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- Part I -  
Message Passing in Communication Networks

- Focus on medium access for wireless networks 
Joint work with Devavrat Shah (MIT)

- Later describe how the result is extended 
Joint work with Yung Yi (KAIST), Seyoung Yun,(MSR), Tonghoon Suk (Gatech)
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• Question : How to avoid interference?

- While transmitting as many packets as possible

Motivation :  Wireless Network

However, no protocol is known  
to be optimal in a certain sense

A B C D

• Need a contention resolution protocol 

- Also called medium access algorithm

- e.g. CSMA/CA,  ALOHA,  TDMA,  CDMA,  etc.
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• Design a `provably’ optimal medium access algorithm

Next : Describe a mathematical model Next : Definition of `optimality’

- For simplicity, I will considers a simple model  
(i.e. discrete-time, single-hop, single-channel)  

- However, the same story goes through for other models  
(i.e. continuous-time,multi-hop, multi-channel, collisions, time-varying)
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• Wireless network = Collection of queues

- Each queue represents a communication link (e.g.  A→B)

Model :  Wireless Network

- Interference graph G  
 
‘’Queues form vertices & two queues share an edge if they cannot transmit simultaneously’’
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[Abramson and Kuo 73] [Metcalfe and Bogg 76] [Mosely and Humble 85] [Kelly and MacPhee 
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- Till 1990s : complete interference graph (e.g. Ethernet)

- From 1990s : general interference graph (e.g. wireless networks)

• No simple distributed throughput-optimal protocol is known  
 
                                                        for general interference graph

- Next : Recent progress for this open question
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• Assume Carrier Sensing information

- Knowledge whether neighbors attempted to transmit (at the previous time instance)

- Medium access algorithm using this information is called CSMA

• CSMA protocol :  At each time t, each queue i

- Check whether some (interfering) neighbors attempted to transmit at time t-1

- If no, attempts to transmit with probability pi(t)         

- Else, keep silent 

How to design this `access probability’ pi(t) for each queue i ?
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- Also propose updating rules of pi(t) at time T, 2T, 3T, ...  
 
 
 

- And `conjecture’ that pi(t) converges to pi(G, λ), and hence throughput optimal  
 

• [Jiang, Shah, S. and Walrand 2008]* provide provable T and ε
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• Further improvements have been made, for example

- [Liu, Yi, Proutiere, Chiang and Poor 2009] proved that even T=1 works.

- [Chaporkar and Proutiere 2013] developed an algorithm even in SNR model

- [Lee, Lee, Yi, Chong, Nardelli, Knightly and Chiang 2013] implemented them in 802.11

No proof

* Distributed Random Access Algorithm [Jiang, Shah, Shin and Walrand] IEEE Transactions on Information Theory 2010 

“pi(2T)=pi(T)±ε depending on whether queue i increases in time [T,2T]”
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Queue-based

• Another approach is choosing access probability pi(t)=1− 

- Qi(t) = Queue-size at time t and f is some increasing function

- It is called Queue-based CSMA

- However, it is known to be harder to analyze

- Simulations on 10 by 10 grid graph

1

f(Qi(t))

Which function f is best ?
f(x)=x

f(x)=x/2
f(x)=log x

Bad

Good

Best



How to Choose Access Probability in CSMA : 
Summary and My Contribution



How to Choose Access Probability in CSMA : 
Summary and My Contribution

• Two recent approaches

Rate-based CSMA Queue-based CSMA

Pros Easier to analyze Easier to implement

Cons Less robust Harder to analyze

Main Question How to design updating rules ? How to choose a function f ?



How to Choose Access Probability in CSMA : 
Summary and My Contribution

• Two recent approaches

Rate-based CSMA Queue-based CSMA

Pros Easier to analyze Easier to implement

Cons Less robust Harder to analyze

Main Question How to design updating rules ? How to choose a function f ?

