaglar 07] [Leconte, Ni and Srikant 09] ...

- Till 1990s : complete interference graph (e.g. Ethernet)

- From 1990s : general interference graph (e.g. wireless networks)

• No simple distributed throughput-optimal protocol is known  
 
 for general interference graph

- Next : Recent progress for this open question

Medium Access using Carrier Sensing

• Assume Carrier Sensing information

- Knowledge whether neighbors attempted to transmit (at the previous time instance)

- Medium access algorithm using this information is called CSMA

Medium Access using Carrier Sensing

• Assume Carrier Sensing information

- Knowledge whether neighbors attempted to transmit (at the previous time instance)

- Medium access algorithm using this information is called CSMA

• CSMA protocol : At each time t, each queue i

- Check whether some (interfering) neighbors attempted to transmit at time t-1

- If no, attempts to transmit with probability pi(t)

- Else, keep silent

Medium Access using Carrier Sensing

• Assume Carrier Sensing information

- Knowledge whether neighbors attempted to transmit (at the previous time instance)

- Medium access algorithm using this information is called CSMA

• CSMA protocol : At each time t, each queue i

- Check whether some (interfering) neighbors attempted to transmit at time t-1

- If no, attempts to transmit with probability pi(t)

- Else, keep silent

How to design this `access probability’ pi(t) for each queue i ?

How to Choose Access Probability in CSMA :
Rate-based

How to Choose Access Probability in CSMA :
Rate-based

• [Jiang and Walrand 2007] prove that

- There exists a `fixed, optimal’ access probability pi(t)=pi(G, λ) for throughput-optimality

How to Choose Access Probability in CSMA :
Rate-based

• [Jiang and Walrand 2007] prove that

- There exists a `fixed, optimal’ access probability pi(t)=pi(G, λ) for throughput-optimality

- Also propose updating rules of pi(t) at time T, 2T, 3T, ...  
 
 
 

0 T 2T 3T 4T

How to Choose Access Probability in CSMA :
Rate-based

• [Jiang and Walrand 2007] prove that

- There exists a `fixed, optimal’ access probability pi(t)=pi(G, λ) for throughput-optimality

- Also propose updating rules of pi(t) at time T, 2T, 3T, ...  
 
 
 

- And `conjecture’ that pi(t) converges to pi(G, λ), and hence throughput optimal  
 

0 T 2T 3T 4T

How to Choose Access Probability in CSMA :
Rate-based

• [Jiang and Walrand 2007] prove that

- There exists a `fixed, optimal’ access probability pi(t)=pi(G, λ) for throughput-optimality

- Also propose updating rules of pi(t) at time T, 2T, 3T, ...  
 
 
 

- And `conjecture’ that pi(t) converges to pi(G, λ), and hence throughput optimal  
 

0 T 2T 3T 4T

“pi(2T)=pi(T)±ε depending on whether queue i increases in time [T,2T]”

How to Choose Access Probability in CSMA :
Rate-based

• [Jiang and Walrand 2007] prove that

- There exists a `fixed, optimal’ access probability pi(t)=pi(G, λ) for throughput-optimality

- Also propose updating rules of pi(t) at time T, 2T, 3T, ...  
 
 
 

- And `conjecture’ that pi(t) converges to pi(G, λ), and hence throughput optimal  
 

0 T 2T 3T 4TNo proof

“pi(2T)=pi(T)±ε depending on whether queue i increases in time [T,2T]”

How to Choose Access Probability in CSMA :
Rate-based

• [Jiang and Walrand 2007] prove that

- There exists a `fixed, optimal’ access probability pi(t)=pi(G, λ) for throughput-optimality

- Also propose updating rules of pi(t) at time T, 2T, 3T, ...  
 
 
 

- And `conjecture’ that pi(t) converges to pi(G, λ), and hence throughput optimal  
 

• [Jiang, Shah, S. and Walrand 2008]* provide provable T and ε

0 T 2T 3T 4TNo proof

* Distributed Random Access Algorithm [Jiang, Shah, Shin and Walrand] IEEE Transactions on Information Theory 2010

“pi(2T)=pi(T)±ε depending on whether queue i increases in time [T,2T]”

How to Choose Access Probability in CSMA :
Rate-based

• [Jiang and Walrand 2007] prove that

- There exists a `fixed, optimal’ access probability pi(t)=pi(G, λ) for throughput-optimality

- Also propose updating rules of pi(t) at time T, 2T, 3T, ...  
 
 
 

- And `conjecture’ that pi(t) converges to pi(G, λ), and hence throughput optimal  
 

• [Jiang, Shah, S. and Walrand 2008]* provide provable T and ε

0 T 2T 3T 4T

• Further improvements have been made, for example

- [Liu, Yi, Proutiere, Chiang and Poor 2009] proved that even T=1 works.

- [Chaporkar and Proutiere 2013] developed an algorithm even in SNR model

- [Lee, Lee, Yi, Chong, Nardelli, Knightly and Chiang 2013] implemented them in 802.11

No proof

* Distributed Random Access Algorithm [Jiang, Shah, Shin and Walrand] IEEE Transactions on Information Theory 2010

“pi(2T)=pi(T)±ε depending on whether queue i increases in time [T,2T]”

How to Choose Access Probability in CSMA :
Queue-based

1

f(Qi(t))

How to Choose Access Probability in CSMA :
Queue-based

• Another approach is choosing access probability pi(t)=1−

- Qi(t) = Queue-size at time t and f is some increasing function

- It is called Queue-based CSMA

1

f(Qi(t))

How to Choose Access Probability in CSMA :
Queue-based

• Another approach is choosing access probability pi(t)=1−

- Qi(t) = Queue-size at time t and f is some increasing function

- It is called Queue-based CSMA

- However, it is known to be harder to analyze

1

f(Qi(t))

How to Choose Access Probability in CSMA :
Queue-based

• Another approach is choosing access probability pi(t)=1−

- Qi(t) = Queue-size at time t and f is some increasing function

- It is called Queue-based CSMA

- However, it is known to be harder to analyze

- Simulations on 10 by 10 grid graph

1

f(Qi(t))

f(x)=x
f(x)=x/2

f(x)=log x
Bad

Good

Best

How to Choose Access Probability in CSMA :
Queue-based

• Another approach is choosing access probability pi(t)=1−

- Qi(t) = Queue-size at time t and f is some increasing function

- It is called Queue-based CSMA

- However, it is known to be harder to analyze

- Simulations on 10 by 10 grid graph

1

f(Qi(t))

Which function f is best ?
f(x)=x

f(x)=x/2
f(x)=log x

Bad

Good

Best

How to Choose Access Probability in CSMA :
Summary and My Contribution

How to Choose Access Probability in CSMA :
Summary and My Contribution

• Two recent approaches

Rate-based CSMA Queue-based CSMA

Pros Easier to analyze Easier to implement

Cons Less robust Harder to analyze

Main Question How to design updating rules ? How to choose a function f ?

How to Choose Access Probability in CSMA :
Summary and My Contribution

• Two recent approaches

Rate-based CSMA Queue-based CSMA

Pros Easier to analyze Easier to implement

Cons Less robust Harder to analyze

Main Question How to design updating rules ? How to choose a function f ?

My Contribution :  
First provable answers

for both questions

How to Choose Access Probability in CSMA :
Summary and My Contribution

• Two recent approaches

Rate-based CSMA Queue-based CSMA

Pros Easier to analyze Easier to implement

Cons Less robust Harder to analyze

Main Question How to design updating rules ? How to choose a function f ?

