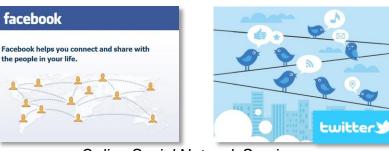
On Maximizing Diffusion Speed in Social Networks

- Impact of Random Seeding and Clustering-

Jungseul Ok

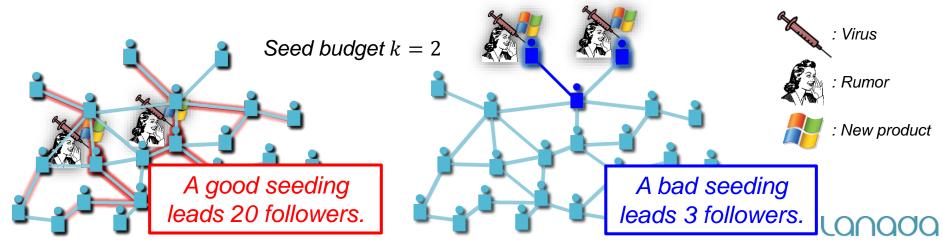
Joint work with Youngmi Jin, Jinwoo Shin and Yung Yi


Electrical Engineering

Korea Advanced Institute of Science Technology

18 June 2014, ACM Sigmetrics

Diffusion over Social Network


• Diffusion by social interaction

Online Social Network Services

- Influence maximization via seeding
 - For given budget k, selecting k people as seeds to maximize number of influenced people.
 - Seeding: injecting virus, telling rumor, or supporting new product in advance.

Understanding of Diffusion

Epidemic-based model

• A user is passively infected by preceding followers.

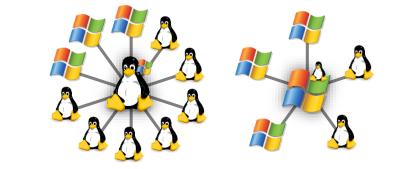
[Kempe et al. '03] [Chen et al. '10]

[Draief & Ganesh '11]

[Banerjee et al. '12] [Chen et al. '12]

[Goyal et al. '13] [Hu et al. '13]

• Number of followers is important.


Same probability

to choose Windows

gam-

Game-based model

- A user strategically selects his choice against his neighbors.
 - Fraction of followers is important.

User A has higher probability to choose Windows than user B.

idel [Blume '93] [Ellison '93] [Morris '00] [Montanari & Saberi '09] [Liu et al. '10] [Lelarge '12] [Jin et al. '13]

Seeding in Diffusion Models

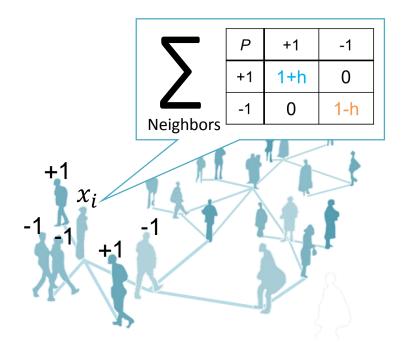
- Epidemic-based model
 - Theoretic studies
 - [Kempe et al. '03] [Chen et al. '12] [Goyal et al. '13]
 - Practical studies
 - [Chen et al. '10] [Hu et al. '13]
- Game-based model?

Our Main Goal

Seeding algorithms for maximizing diffusion over game-based model.

Pairwise Coordination Game

- Coordination gain
 - Gain from same choices, e.g., software compatibility
- (Only in this talk) Suppose that Windows provides more coordination gain.
- Payoff matrix P with game parameter 0 < h < 1
 - +1: new one with better coordination gain
 - -1: old one

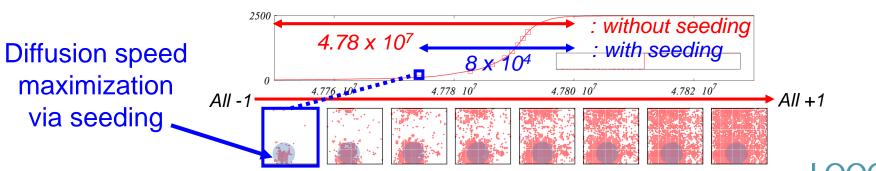

- +1: 🎢 -1: 🐧
- Game parameter *h*: difference of coordination gains of Windows (+1) and Linux (-1).