My Contribution :  
First provable answers 

for both questions



How to Choose Access Probability in CSMA : 
Summary and My Contribution

• Two recent approaches

Rate-based CSMA Queue-based CSMA

Pros Easier to analyze Easier to implement

Cons Less robust Harder to analyze

Main Question How to design updating rules ? How to choose a function f ?

My Contribution :  
First provable answers 

for both questions

Previous slide :  
First provable throughput-optimal 

updating rule*

* Distributed Random Access Algorithm [Jiang, Shah, Shin and Walrand] IEEE Transactions on Information Theory 2010 
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• Two recent approaches

Rate-based CSMA Queue-based CSMA

Pros Easier to analyze Easier to implement

Cons Less robust Harder to analyze

Main Question How to design updating rules ? How to choose a function f ?

My Contribution :  
First provable answers 

for both questions

Previous slide :  
First provable throughput-optimal 

updating rule*

Next slide :  
First provable throughput-optimal 

function†

* Distributed Random Access Algorithm [Jiang, Shah, Shin and Walrand] IEEE Transactions on Information Theory 2010 

† Network Adiabatic Theorem [Rajagopalan, Shah and Shin] ACM SIGMETRICS 2009
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- Q(t)=[Qi(t)] :  Vector of queue-sizes at time t

- A(t)=[Ai(t)]∈{0,1}n :  Vector of attempting status at time t   

• Proof Strategy

- Step I :  A(t) is ‘stable’

- Step II : Stability of A(t) implies Stability of Q(t)

Main issue :   
P(t) is time-varying

Q(t)           A(t)

`If P(t) changes slower than it mixes’

Next : Holds if f=log

Want Q(t) is stable

• Step I

- Observe that A(t) is a ‘time-varying’ MC with transition matrix P(t)=P(Q(t))

- Prove that Distribution of A(t) converges to Stationary distribution π(t) of P(t) 
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Which function is best for throughput and delay?

• Any sub-poly function works for throughput-optimality

- Growing slower than x  e.g.                                    ... ε

- Tradeoff :  Faster growing function is  
    better for queue-size but worse for stability

- Hence, the best function is the fastest growing  
    one as long as it guarantees stability i.e.

   mixing speed of P(t) > changing speed of P(t)

Depends on spectral
gap of a certain matrix  

called ‘Glauber dynamics’

Queue-size   ≈                                                         if choose the best function f 
Spectral gap of Glauber dynamics

1

- Hence, Queue-size = poly(n) or exp(n)  
        depending on graph structure

logx, log logx, e
p
log x



Summary of Network Adiabatic Theorem

• In summary,

Designing a high performance medium access algorithm

Sampling time-varying distribution π(t)=π(Q(t)) satisfying MW property [Tassiulas and Ephremides 92]

Step II

Medium access algorithm (Queue-based CSMA) = Distributed Iterative sampling mechanism

Step I



Summary of Network Adiabatic Theorem

• In summary,

Designing a high performance medium access algorithm

Sampling time-varying distribution π(t)=π(Q(t)) satisfying MW property [Tassiulas and Ephremides 92]

Step II

Medium access algorithm (Queue-based CSMA) = Distributed Iterative sampling mechanism

Step I

Distributed                  Distributed                       Time-varying  
 Scheduling                 (time-varying)                 Metropolis-Hastings  
                                     Sampling                           AlgorithmStep II Step I
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• In summary,

Designing a high performance medium access algorithm

Sampling time-varying distribution π(t)=π(Q(t)) satisfying MW property [Tassiulas and Ephremides 92]

Step II

Medium access algorithm (Queue-based CSMA) = Distributed Iterative sampling mechanism

Step I

• Next: We generalize this framework
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• [S. and Suk 2014]* establish the following generic framework

Designing a high performance combinatorial resource allocation algorithm

Iterative & distributed optimization methods computing 
time-varying distribution π(t)=π(Q(t)) satisfying MW property

Step II

Queue-based low-complexity and distributed mechanism:  
Run only one iteration of the optimization method per each time