My Contribution :  
First provable answers

for both questions

Previous slide :  
First provable throughput-optimal

updating rule*

* Distributed Random Access Algorithm [Jiang, Shah, Shin and Walrand] IEEE Transactions on Information Theory 2010

How to Choose Access Probability in CSMA :
Summary and My Contribution

• Two recent approaches

Rate-based CSMA Queue-based CSMA

Pros Easier to analyze Easier to implement

Cons Less robust Harder to analyze

Main Question How to design updating rules ? How to choose a function f ?

My Contribution :  
First provable answers

for both questions

Previous slide :  
First provable throughput-optimal

updating rule*

Next slide :  
First provable throughput-optimal

function†

* Distributed Random Access Algorithm [Jiang, Shah, Shin and Walrand] IEEE Transactions on Information Theory 2010

† Network Adiabatic Theorem [Rajagopalan, Shah and Shin] ACM SIGMETRICS 2009

Network Adiabatic Theorem

• Theorem [Shah and S. 2009, 2010, 2011]*  
 
Queue-based CSMA with f(x)≈log x is  
 

 throughput-optimal for general interference graph

 * Medium Access using Queues [Shah, Shin and Prasad] IEEE Symposium on Foundations of Computer Science 2011

- If any (even centralized) other algorithm can stabilize the network, this algorithm can also do it

* Randomized Algorithms for Queueing Networks [Shah and Shin] Annals of Applied Probability 2012
 * Network Adiabatic Theorem [Rajagopalan, Shah and Shin] ACM SIGMETRICS 2009

Network Adiabatic Theorem

• Theorem [Shah and S. 2009, 2010, 2011]*  
 
Queue-based CSMA with f(x)≈log x is  
 

 throughput-optimal for general interference graph

 * Medium Access using Queues [Shah, Shin and Prasad] IEEE Symposium on Foundations of Computer Science 2011

- We show positive recurrence (i.e. stability) of underlying network Markov chain

- If any (even centralized) other algorithm can stabilize the network, this algorithm can also do it

* Randomized Algorithms for Queueing Networks [Shah and Shin] Annals of Applied Probability 2012
 * Network Adiabatic Theorem [Rajagopalan, Shah and Shin] ACM SIGMETRICS 2009

Network Adiabatic Theorem

• Theorem [Shah and S. 2009, 2010, 2011]*  
 
Queue-based CSMA with f(x)≈log x is  
 

 throughput-optimal for general interference graph

 * Medium Access using Queues [Shah, Shin and Prasad] IEEE Symposium on Foundations of Computer Science 2011

- We show positive recurrence (i.e. stability) of underlying network Markov chain

- If any (even centralized) other algorithm can stabilize the network, this algorithm can also do it

* Randomized Algorithms for Queueing Networks [Shah and Shin] Annals of Applied Probability 2012
 * Network Adiabatic Theorem [Rajagopalan, Shah and Shin] ACM SIGMETRICS 2009

Queueing theory (e.g. Lyapunov-Foster theorem)  
Information theory (e.g. Gibbs maximal principle)  
Spectral theory for matrices (e.g. Cheeger’s inequality)  
Combinatorics (e.g. Markov chain tree theorems)  
Martingales (e.g. Doob's optional sampling theorem)

• Proof requires  

Network Adiabatic Theorem

• Theorem [Shah and S. 2009, 2010, 2011]*  
 
Queue-based CSMA with f(x)≈log x is  
 

 throughput-optimal for general interference graph

 * Medium Access using Queues [Shah, Shin and Prasad] IEEE Symposium on Foundations of Computer Science 2011

- We show positive recurrence (i.e. stability) of underlying network Markov chain

- If any (even centralized) other algorithm can stabilize the network, this algorithm can also do it

* Randomized Algorithms for Queueing Networks [Shah and Shin] Annals of Applied Probability 2012
 * Network Adiabatic Theorem [Rajagopalan, Shah and Shin] ACM SIGMETRICS 2009

Queueing theory (e.g. Lyapunov-Foster theorem)  
Information theory (e.g. Gibbs maximal principle)  
Spectral theory for matrices (e.g. Cheeger’s inequality)  
Combinatorics (e.g. Markov chain tree theorems)  
Martingales (e.g. Doob's optional sampling theorem)

• Proof requires  

- Next : Why we choose f(x)≈log x for the positive recurrence ?

Network Adiabatic Theorem

• Theorem [Shah and S. 2009, 2010, 2011]*  
 
Queue-based CSMA with f(x)≈log x is  
 

 throughput-optimal for general interference graph

 * Medium Access using Queues [Shah, Shin and Prasad] IEEE Symposium on Foundations of Computer Science 2011

why not f(x)=x, x1/2 or loglog x ?

- We show positive recurrence (i.e. stability) of underlying network Markov chain

- If any (even centralized) other algorithm can stabilize the network, this algorithm can also do it

* Randomized Algorithms for Queueing Networks [Shah and Shin] Annals of Applied Probability 2012
 * Network Adiabatic Theorem [Rajagopalan, Shah and Shin] ACM SIGMETRICS 2009

Queueing theory (e.g. Lyapunov-Foster theorem)  
Information theory (e.g. Gibbs maximal principle)  
Spectral theory for matrices (e.g. Cheeger’s inequality)  
Combinatorics (e.g. Markov chain tree theorems)  
Martingales (e.g. Doob's optional sampling theorem)

• Proof requires  

- Next : Why we choose f(x)≈log x for the positive recurrence ?

Proof Strategy for Positive Recurrence

• Network MC (Markov Chain) X(t)={Q(t), A(t)}

- Q(t)=[Qi(t)] : Vector of queue-sizes at time t

- A(t)=[Ai(t)]∈{0,1}n : Vector of attempting status at time t

Q(t) A(t)

Proof Strategy for Positive Recurrence

• Network MC (Markov Chain) X(t)={Q(t), A(t)}

- Q(t)=[Qi(t)] : Vector of queue-sizes at time t

- A(t)=[Ai(t)]∈{0,1}n : Vector of attempting status at time t

Q(t) A(t)

Want Q(t) is stable

Proof Strategy for Positive Recurrence

• Network MC (Markov Chain) X(t)={Q(t), A(t)}

- Q(t)=[Qi(t)] : Vector of queue-sizes at time t

- A(t)=[Ai(t)]∈{0,1}n : Vector of attempting status at time t

• Proof Strategy

- Step I : A(t) is ‘stable’

- Step II : Stability of A(t) implies Stability of Q(t)

Q(t) A(t)

Want Q(t) is stable

Proof Strategy for Positive Recurrence

• Network MC (Markov Chain) X(t)={Q(t), A(t)}

- Q(t)=[Qi(t)] : Vector of queue-sizes at time t

- A(t)=[Ai(t)]∈{0,1}n : Vector of attempting status at time t

• Proof Strategy

- Step I : A(t) is ‘stable’

- Step II : Stability of A(t) implies Stability of Q(t)

Q(t) A(t)

Want Q(t) is stableThis talk

Proof Strategy for Positive Recurrence

• Network MC (Markov Chain) X(t)={Q(t), A(t)}

- Q(t)=[Qi(t)] : Vector of queue-sizes at time t

- A(t)=[Ai(t)]∈{0,1}n : Vector of attempting status at time t

• Proof Strategy

- Step I : A(t) is ‘stable’

- Step II : Stability of A(t) implies Stability of Q(t)

Q(t) A(t)

Want Q(t) is stable

• Step I

- Observe that A(t) is a ‘time-varying’ MC with transition matrix P(t)=P(Q(t))