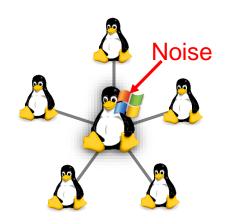
Р	+1	-1
+1	1+h	0
-1	0	1-h

Networked Coordination Game

6

- Social network: graph G = (V, E)
 - V: vertex set, E: edge set
 - Vertex: user, edge: social relationship
- Total payoff: sum of the payoffs with each neighbor
- Update based on total payoffs with +1 and -1
 - A user updates his choice at each tick of unit Poisson clock.



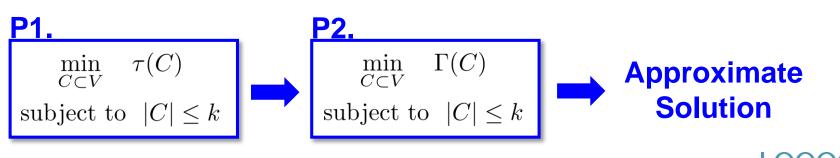

Update Rule

- Noisy best response
 - Best response: a rational user tries to maximize his payoff at each update.
 - Noise: people are sometimes irrational.
- Logit dynamics with noise parameter β
 - probability of being rational $\propto \exp(\beta K_i)$
 - probability of being irrational $\propto \exp(-\beta K_i)$

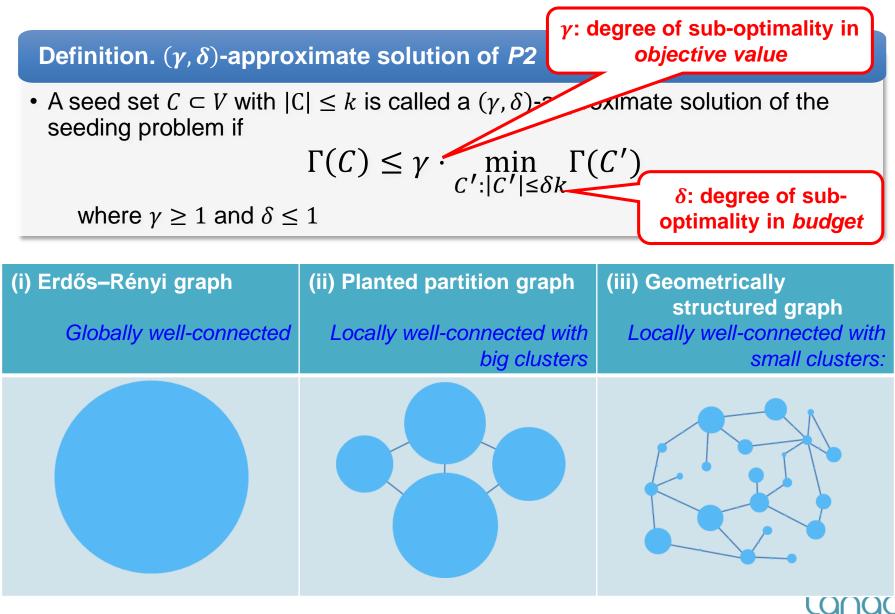
where K_i is absolute value of difference between payoffs with best response and its reverse.

- Slow diffusion time
 - Every user finally adopts +1 and mostly keeps +1.
 - However, diffusion time to all +1 is often impractically long.
 - In small world network: $\approx \exp(\beta \Omega(\text{number of users}))$ [Montanari & Saberi '09]

Problem and Challenge


- Diffusion time $\tau(C)$: median of diffusion time with seed set C
 - Users in seed set C are persuaded to adopt +1 forever.
 - Just estimating $\tau(C)$ takes exponential time.
 - Minimization of $\tau(C)$ is neither algebraic nor combinatorial.
- Using meta-stability theory [Montanari & Saberi '09],

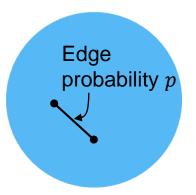
 $\tau(C) \approx \exp(\beta \Gamma(C))$


$$\Gamma(C) = \max_{C \subseteq S_0 \subseteq V} \min_{S:S_0 \to V} \max_{t < |S|} \left[H(S_t) - H(S_0) \right] \quad H(S) = \operatorname{cut}(S, V \setminus S) - \sum_{i \in S} h|N(i)|$$

≈ (tilted) cut-width, a combinatorial value

- Now, we have a combinatorial optimization but it is still challenging.
- There is no sub/super-modularity (diminishing return or synergy effect).