Step I

 * Scheduling using Interactive Oracles [Shin and Suk] ACM SIGMETRICS 2014

- Examples of iterative optimization methods: MCMC, Belief Propagation, Exhaustive Search

- We prove that throughput-optimality is guaranteed  
if f grow slower than the logarithm of the convergence time of an iterative method

- Network Adiabatic Theorem is a special case for medium access using MCMC 
Pick-and-Compare [ Tassiulas 1998] is a special case using Exhaustic Search
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Time-varying Network Adiabatic Theorem

• [Yun, S. and Yi 2013]* Suppose channel states are time-varying

Designing a high performance medium access algorithm

Sampling time-varying distribution π(t)=π(Q(t)) satisfying MW property [Tassiulas and Ephremides 92]

Step II

Medium access algorithm (Queue-based CSMA) = Distributed Iterative sampling mechanism

Step I

- We prove that throughput-optimality is guaranteed  
                                   if f(x)=(log x)c where c is the current channel state

- We also prove that log f(x) should be linear with respect to c for throughput-optimality

 * Distributed Medium Access over Time-varying Channels [Yun, Shin and Yi] ACM MOBIHOC 2013
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O(1) delay for medium access 
[Shah. and S.] SIGMETRICS 2010  

[Lee, Yun, Yun, S. and Yi] INFOCOM 2014

Queue-based Algorithms

Belief Propagation for medium access 
[Yun, S. and Yi] to appear in IEEE  

Transactions on Information Theory

Throughput optimality for rate-based CSMA
[Jiang, Shah, S. and Walrand] IEEE Transactions 

on Information Theory 2010

Rate-based Algorithms



- Part II -  
Message Passing in Statistical Networks

- Convergence and Correctness of Belief Propagation 
Joint work with Sungsoo Ahn (KAIST), Michael Cherktov (LANL) and Sejun Park 
(KAIST)
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• A graphical model (GM) is a way to represent probabilistic 
relationships between random variables through a graph

Need some heuristics or approximation algorithms !

• Two fundamental questions : Compute  (Marginal probability) P[Zi=1]

(MAP) arg max p(Z)  

- They are #P and NP hard
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- Goal : Compute marginal probabilities p[Xv=1] for all v 

p[X] =      ∏ 1−XuXv
 (u,v)∈E

1
Z

u

v

  = ∏ Mu→v
 u∈N(v)p[Xv=0]

p[Xv=1]

It is dynamic programming !
• Belief Propagation algorithm :

Mu→v  = 
1 + ∏ Mw→u

1t+1
t

Mu→v  
t+1

Mw→u  
t

 w∈N(u)/v (Mu→v =1/2)
0

Marginal ratio in sub-sub-tree  
u

w1 + ∏ Mw→u
 w∈N(u)/v 

1
=

Mu→v      Marginal ratio                 in sub-tree   u

v

p[Xv=0]

p[Xv=1]



Belief Propagation (BP)
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- BP for computing MAP is called “Max-product BP (MBP)”
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Belief Propagation (BP)

• BP is an iterative message-passing algorithm   Mt+1 = fBP(Mt) 

- For tree graphical models, BP = Dynamic programming

- BP for computing marginal probabilities is called “Sum-product BP (SBP)”

- BP for computing MAP is called “Max-product BP (MBP)”

Why ?



How to understand Sum-product BP ?

• First, Mt converges to a fixed point of fBP (and how fast)?

- A fixed point always exists due to the Brouwer fixed point theorem, but BP often diverges

• Second,  a fixed (i.e. convergent) point of fBP is good ?
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- Converging algorithms [Teh and Welling 01] [Yuille 02], but no convergence rate

- Question :  Exist an algorithm which can always compute a fixed point of fBP in poly-time ? 

How to understand Sum-product BP ?

• Second,  a fixed (i.e. convergent) point of fBP is good ?