This talk

Proof Strategy for Positive Recurrence

• Network MC (Markov Chain) X(t)={Q(t), A(t)}

- Q(t)=[Qi(t)] : Vector of queue-sizes at time t

- A(t)=[Ai(t)]∈{0,1}n : Vector of attempting status at time t

• Proof Strategy

- Step I : A(t) is ‘stable’

- Step II : Stability of A(t) implies Stability of Q(t)

Q(t) A(t)

Want Q(t) is stable

• Step I

- Observe that A(t) is a ‘time-varying’ MC with transition matrix P(t)=P(Q(t))

- Prove that Distribution of A(t) converges to Stationary distribution π(t) of P(t)

This talk

Proof Strategy for Positive Recurrence

• Network MC (Markov Chain) X(t)={Q(t), A(t)}

- Q(t)=[Qi(t)] : Vector of queue-sizes at time t

- A(t)=[Ai(t)]∈{0,1}n : Vector of attempting status at time t

• Proof Strategy

- Step I : A(t) is ‘stable’

- Step II : Stability of A(t) implies Stability of Q(t)

Main issue :  
P(t) is time-varying

Q(t) A(t)

Want Q(t) is stable

• Step I

- Observe that A(t) is a ‘time-varying’ MC with transition matrix P(t)=P(Q(t))

- Prove that Distribution of A(t) converges to Stationary distribution π(t) of P(t)

This talk

Proof Strategy for Positive Recurrence

• Network MC (Markov Chain) X(t)={Q(t), A(t)}

- Q(t)=[Qi(t)] : Vector of queue-sizes at time t

- A(t)=[Ai(t)]∈{0,1}n : Vector of attempting status at time t

• Proof Strategy

- Step I : A(t) is ‘stable’

- Step II : Stability of A(t) implies Stability of Q(t)

Main issue :  
P(t) is time-varying

Q(t) A(t)

`If P(t) changes slower than it mixes’

Want Q(t) is stable

• Step I

- Observe that A(t) is a ‘time-varying’ MC with transition matrix P(t)=P(Q(t))

- Prove that Distribution of A(t) converges to Stationary distribution π(t) of P(t)

This talk

Proof Strategy for Positive Recurrence

• Network MC (Markov Chain) X(t)={Q(t), A(t)}

- Q(t)=[Qi(t)] : Vector of queue-sizes at time t

- A(t)=[Ai(t)]∈{0,1}n : Vector of attempting status at time t

• Proof Strategy

- Step I : A(t) is ‘stable’

- Step II : Stability of A(t) implies Stability of Q(t)

Main issue :  
P(t) is time-varying

Q(t) A(t)

`If P(t) changes slower than it mixes’

Next : Holds if f=log

Want Q(t) is stable

• Step I

- Observe that A(t) is a ‘time-varying’ MC with transition matrix P(t)=P(Q(t))

- Prove that Distribution of A(t) converges to Stationary distribution π(t) of P(t)

This talk

Proof Strategy for Positive Recurrence

`If P(t) changes slower than it mixes’

Next : Holds if f=log

Proof Idea for Positive Recurrence : Why log ?

 mixing speed of P(t) > changing speed of P(t)

• Step I : Distribution of A(t) converges to Stationary distribution π(t) of P(t) if

Proof Idea for Positive Recurrence : Why log ?

 mixing speed of P(t) > changing speed of P(t)

spectral gap of
P(t)=P(Q(t))

• Step I : Distribution of A(t) converges to Stationary distribution π(t) of P(t) if

Proof Idea for Positive Recurrence : Why log ?

 mixing speed of P(t) > changing speed of P(t)

spectral gap of
P(t)=P(Q(t))

1

f(Q(t))

Each non-zero entry of P(t) is 

 or 1−

due to our algorithm design

1

f(Q(t))

1

f(Q(t))n

• Step I : Distribution of A(t) converges to Stationary distribution π(t) of P(t) if

Proof Idea for Positive Recurrence : Why log ?

 mixing speed of P(t) > changing speed of P(t)

spectral gap of
P(t)=P(Q(t))

1

f(Q(t))

Each non-zero entry of P(t) is 

 or 1−

due to our algorithm design

1

f(Q(t))

1

f(Q(t))n

• Step I : Distribution of A(t) converges to Stationary distribution π(t) of P(t) if

changing speed of its entry
1

f(Q(t))

Proof Idea for Positive Recurrence : Why log ?

 mixing speed of P(t) > changing speed of P(t)

spectral gap of
P(t)=P(Q(t))

1

f(Q(t))

Each non-zero entry of P(t) is 

 or 1−

due to our algorithm design

1

f(Q(t))

1

f(Q(t))n

• Step I : Distribution of A(t) converges to Stationary distribution π(t) of P(t) if

changing speed of its entry
1

f(Q(t))

1

f(Q(t))

d

dt

Proof Idea for Positive Recurrence : Why log ?

 mixing speed of P(t) > changing speed of P(t)

spectral gap of
P(t)=P(Q(t))

1

f(Q(t))

Each non-zero entry of P(t) is 

 or 1−

due to our algorithm design

1

f(Q(t))

1

f(Q(t))n

f′(Q(t))

f(Q(t))2

chain rule

• Step I : Distribution of A(t) converges to Stationary distribution π(t) of P(t) if

changing speed of its entry
1

f(Q(t))

1

f(Q(t))

d

dt

Q(t)d

dt

Proof Idea for Positive Recurrence : Why log ?

 mixing speed of P(t) > changing speed of P(t)

spectral gap of
P(t)=P(Q(t))

1

f(Q(t))

Each non-zero entry of P(t) is 

 or 1−

due to our algorithm design

1

f(Q(t))

1

f(Q(t))n

f′(Q(t))

f(Q(t))2

chain rule

• Step I : Distribution of A(t) converges to Stationary distribution π(t) of P(t) if

changing speed of its entry
1

f(Q(t))

1

f(Q(t))

d

dt

Q(t)d

dt

1

Proof Idea for Positive Recurrence : Why log ?

 mixing speed of P(t) > changing speed of P(t)

spectral gap of
P(t)=P(Q(t))

1

f(Q(t))

Each non-zero entry of P(t) is 

 or 1−

due to our algorithm design

1

f(Q(t))

1

f(Q(t))n

f′(Q(t))

f(Q(t))2

chain rule

• Step I : Distribution of A(t) converges to Stationary distribution π(t) of P(t) if

changing speed of its entry
1

f(Q(t))

1

f(Q(t))

d

dt

Proof Idea for Positive Recurrence : Why log ?

 mixing speed of P(t) > changing speed of P(t)

spectral gap of
P(t)=P(Q(t))

1

f(Q(t))

Each non-zero entry of P(t) is 

 or 1−

due to our algorithm design

1

f(Q(t))

1

f(Q(t))n

f′(Q(t))

f(Q(t))2

chain ruleChoose f(x)=x 

1

Q(t)2

1

 Q(t)n ⊁

• Step I : Distribution of A(t) converges to Stationary distribution π(t) of P(t) if

changing speed of its entry
1

f(Q(t))

1

f(Q(t))

d

dt

Proof Idea for Positive Recurrence : Why log ?

 mixing speed of P(t) > changing speed of P(t)

spectral gap of
P(t)=P(Q(t))

1

f(Q(t))

Each non-zero entry of P(t) is 

 or 1−

due to our algorithm design

1

f(Q(t))

1

f(Q(t))n

f′(Q(t))

f(Q(t))2

chain rule

• Step I : Distribution of A(t) converges to Stationary distribution π(t) of P(t) if

changing speed of its entry
1

f(Q(t))

1

f(Q(t))

d

dt

Proof Idea for Positive Recurrence : Why log ?

 mixing speed of P(t) > changing speed of P(t)

spectral gap of
P(t)=P(Q(t))

1

f(Q(t))

Each non-zero entry of P(t) is 

 or 1−

due to our algorithm design

1

f(Q(t))

1

f(Q(t))n

f′(Q(t))

f(Q(t))2

chain ruleChoose f(x)=log x 

1

Q(t)(log Q(t))2

1

(log Q(t))n ≻

• Step I : Distribution of A(t) converges to Stationary distribution π(t) of P(t) if

changing speed of its entry
1

f(Q(t))

1

f(Q(t))

d

dt

Which function is best for throughput and delay?