Approximate Solution

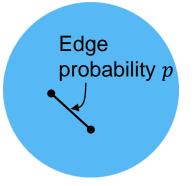


(i) Erdős–Rényi Graph

Theorem 1. ER Graph

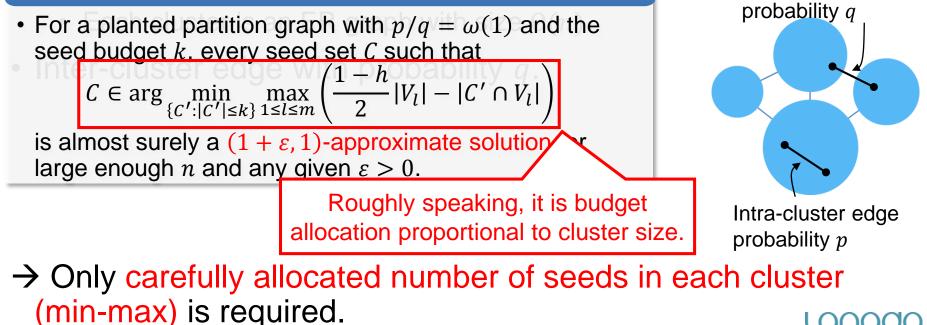
For an ER graph with ω(1) average degree and given seed budget k, an arbitrary seed set C with |C| = k is almost surely a (1 + ε, 1)-approximate solution for large enough n and any given ε > 0.

→ No careful seeding mechanism is necessary.

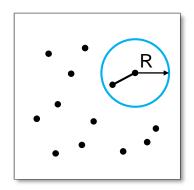

ур.

10

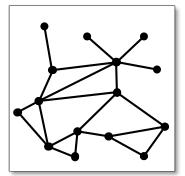
(ii) Planted Partition Graph


Theorem 1. ER Graph

• For an ER graph with $\omega(1)$ average degree and given seed budget k, an arbitrary seed set C with |C| = k is almost surely a $(1 + \varepsilon, 1)$ -approximate solution for large enough *n* and any given $\varepsilon > 0$.

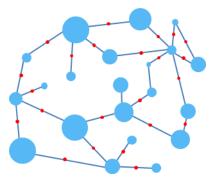

Inter-cluster edge

Theorem 2. Planted Partition Graph



(iii) Geometrically Structured Graph

• d-dimensional graph and planar graph

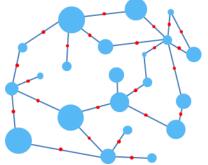

2-dimensional graph

planar graph

Red: inter-cluster connectors **Blue**: local users

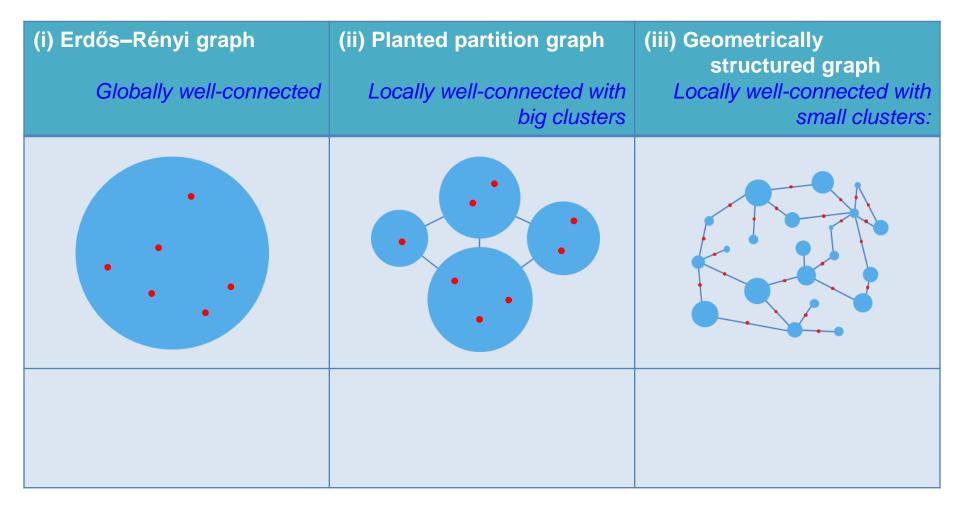
Locally well-connected with small clusters (O(1) size)

Theorem 3. Geometrically Structured Graph

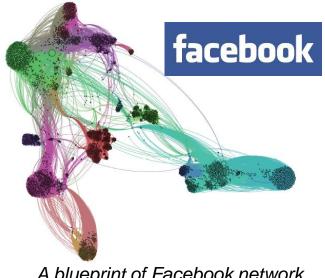

• For a *d*-dimensional graph or planar graph and given budget k, we design a polynomial-time algorithm that outputs a $(1, 1 - \varepsilon)$ -approximate solution for any given $\varepsilon \in (0,1)$.