† Computing Indep. Sets using Bethe Approximation [Shin et al.] SIDMA 2011

[S. et al. 2011]† Fixed points of fBP are good if girth = Ω(log n)

[S. 2012]* Message passing algorithm always converging to a fixed point of fBP in 
O(2Δ n2) iterations for general (undirected) graphical model with max-degree Δ 
  

* Complexity of Bethe Approximation [Shin] IEEE Transactions on Information Theory 2014

- It is as easy to implement as BP and a strong polynomial-time algorithm if Δ=O(log n)



Proof Strategy : How to find a fixed point of SBP

• Equivalent to find a zero-gradient point of FBethe [Yedidia et al. 04]

- FBethe : D ➝ R is called the Bethe free energy function [Bethe 35] 

- The underlying domain D is a polytope 
 
 

- It is not clear whether it is easy to find (or PLS-hard) since it is non-convex
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- FBethe : D ➝ R is called the Bethe free energy function [Bethe 35] 

- The underlying domain D is a polytope 
 
 

- It is not clear whether it is easy to find (or PLS-hard) since it is non-convex

• Natural attempt :  Gradient-descent algorithm  
                      
      xt+1 = xt + α ∇ FBethe(xt)        for some (step-size) α>0 

- Does it find to a zero-gradient point? If not, why?

D
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∇ FBethe

• Two issues for xt+1 = xt + α ∇ FBethe(xt)
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- Derivatives are unbounded (close to boundary of D)

- Then, it is possible choose small α so that 
 
              xt is always far from boundary D i.e. xt ∈ D*⊂D

- Unfortunately, this (or similar) seems not true ... but 

We found a function G such that this property holds for G and 
one-to-one correspondence between zero-gradients of G and FBethe

• When does gradient-descent algorithm work for general F ?

- Its domain is unbounded and |F|, |∇ F|, |∇2 F| are bounded → Possible to choose α

Proof Strategy : How to find a fixed point of LBP
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† Max-product Belief Propagation for Linear Programming [Park and Shin] UAI 2015



Our Contribution: BP can solve LP ?

•[Park and S. 2015]* BP converges to the solution of LP if
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Our Contribution: BP can solve LP ?

•[Park and S. 2015]* BP converges to the solution of LP if

- C1. LP has a unique and integral solution

- C2. Each variable is associated to at most two factors

- C3.  
 
 
 
 
 

“C3 is a only non-trivial condition, but typically easy to check given GM.” 

•Why BP can be better than simplex or interior-point methods ?

- BP is easy to parallelize and implement in a distributed & parallel programming model  
 
 
 

* Max-product Belief Propagation for Linear Programming [Park and Shin] UAI 2015



Examples of LP solvable by BP
Shortest Path Minimum Weight (Perfect) Matching

Vertex Cover

Network FlowTraveling Salesman Problem

Cycle Packing



My Contribution for Belief Propagation

•Sum-product BP

- Polynomial-time algorithm for computing a BP fixed-point  
[S.] IEEE Transactions on Information Theory 2014 

- Large-girth condition for correctness of BP 
[S. et al.] SIAM Journal on Discrete Mathematics 2011

•Max-product BP

- BP solves the LP for minimum weight matching using odd cycle constraints 
[S., Gelfand and Chertkov] NIPS 2013

- Generic necessary condition so that BP solves LP  
[Gelfand, Chertkov and S.] ISIT 2013

- Generic sufficient condition so that BP solves LP  
[Park and S.] UAI 2015

- BP solves the IP for minimum weight matching  
[Ahn, Chertkov, Park and S.] submitted  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Why Message Passing Algorithms ? 

• They are crucial for numerous fields in engineering and     
                                                                  social science

- Building blocks for communication (Internet) networks 
        e.g. medium access, packet switching

- Efficient estimation tools for statistical (Bayesian) networks 
        e.g. variational (or cavity) method, Markov chain monte carlo 

- Faithful behavioral models for societal systems  
        e.g. markets, auctions, recommendation systems

My Research = Principles of Local Rules for Networked Systems