• Any sub-poly function works for throughput-optimality

- Growing slower than x e.g. ... ε
logx, log logx, e

p
log x

Which function is best for throughput and delay?

• Any sub-poly function works for throughput-optimality

- Growing slower than x e.g. ... ε

• Simulation on grid interference graph

 x 1/2

 log x

logx, log logx, e
p
log x

Which function is best for throughput and delay?

• Any sub-poly function works for throughput-optimality

- Growing slower than x e.g. ... ε

- Tradeoff : Faster growing function is  
 better for queue-size but worse for stability

• Simulation on grid interference graph

 x 1/2

 log x

logx, log logx, e
p
log x

Which function is best for throughput and delay?

• Any sub-poly function works for throughput-optimality

- Growing slower than x e.g. ... ε

- Tradeoff : Faster growing function is  
 better for queue-size but worse for stability

- Hence, the best function is the fastest growing  
 one as long as it guarantees stability i.e.

• Simulation on grid interference graph

 x 1/2

 log x

logx, log logx, e
p
log x

Which function is best for throughput and delay?

• Any sub-poly function works for throughput-optimality

- Growing slower than x e.g. ... ε

- Tradeoff : Faster growing function is  
 better for queue-size but worse for stability

- Hence, the best function is the fastest growing  
 one as long as it guarantees stability i.e.

 mixing speed of P(t) > changing speed of P(t)

• Simulation on grid interference graph

 x 1/2

 log x

logx, log logx, e
p
log x

Which function is best for throughput and delay?

• Any sub-poly function works for throughput-optimality

- Growing slower than x e.g. ... ε

- Tradeoff : Faster growing function is  
 better for queue-size but worse for stability

- Hence, the best function is the fastest growing  
 one as long as it guarantees stability i.e.

 mixing speed of P(t) > changing speed of P(t)

Depends on spectral
gap of a certain matrix  

called ‘Glauber dynamics’

• Simulation on grid interference graph

 x 1/2

 log x

logx, log logx, e
p
log x

Which function is best for throughput and delay?

• Any sub-poly function works for throughput-optimality

- Growing slower than x e.g. ... ε

- Tradeoff : Faster growing function is  
 better for queue-size but worse for stability

- Hence, the best function is the fastest growing  
 one as long as it guarantees stability i.e.

 mixing speed of P(t) > changing speed of P(t)

Depends on spectral
gap of a certain matrix  

called ‘Glauber dynamics’

Queue-size ≈ if choose the best function f
Spectral gap of Glauber dynamics

1

logx, log logx, e
p
log x

Which function is best for throughput and delay?

• Any sub-poly function works for throughput-optimality

- Growing slower than x e.g. ... ε

- Tradeoff : Faster growing function is  
 better for queue-size but worse for stability

- Hence, the best function is the fastest growing  
 one as long as it guarantees stability i.e.

 mixing speed of P(t) > changing speed of P(t)

Depends on spectral
gap of a certain matrix  

called ‘Glauber dynamics’

Queue-size ≈ if choose the best function f
Spectral gap of Glauber dynamics

1

- Hence, Queue-size = poly(n) or exp(n)  
 depending on graph structure

logx, log logx, e
p
log x

Summary of Network Adiabatic Theorem

• In summary,

Designing a high performance medium access algorithm

Sampling time-varying distribution π(t)=π(Q(t)) satisfying MW property [Tassiulas and Ephremides 92]

Step II

Medium access algorithm (Queue-based CSMA) = Distributed Iterative sampling mechanism

Step I

Summary of Network Adiabatic Theorem

• In summary,

Designing a high performance medium access algorithm

Sampling time-varying distribution π(t)=π(Q(t)) satisfying MW property [Tassiulas and Ephremides 92]

Step II

Medium access algorithm (Queue-based CSMA) = Distributed Iterative sampling mechanism

Step I

Distributed Distributed Time-varying  
 Scheduling (time-varying) Metropolis-Hastings  
 Sampling AlgorithmStep II Step I

Summary of Network Adiabatic Theorem

• In summary,

Designing a high performance medium access algorithm

Sampling time-varying distribution π(t)=π(Q(t)) satisfying MW property [Tassiulas and Ephremides 92]

Step II

Medium access algorithm (Queue-based CSMA) = Distributed Iterative sampling mechanism

Step I

• Next: We generalize this framework

Distributed Distributed Time-varying  
 Scheduling (time-varying) Metropolis-Hastings  
 Sampling AlgorithmStep II Step I

Generalized Network Adiabatic Theorem

• [S. and Suk 2014]* establish the following generic framework

Designing a high performance combinatorial resource allocation algorithm

Iterative & distributed optimization methods computing 
time-varying distribution π(t)=π(Q(t)) satisfying MW property

Step II

Queue-based low-complexity and distributed mechanism:  
Run only one iteration of the optimization method per each time

Step I

 * Scheduling using Interactive Oracles [Shin and Suk] ACM SIGMETRICS 2014

Generalized Network Adiabatic Theorem

• [S. and Suk 2014]* establish the following generic framework

Designing a high performance combinatorial resource allocation algorithm

Iterative & distributed optimization methods computing 
time-varying distribution π(t)=π(Q(t)) satisfying MW property

Step II

Queue-based low-complexity and distributed mechanism:  
Run only one iteration of the optimization method per each time

Step I

 * Scheduling using Interactive Oracles [Shin and Suk] ACM SIGMETRICS 2014

- Examples of iterative optimization methods: MCMC, Belief Propagation, Exhaustive Search

Generalized Network Adiabatic Theorem

• [S. and Suk 2014]* establish the following generic framework

Designing a high performance combinatorial resource allocation algorithm

Iterative & distributed optimization methods computing 
time-varying distribution π(t)=π(Q(t)) satisfying MW property

Step II

Queue-based low-complexity and distributed mechanism:  
Run only one iteration of the optimization method per each time

Step I

 * Scheduling using Interactive Oracles [Shin and Suk] ACM SIGMETRICS 2014

- Examples of iterative optimization methods: MCMC, Belief Propagation, Exhaustive Search

- We prove that throughput-optimality is guaranteed  
if f grow slower than the logarithm of the convergence time of an iterative method

Generalized Network Adiabatic Theorem

• [S. and Suk 2014]* establish the following generic framework

Designing a high performance combinatorial resource allocation algorithm

Iterative & distributed optimization methods computing 
time-varying distribution π(t)=π(Q(t)) satisfying MW property

Step II

Queue-based low-complexity and distributed mechanism:  
Run only one iteration of the optimization method per each time

Step I

 * Scheduling using Interactive Oracles [Shin and Suk] ACM SIGMETRICS 2014

- Examples of iterative optimization methods: MCMC, Belief Propagation, Exhaustive Search