Partitioning and Seeding

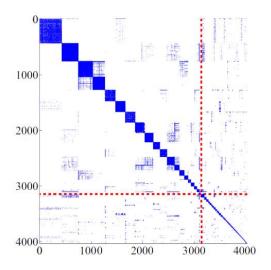
- Partitioning phase
 - Partition the graph by inter-cluster connectors. Blue: local users
 - And select them as default seed set.
- Seeding phase
 - For remaining seed budget: "greedy" allocation
 - Step1. Find slowest cluster and add one more budget to the slowest cluster.
 - Step2. Optimize seed set for the cluster with the increased budget.


 \rightarrow For this locally well-connected graph with small clusters, we should give higher priority to seed inter-cluster connectors.

Red: inter-cluster connectors **Blue**: local users


Result at a Glance

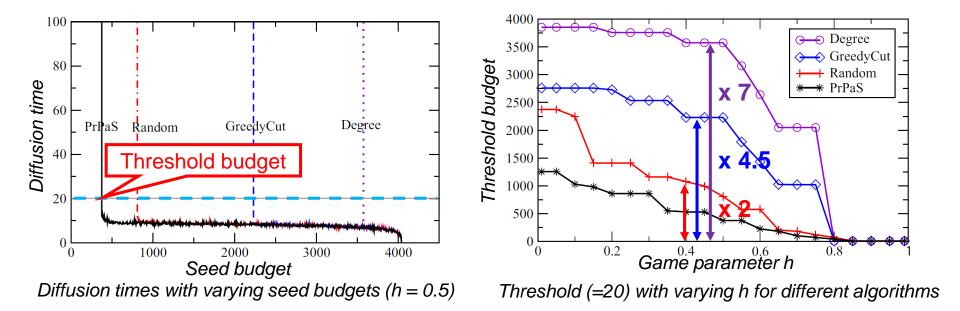
• Nearly optimal seeding strategies:


Practical Seeding Algorithm

- PrPaS: Practical PaS
 - Scalable & non-parametric
 - (i) Partitioning phase
 - A partitioning algorithm
 - We select [Rosvall & Bergstrom '08].
 - (ii) Seeding phase
 - Proportional budget allocation
 - Random seeding in each cluster

A blueprint of Facebook network consisting of 4039 nodes and 88234 edges

- Comparison group
 - **Degree** selects *k* nodes with highest degrees.
 - **GreedyCut** greedily maximizes cut(*C*, *V*\C).
 - Random randomly chooses k nodes.



The adjacency matrix of Facebook network

* Facebook network data is from http://snap.stanford.edu/data/egonets-Facebook.html

Simulation Results

- Threshold budget for target diffusion time x
 - Minimum seed budget required for $\tau(C) < x = 20$.
 - Less threshold implies better seeding.

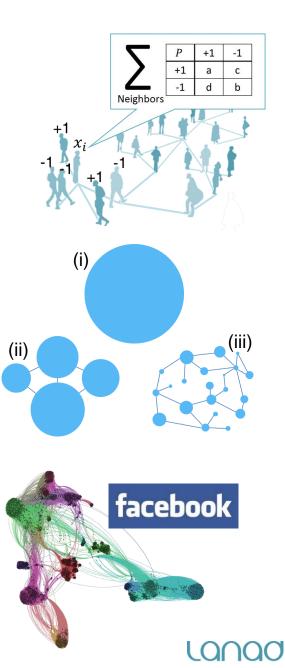
Summary

• Model

: Networked coordination game among users with bounded rationality

Formulation

: Diffusion time minimization problem


Main Result

: Impact of random seeding and clustering

- (i) globally well-connected graph
- (ii) locally well-connected graph with big clusters ($\Theta(n)$ size)
- (iii) locally well-connected graph with small clusters (0(1) size)

PrPaS Algorithm

- : Practical Partitioning and Seeding algorithm
 - Extensive simulation on Facebook network

Thank you

Jungseul Ok ockjs@kaist.ac.kr