- We prove that throughput-optimality is guaranteed  
if f grow slower than the logarithm of the convergence time of an iterative method

- Network Adiabatic Theorem is a special case for medium access using MCMC 
Pick-and-Compare [Tassiulas 1998] is a special case using Exhaustic Search

Time-varying Network Adiabatic Theorem

• [Yun, S. and Yi 2013]* Suppose channel states are time-varying

Designing a high performance medium access algorithm

Sampling time-varying distribution π(t)=π(Q(t)) satisfying MW property [Tassiulas and Ephremides 92]

Step II

Medium access algorithm (Queue-based CSMA) = Distributed Iterative sampling mechanism

Step I

 * Distributed Medium Access over Time-varying Channels [Yun, Shin and Yi] ACM MOBIHOC 2013

Time-varying Network Adiabatic Theorem

• [Yun, S. and Yi 2013]* Suppose channel states are time-varying

Designing a high performance medium access algorithm

Sampling time-varying distribution π(t)=π(Q(t)) satisfying MW property [Tassiulas and Ephremides 92]

Step II

Medium access algorithm (Queue-based CSMA) = Distributed Iterative sampling mechanism

Step I

- We prove that throughput-optimality is guaranteed  
 if f(x)=(log x)c where c is the current channel state

 * Distributed Medium Access over Time-varying Channels [Yun, Shin and Yi] ACM MOBIHOC 2013

Time-varying Network Adiabatic Theorem

• [Yun, S. and Yi 2013]* Suppose channel states are time-varying

Designing a high performance medium access algorithm

Sampling time-varying distribution π(t)=π(Q(t)) satisfying MW property [Tassiulas and Ephremides 92]

Step II

Medium access algorithm (Queue-based CSMA) = Distributed Iterative sampling mechanism

Step I

- We prove that throughput-optimality is guaranteed  
 if f(x)=(log x)c where c is the current channel state

- We also prove that log f(x) should be linear with respect to c for throughput-optimality

 * Distributed Medium Access over Time-varying Channels [Yun, Shin and Yi] ACM MOBIHOC 2013

My Contribution for Distributed Scheduling

Network adiabatic theorem for medium access  
[Shah and S.] SIGMETRICS 2009 and Annals of Applied Probability 2012

Network adiabatic theorem  
without message passing 

[Shah, S. and Prasad] FOCS 2011

Time-varying network adiabatic theorem 
[Yun, S. and Yi] MOBIHOC 2013

Generalized network adaibatic theorem 
[S. and Suk] SIGMETRICS 2014

O(1) delay for medium access
[Shah. and S.] SIGMETRICS 2010  

[Lee, Yun, Yun, S. and Yi] INFOCOM 2014

Queue-based Algorithms

My Contribution for Distributed Scheduling

Network adiabatic theorem for medium access  
[Shah and S.] SIGMETRICS 2009 and Annals of Applied Probability 2012

Network adiabatic theorem  
without message passing 

[Shah, S. and Prasad] FOCS 2011

Time-varying network adiabatic theorem 
[Yun, S. and Yi] MOBIHOC 2013

Generalized network adaibatic theorem 
[S. and Suk] SIGMETRICS 2014

Local stability is enough for global stability  
for multi-hop queueing networks

[Dieker and S.] Mathematics of Operations Research 2013

O(1) delay for medium access
[Shah. and S.] SIGMETRICS 2010  

[Lee, Yun, Yun, S. and Yi] INFOCOM 2014

Queue-based Algorithms

My Contribution for Distributed Scheduling

Network adiabatic theorem for medium access  
[Shah and S.] SIGMETRICS 2009 and Annals of Applied Probability 2012

Network adiabatic theorem  
without message passing 

[Shah, S. and Prasad] FOCS 2011

Time-varying network adiabatic theorem 
[Yun, S. and Yi] MOBIHOC 2013

Generalized network adaibatic theorem 
[S. and Suk] SIGMETRICS 2014

Local stability is enough for global stability  
for multi-hop queueing networks

[Dieker and S.] Mathematics of Operations Research 2013

O(1) delay for medium access
[Shah. and S.] SIGMETRICS 2010  

[Lee, Yun, Yun, S. and Yi] INFOCOM 2014

Queue-based Algorithms

Belief Propagation for medium access
[Yun, S. and Yi] to appear in IEEE  

Transactions on Information Theory

Throughput optimality for rate-based CSMA
[Jiang, Shah, S. and Walrand] IEEE Transactions

on Information Theory 2010

Rate-based Algorithms

- Part II -  
Message Passing in Statistical Networks

- Convergence and Correctness of Belief Propagation 
Joint work with Sungsoo Ahn (KAIST), Michael Cherktov (LANL) and Sejun Park
(KAIST)

Graphical Model

• A graphical model (GM) is a way to represent probabilistic
relationships between random variables through a graph

• Factor Graph for GM

Graphical Model

• A graphical model (GM) is a way to represent probabilistic
relationships between random variables through a graph

• Factor Graph for GM

 Computational Challenges in Graphical Model

• A graphical model (GM) is a way to represent probabilistic
relationships between random variables through a graph

• Two fundamental questions : Compute (Marginal probability) P[Zi=1]

(MAP) arg max p(Z)  

 Computational Challenges in Graphical Model

• A graphical model (GM) is a way to represent probabilistic
relationships between random variables through a graph

• Two fundamental questions : Compute (Marginal probability) P[Zi=1]

(MAP) arg max p(Z)  

- They are #P and NP hard

 Computational Challenges in Graphical Model

• A graphical model (GM) is a way to represent probabilistic
relationships between random variables through a graph

Need some heuristics or approximation algorithms !

• Two fundamental questions : Compute (Marginal probability) P[Zi=1]

(MAP) arg max p(Z)  

- They are #P and NP hard

Belief Propagation for Marginal Probability

Belief Propagation for Marginal Probability

• Consider a random variable X=[Xv]∈{0,1}n and a tree graph G  
 

- Goal : Compute marginal probabilities p[Xv=1] for all v

p[X] = ∏ 1−XuXv
 (u,v)∈E

1
Z

u

v

- (Divide & Conquer) Solve similar problems in sub-trees i.e.  

Belief Propagation for Marginal Probability

• Consider a random variable X=[Xv]∈{0,1}n and a tree graph G  
 

- Goal : Compute marginal probabilities p[Xv=1] for all v

p[X] = ∏ 1−XuXv
 (u,v)∈E

1
Z

u

v

- (Divide & Conquer) Solve similar problems in sub-trees i.e.  

Belief Propagation for Marginal Probability

• Consider a random variable X=[Xv]∈{0,1}n and a tree graph G  
 

- Goal : Compute marginal probabilities p[Xv=1] for all v

p[X] = ∏ 1−XuXv
 (u,v)∈E

1
Z

u

v

 = ∏ Mu→v
 u∈N(v)p[Xv=0]

p[Xv=1]

- (Divide & Conquer) Solve similar problems in sub-trees i.e.  

Belief Propagation for Marginal Probability

• Consider a random variable X=[Xv]∈{0,1}n and a tree graph G  
 

- Goal : Compute marginal probabilities p[Xv=1] for all v

p[X] = ∏ 1−XuXv
 (u,v)∈E

1
Z

u

v

 = ∏ Mu→v
 u∈N(v)p[Xv=0]

p[Xv=1] Mu→v Marginal ratio in sub-tree   u

v

p[Xv=0]

p[Xv=1]

- (Divide & Conquer) Solve similar problems in sub-trees i.e.  

Belief Propagation for Marginal Probability

• Consider a random variable X=[Xv]∈{0,1}n and a tree graph G  
 

- Goal : Compute marginal probabilities p[Xv=1] for all v

p[X] = ∏ 1−XuXv
 (u,v)∈E

1
Z

u

v

 = ∏ Mu→v
 u∈N(v)p[Xv=0]

p[Xv=1]

Marginal ratio in sub-sub-tree  
u

w1 + ∏ Mw→u
 w∈N(u)/v

1
=

Mu→v Marginal ratio in sub-tree   u

v

p[Xv=0]

p[Xv=1]

- (Divide & Conquer) Solve similar problems in sub-trees i.e.  

Belief Propagation for Marginal Probability

• Consider a random variable X=[Xv]∈{0,1}n and a tree graph G  
 

- Goal : Compute marginal probabilities p[Xv=1] for all v

p[X] = ∏ 1−XuXv
 (u,v)∈E

1
Z

u

v

 = ∏ Mu→v
 u∈N(v)p[Xv=0]

p[Xv=1]

Marginal ratio in sub-sub-tree  
u

w1 + ∏ Mw→u
 w∈N(u)/v

1
=

Mu→v Marginal ratio in sub-tree   u

v

p[Xv=0]

p[Xv=1]

- (Divide & Conquer) Solve similar problems in sub-trees i.e.  

Belief Propagation for Marginal Probability

• Consider a random variable X=[Xv]∈{0,1}n and a tree graph G  
 

- Goal : Compute marginal probabilities p[Xv=1] for all v

p[X] = ∏ 1−XuXv
 (u,v)∈E

1
Z

u

v

 = ∏ Mu→v
 u∈N(v)p[Xv=0]

p[Xv=1]

• Belief Propagation algorithm :

Mu→v =
1 + ∏ Mw→u

1t+1
t

Mu→v
t+1

Mw→u
t

 w∈N(u)/v (Mu→v =1/2)
0

Marginal ratio in sub-sub-tree  
u

w1 + ∏ Mw→u
 w∈N(u)/v

1
=

Mu→v Marginal ratio in sub-tree   u

v

p[Xv=0]

p[Xv=1]

- (Divide & Conquer) Solve similar problems in sub-trees i.e.  

Belief Propagation for Marginal Probability

• Consider a random variable X=[Xv]∈{0,1}n and a tree graph G  
 

- Goal : Compute marginal probabilities p[Xv=1] for all v

p[X] = ∏ 1−XuXv
 (u,v)∈E

1
Z

u

v

 = ∏ Mu→v
 u∈N(v)p[Xv=0]

p[Xv=1]

It is dynamic programming !
• Belief Propagation algorithm :

Mu→v =
1 + ∏ Mw→u

1t+1
t

Mu→v
t+1

Mw→u
t

 w∈N(u)/v (Mu→v =1/2)
0

Marginal ratio in sub-sub-tree  
u

w1 + ∏ Mw→u
 w∈N(u)/v

1
=

Mu→v Marginal ratio in sub-tree   u

v

p[Xv=0]

p[Xv=1]

Belief Propagation (BP)

• BP is an iterative message-passing algorithm Mt+1 = fBP(Mt)

- For tree graphical models, BP = Dynamic programming

- BP for computing marginal probabilities is called “Sum-product BP (SBP)”

- BP for computing MAP is called “Max-product BP (MBP)”

• One can run BP for general graphical models

- BP = ‘approximate’ Dynamic programming

- However, its performance is not guaranteed if the underlying graph is not a tree

Belief Propagation (BP)

• BP is an iterative message-passing algorithm Mt+1 = fBP(Mt)

- For tree graphical models, BP = Dynamic programming

- BP for computing marginal probabilities is called “Sum-product BP (SBP)”

- BP for computing MAP is called “Max-product BP (MBP)”

• One can run BP for general graphical models

- BP = ‘approximate’ Dynamic programming

- However, its performance is not guaranteed if the underlying graph is not a tree

• Somewhat surprisingly, ‘loopy’ BPs have shown strong heuristic
performance in many applications

- e.g. error correcting codes (turbo codes), combinatorial optimization, statistical physics ...

- It becomes a popular heuristic algorithm since it is easy to implement

Belief Propagation (BP)

• BP is an iterative message-passing algorithm Mt+1 = fBP(Mt)

- For tree graphical models, BP = Dynamic programming

- BP for computing marginal probabilities is called “Sum-product BP (SBP)”

- BP for computing MAP is called “Max-product BP (MBP)”

• One can run BP for general graphical models

- BP = ‘approximate’ Dynamic programming

- However, its performance is not guaranteed if the underlying graph is not a tree

• Somewhat surprisingly, ‘loopy’ BPs have shown strong heuristic
performance in many applications

- e.g. error correcting codes (turbo codes), combinatorial optimization, statistical physics ...

- It becomes a popular heuristic algorithm since it is easy to implement

Belief Propagation (BP)

• BP is an iterative message-passing algorithm Mt+1 = fBP(Mt)

- For tree graphical models, BP = Dynamic programming

- BP for computing marginal probabilities is called “Sum-product BP (SBP)”

- BP for computing MAP is called “Max-product BP (MBP)”

Why ?

How to understand Sum-product BP ?

• First, Mt converges to a fixed point of fBP (and how fast)?

- A fixed point always exists due to the Brouwer fixed point theorem, but BP often diverges

• Second, a fixed (i.e. convergent) point of fBP is good ?

- Convergence conditions : [Weiss 00] [Tatikonda and Jordan 02] [Heskes 04] [Ihler et al. 05]

- However, they are very sensitive w.r.t potential functions and the underlying graph structure

- Several efforts : [Wainwright et al. 03] [Heskes 04] [Yedidia et al. 04] [Chertkov et al. 06]

- However, they provide different ‘views’ instead of simple conditions

How to understand Sum-product BP ?

• First, Mt converges to a fixed point of fBP (and how fast)?

- A fixed point always exists due to the Brouwer fixed point theorem, but BP often diverges

• Second, a fixed (i.e. convergent) point of fBP is good ?

How to understand Sum-product BP ?

• First, Mt converges to a fixed point of fBP (and how fast)?

- A fixed point always exists due to the Brouwer fixed point theorem, but BP often diverges

• Second, a fixed (i.e. convergent) point of fBP is good ?

- Question : Exist an algorithm which can always compute a fixed point of fBP in poly-time ?

How to understand Sum-product BP ?

• First, Mt converges to a fixed point of fBP (and how fast)?

- A fixed point always exists due to the Brouwer fixed point theorem, but BP often diverges

• Second, a fixed (i.e. convergent) point of fBP is good ?

- Converging algorithms [Teh and Welling 01] [Yuille 02], but no convergence rate

- Question : Exist an algorithm which can always compute a fixed point of fBP in poly-time ?

How to understand Sum-product BP ?

• First, Mt converges to a fixed point of fBP (and how fast)?

- A fixed point always exists due to the Brouwer fixed point theorem, but BP often diverges

• Second, a fixed (i.e. convergent) point of fBP is good ?

- Converging algorithms [Teh and Welling 01] [Yuille 02], but no convergence rate

- Question : Exist an algorithm which can always compute a fixed point of fBP in poly-time ?

How to understand Sum-product BP ?

• First, Mt converges to a fixed point of fBP (and how fast)?

- A fixed point always exists due to the Brouwer fixed point theorem, but BP often diverges

• Second, a fixed (i.e. convergent) point of fBP is good ?

[S. 2012]* Message passing algorithm always converging to a fixed point of fBP in
O(2Δ n2) iterations for general (undirected) graphical model with max-degree Δ 

* Complexity of Bethe Approximation [Shin] IEEE Transactions on Information Theory 2014

- Converging algorithms [Teh and Welling 01] [Yuille 02], but no convergence rate

- Question : Exist an algorithm which can always compute a fixed point of fBP in poly-time ?

How to understand Sum-product BP ?

• First, Mt converges to a fixed point of fBP (and how fast)?

- A fixed point always exists due to the Brouwer fixed point theorem, but BP often diverges

• Second, a fixed (i.e. convergent) point of fBP is good ?

[S. 2012]* Message passing algorithm always converging to a fixed point of fBP in
O(2Δ n2) iterations for general (undirected) graphical model with max-degree Δ 

* Complexity of Bethe Approximation [Shin] IEEE Transactions on Information Theory 2014

Any algorithm should take Ω(n) iterations

- Converging algorithms [Teh and Welling 01] [Yuille 02], but no convergence rate

- Question : Exist an algorithm which can always compute a fixed point of fBP in poly-time ?

How to understand Sum-product BP ?

• First, Mt converges to a fixed point of fBP (and how fast)?

- A fixed point always exists due to the Brouwer fixed point theorem, but BP often diverges

• Second, a fixed (i.e. convergent) point of fBP is good ?

[S. 2012]* Message passing algorithm always converging to a fixed point of fBP in
O(2Δ n2) iterations for general (undirected) graphical model with max-degree Δ 

* Complexity of Bethe Approximation [Shin] IEEE Transactions on Information Theory 2014

- It is as easy to implement as BP and a strong polynomial-time algorithm if Δ=O(log n)

- Converging algorithms [Teh and Welling 01] [Yuille 02], but no convergence rate

- Question : Exist an algorithm which can always compute a fixed point of fBP in poly-time ?

How to understand Sum-product BP ?

• Second, a fixed (i.e. convergent) point of fBP is good ?

[S. 2012]* Message passing algorithm always converging to a fixed point of fBP in
O(2Δ n2) iterations for general (undirected) graphical model with max-degree Δ 

* Complexity of Bethe Approximation [Shin] IEEE Transactions on Information Theory 2014

- It is as easy to implement as BP and a strong polynomial-time algorithm if Δ=O(log n)

- Converging algorithms [Teh and Welling 01] [Yuille 02], but no convergence rate

- Question : Exist an algorithm which can always compute a fixed point of fBP in poly-time ?

How to understand Sum-product BP ?

• Second, a fixed (i.e. convergent) point of fBP is good ?

† Computing Indep. Sets using Bethe Approximation [Shin et al.] SIDMA 2011

[S. et al. 2011]† Fixed points of fBP are good if girth = Ω(log n)

[S. 2012]* Message passing algorithm always converging to a fixed point of fBP in
O(2Δ n2) iterations for general (undirected) graphical model with max-degree Δ 

* Complexity of Bethe Approximation [Shin] IEEE Transactions on Information Theory 2014

- It is as easy to implement as BP and a strong polynomial-time algorithm if Δ=O(log n)

Proof Strategy : How to find a fixed point of SBP

• Equivalent to find a zero-gradient point of FBethe [Yedidia et al. 04]

- FBethe : D ➝ R is called the Bethe free energy function [Bethe 35]

- The underlying domain D is a polytope 
 
 

- It is not clear whether it is easy to find (or PLS-hard) since it is non-convex

D

Proof Strategy : How to find a fixed point of SBP

• Equivalent to find a zero-gradient point of FBethe [Yedidia et al. 04]

- FBethe : D ➝ R is called the Bethe free energy function [Bethe 35]

- The underlying domain D is a polytope 
 
 

- It is not clear whether it is easy to find (or PLS-hard) since it is non-convex

• Natural attempt : Gradient-descent algorithm  
  
 xt+1 = xt + α ∇ FBethe(xt) for some (step-size) α>0 

- Does it find to a zero-gradient point? If not, why?

D

• When does gradient-descent algorithm work for general F ?

- Its domain is unbounded and |F|, |∇ F|, |∇2 F| are bounded → Possible to choose α

Proof Strategy : How to find a fixed point of LBP

D

• Two issues for xt+1 = xt + α ∇ FBethe(xt)

- Domain D is bounded i.e. a projection may be required

- Derivatives are unbounded (close to boundary of D)

• When does gradient-descent algorithm work for general F ?

- Its domain is unbounded and |F|, |∇ F|, |∇2 F| are bounded → Possible to choose α

Proof Strategy : How to find a fixed point of LBP

D

• Our main idea to resolve the issues

 Suppose ∇ FBethe always points ‘‘inside’’ close to boundary of D

∇ FBethe

• Two issues for xt+1 = xt + α ∇ FBethe(xt)

- Domain D is bounded i.e. a projection may be required

- Derivatives are unbounded (close to boundary of D)

• When does gradient-descent algorithm work for general F ?

- Its domain is unbounded and |F|, |∇ F|, |∇2 F| are bounded → Possible to choose α

Proof Strategy : How to find a fixed point of LBP

D

• Our main idea to resolve the issues

 Suppose ∇ FBethe always points ‘‘inside’’ close to boundary of D

∇ FBethe

• Two issues for xt+1 = xt + α ∇ FBethe(xt)

- Domain D is bounded i.e. a projection may be required

- Derivatives are unbounded (close to boundary of D)

- Then, it is possible choose small α so that 
 
 xt is always far from boundary D i.e. xt ∈ D*⊂D

• When does gradient-descent algorithm work for general F ?

- Its domain is unbounded and |F|, |∇ F|, |∇2 F| are bounded → Possible to choose α

Proof Strategy : How to find a fixed point of LBP

D

• Our main idea to resolve the issues

 Suppose ∇ FBethe always points ‘‘inside’’ close to boundary of D

∇ FBethe

• Two issues for xt+1 = xt + α ∇ FBethe(xt)

- Domain D is bounded i.e. a projection may be required

- Derivatives are unbounded (close to boundary of D)

- Then, it is possible choose small α so that 
 
 xt is always far from boundary D i.e. xt ∈ D*⊂D

• When does gradient-descent algorithm work for general F ?

- Its domain is unbounded and |F|, |∇ F|, |∇2 F| are bounded → Possible to choose α

Proof Strategy : How to find a fixed point of LBP

D

xt

• Our main idea to resolve the issues

 Suppose ∇ FBethe always points ‘‘inside’’ close to boundary of D

∇ FBethe

• Two issues for xt+1 = xt + α ∇ FBethe(xt)

- Domain D is bounded i.e. a projection may be required

- Derivatives are unbounded (close to boundary of D)

- Then, it is possible choose small α so that 
 
 xt is always far from boundary D i.e. xt ∈ D*⊂D

• When does gradient-descent algorithm work for general F ?

- Its domain is unbounded and |F|, |∇ F|, |∇2 F| are bounded → Possible to choose α

Proof Strategy : How to find a fixed point of LBP

D

xt

• Our main idea to resolve the issues

 Suppose ∇ FBethe always points ‘‘inside’’ close to boundary of D

∇ FBethe

• Two issues for xt+1 = xt + α ∇ FBethe(xt)

- Domain D is bounded i.e. a projection may be required

- Derivatives are unbounded (close to boundary of D)

- Then, it is possible choose small α so that 
 
 xt is always far from boundary D i.e. xt ∈ D*⊂D

- Unfortunately, this (or similar) seems not true ... but

• When does gradient-descent algorithm work for general F ?

- Its domain is unbounded and |F|, |∇ F|, |∇2 F| are bounded → Possible to choose α

Proof Strategy : How to find a fixed point of LBP

D

xt

• Our main idea to resolve the issues

 Suppose ∇ FBethe always points ‘‘inside’’ close to boundary of D

∇ FBethe

• Two issues for xt+1 = xt + α ∇ FBethe(xt)

- Domain D is bounded i.e. a projection may be required

- Derivatives are unbounded (close to boundary of D)

- Then, it is possible choose small α so that 
 
 xt is always far from boundary D i.e. xt ∈ D*⊂D

- Unfortunately, this (or similar) seems not true ... but

We found a function G such that this property holds for G and 
one-to-one correspondence between zero-gradients of G and FBethe

• When does gradient-descent algorithm work for general F ?

- Its domain is unbounded and |F|, |∇ F|, |∇2 F| are bounded → Possible to choose α

Proof Strategy : How to find a fixed point of LBP

D

xt

How to understand Max-product BP ?

How to understand Max-product BP ?

• First, Mt converges to a fixed point of fBP (and how fast)?

• Second, a fixed (i.e. convergent) point of fBP is good ?

How to understand Max-product BP ?

• First, Mt converges to a fixed point of fBP (and how fast)?

- BP converges to the solution of LP (Linear Programming) associated to several combinatorial
optimization problems, i.e., BP can solve LP !

- For example, Bipartite Matchings [Bayati, Shah and Sharma 2006], Matchings [Sanghavi,
Malioutov and Willsky 2007] Perfect Matchings [Bayati, Borgs, Chayes and Zecchina 2008]
Shortest Path [Ruozzi and Tatikonda 2008] Independent Sets [Sanghavi, Shah and Willsky
2008] Min-cost Network Flow [Gamarnik, Shah and Wei 2011] Matchings with Odd Cycles
[S., Chertkov and Gelfand 2013]*

• Second, a fixed (i.e. convergent) point of fBP is good ?

- [Weiss and Freeman 2001] found a generic, called “single-loop-tree”, condition

* Graphical Transformation for Belief Propagation: MaximumWeight Matchings and Odd Cycles [Shin, Gelfand and Chertkov] NIPS 2013

How to understand Max-product BP ?

• First, Mt converges to a fixed point of fBP (and how fast)?

- BP converges to the solution of LP (Linear Programming) associated to several combinatorial
optimization problems, i.e., BP can solve LP !

- For example, Bipartite Matchings [Bayati, Shah and Sharma 2006], Matchings [Sanghavi,
Malioutov and Willsky 2007] Perfect Matchings [Bayati, Borgs, Chayes and Zecchina 2008]
Shortest Path [Ruozzi and Tatikonda 2008] Independent Sets [Sanghavi, Shah and Willsky
2008] Min-cost Network Flow [Gamarnik, Shah and Wei 2011] Matchings with Odd Cycles
[S., Chertkov and Gelfand 2013]*

- [Park and S. 2015]† found a generic sufficient condition so that BP converges to the solution
of LP

• Second, a fixed (i.e. convergent) point of fBP is good ?

- [Weiss and Freeman 2001] found a generic, called “single-loop-tree”, condition

* Graphical Transformation for Belief Propagation: MaximumWeight Matchings and Odd Cycles [Shin, Gelfand and Chertkov] NIPS 2013

How to understand Max-product BP ?

• First, Mt converges to a fixed point of fBP (and how fast)?

- BP converges to the solution of LP (Linear Programming) associated to several combinatorial
optimization problems, i.e., BP can solve LP !

- For example, Bipartite Matchings [Bayati, Shah and Sharma 2006], Matchings [Sanghavi,
Malioutov and Willsky 2007] Perfect Matchings [Bayati, Borgs, Chayes and Zecchina 2008]
Shortest Path [Ruozzi and Tatikonda 2008] Independent Sets [Sanghavi, Shah and Willsky
2008] Min-cost Network Flow [Gamarnik, Shah and Wei 2011] Matchings with Odd Cycles
[S., Chertkov and Gelfand 2013]*

- [Park and S. 2015]† found a generic sufficient condition so that BP converges to the solution
of LP

• Second, a fixed (i.e. convergent) point of fBP is good ?

- [Weiss and Freeman 2001] found a generic, called “single-loop-tree”, condition

* Graphical Transformation for Belief Propagation: MaximumWeight Matchings and Odd Cycles [Shin, Gelfand and Chertkov] NIPS 2013
† Max-product Belief Propagation for Linear Programming [Park and Shin] UAI 2015

Our Contribution: BP can solve LP ?

•[Park and S. 2015]* BP converges to the solution of LP if

- C1. LP has a unique and integral solution

- C2. Each variable is associated to at most two factors

- C3.  
 
 
 
 
 

* Max-product Belief Propagation for Linear Programming [Park and Shin] UAI 2015

Our Contribution: BP can solve LP ?

•[Park and S. 2015]* BP converges to the solution of LP if

- C1. LP has a unique and integral solution

- C2. Each variable is associated to at most two factors

- C3.  
 
 
 
 
 

“C3 is a only non-trivial condition, but typically easy to check given GM.” 

* Max-product Belief Propagation for Linear Programming [Park and Shin] UAI 2015

Our Contribution: BP can solve LP ?

•[Park and S. 2015]* BP converges to the solution of LP if

- C1. LP has a unique and integral solution

- C2. Each variable is associated to at most two factors

- C3.  
 
 
 
 
 

“C3 is a only non-trivial condition, but typically easy to check given GM.” 

•Why BP can be better than simplex or interior-point methods ?

- BP is easy to parallelize and implement in a distributed & parallel programming model  
 
 
 

* Max-product Belief Propagation for Linear Programming [Park and Shin] UAI 2015

Examples of LP solvable by BP
Shortest Path Minimum Weight (Perfect) Matching

Vertex Cover

Network FlowTraveling Salesman Problem

Cycle Packing

My Contribution for Belief Propagation

•Sum-product BP

- Polynomial-time algorithm for computing a BP fixed-point  
[S.] IEEE Transactions on Information Theory 2014

- Large-girth condition for correctness of BP 
[S. et al.] SIAM Journal on Discrete Mathematics 2011

•Max-product BP

- BP solves the LP for minimum weight matching using odd cycle constraints 
[S., Gelfand and Chertkov] NIPS 2013

- Generic necessary condition so that BP solves LP  
[Gelfand, Chertkov and S.] ISIT 2013

- Generic sufficient condition so that BP solves LP  
[Park and S.] UAI 2015

- BP solves the IP for minimum weight matching  
[Ahn, Chertkov, Park and S.] submitted  

Summary

Scheduling algorithms for
communication networks

(e.g. wireless communication)

Part I

Efficient algorithms for
Statistical Inference

(e.g. belief propagation)

Part II

Summary

Message Passing  
Algorithms

Scheduling algorithms for
communication networks

(e.g. wireless communication)

Part I

Efficient algorithms for
Statistical Inference

(e.g. belief propagation)

Part II

Why Message Passing Algorithms ?

• They are crucial for numerous fields in engineering and  
 social science

- Building blocks for communication (Internet) networks 
 e.g. medium access, packet switching

- Efficient estimation tools for statistical (Bayesian) networks 
 e.g. variational (or cavity) method, Markov chain monte carlo

- Faithful behavioral models for societal systems  
 e.g. markets, auctions, recommendation systems

My Research = Principles of Local Rules for Networked Systems

