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Problems of Interest

(a) regression (b) recommender system (c) video summarization

A variety of machine learning applications are involved in matrix spectral functions.

Definition of Spectral-sums
For a scalar function f : R→ R, spectral-sums is defined as

d∑
i=1

f(λi) = tr (f(A)) ,

where λ1, λ2, . . . , λd are eigen (or singular) values of a symmetric A ∈ Rd×d.
Some examples :

• If f(x) = log x, it is the log-determinant (→ Gaussian process regression)
• If f(x) = x−1, it is the trace of inverse (→ the second-order optimization)
• If f(x) = xp, it is the Schatten norm (→ matrix completion for recommendation)
• if f(x) = x log x, it is the Von-Neumann entropy (→ quantum state tomography)
• If f(x) = exp(x), it is the Estrada index (→ social network centrality)

Problems and Contributions
Challenges in spectral optimization:

approximating spectral sums

tr (f(A(θ))) =
∑
i f(λi) ≈ ?

optimizing spectral sums

minθ tr (f(A(θ)))

Both problems have at least O(d3) computational complexity for a d× d matrix.

Our contributions are following:
• [Past works] We developed a fast algorithm for approximating spectral-sums

of large-scale matrices with rigorous provable guarantee.
• [In this work] We propose a fast unbiased gradient estimator for optimizing

spectral-sums that guarantees to converge to the optimal.

Approximating Spectral-sums
• For appropriate random v ∈ Rd, we have for every B: tr (B) = E

[
v>Bv

]
Generate M Rademacher random vectors v1, . . . ,vM ∈ {−1, 1}d and estimate

tr (f(A)) ≈ 1

M

M∑
i=1

v>i f(A)vi.

• Truncated Chebyshev expansion of f : f(x) =
∑∞
j=0 bjTj(x) ≈

∑n
j=0 bjTj(x)

tr (f(A)) ≈ 1

M

M∑
i=1

n∑
j=0

bjv
>
i Tj(A)vi

where Tj(A)vi can be computed efficiently using recursion.
• The overall running time is O (M × n× cost for multiplications A) .

Optimizing Spectral-sums
For optimization, the gradient-based methods are commonly used:

θ ← θ − η∇θtr (f(A(θ))) (η : step-size)

• Computing ∇θtr (f(A(θ))) requires matrix decompositions with O(d3) costs.
• One can use stochastically approximate the gradient (with random v) as

θ ← θ − η∇θv>pn(A(θ))v.

• It can be computed efficiently using matrix-vector multiplications with A and
∂A/∂θ (details omitted), thus the complexity reduces to O(d2).

• With stochastic gradients, we can use SGD, SVRG, etc.

Critical issue: biased gradient estimator

• Even if the gradient estimate ∇θv>pn(A)v is fast and accurate, it is biased:

E
[
∇θv>pn(A)v

]
= ∇θtr (pn(A)) 6= ∇θtr (f(A))

f(x)− pn(x) 6= 0.

• The bias slows the convergence since errors accumulate over iterations.

Randomized Chebyshev Expansions
So far, we deterministically choose the truncation degree:

f(x) =

∞∑
j=0

bjTj(x), pn(x) :=

n∑
j=0

bjTj(x).

Our proposal: randomly sample degree n with probability qn and define

p̂n(x) :=

n∑
j=0

bj

1−
∑j−1
i=0 qi

Tj(x).

• We get an unbiased estimator: E [p̂n(x)] = f(x).
• SGD for spectral-sums: θ ← θ − η∇θv>p̂n(A(θ))v (random v and n).
• Under mild assumptions on qn, an estimator with small variance leads to faster

convergence.

Optimal Degree Distribution for Minimum Variance
We aim to minimize the Chebyshev weighted variance:

min
{qn:n≥0}

Var [p̂n] := E

[∫ 1

−1

(p̂n(x)− f(x))2√
1− x2

dx

]
. (1)

with constraint the average degree E [n] is given by N .

Theorem (Han, Avron and Shin, 2018). Suppose analytic function f is |f(z)| ≤ U and
bounded by ellipse with foci +1,−1 and sum of major and minor semi-axis lengths equals to ρ > 1.
Let k = min{N,

⌊
ρ
ρ−1

⌋
}, then the distribution that minimizes the variance (1) is:

q∗n =



0 for n < N − k

1− k (ρ− 1)

ρ
for n = N − k

k(ρ− 1)2

ρn+1
for n > N − k

In short: the optimal distribution q∗n minimizes the variance of unbiased estimator.

Algorithm and Analysis
We consider general spectral-sums optimization:

min
θ∈C

tr (f(A(θ))) + g(θ)

where C is a parameter space and g is some simple function. For analysis, we assume
1. All eigenvalues of A(θ) for θ ∈ C are bound in some interval,
2. The objective is α-strongly convex and continuous function of θ,
3. A(θ) is LA-Lipschitz for ‖·‖F , Lnuc-Lipschitz for ‖·‖nuc, and g(θ) is Lg-Lipschitz

and βg-smooth.

Algorithm 1. Stochastic gradient descent (SGD) with random {vi}Mi=1 and n ∼ qn.

Theorem (Han, Avron and Shin, 2018). Let θ(t) ∈ Rd′ be the parameter after t updates.
If one chooses the step-size ηt = 1/αt, then it holds that

E[
∥∥∥θ(T ) − θ∗

∥∥∥2
2
] ≤ 4

α2T
max

(
L2
g,

(
2L2

A

M
+ d′L2

nuc

)(
C1 +

C2N
4

ρ2N

))
where C1, C2 > 0 are constants independent of M,N , and θ∗ is the global optimum.
In short: the optimal q∗n makes small variance and we can bound the error.

Algorithm 2. Stochastic variance reduction gradient (SVRG) with {vi}Mi=1 and n.

Theorem. Let β2 = 2β2
g +

(
L4

A+β2
A

M + L4
A

)(
D1 +

D2N
8

ρ2N

)
for some constants

D1, D2 > 0 independent of M,N . Choose η = α
7β2 and T ≥ 25β2/α2. Then, it holds

E[
∥∥∥θ̃(S) − θ∗∥∥∥2

2
] ≤ rSE[

∥∥∥θ(0) − θ∗∥∥∥2
2
],

where 0 < r < 1 is some constant.
In short: the optimal q∗n with variance reduction yields better convergence rate.

Experiments
1. Schatten norm minimization for matrix completion under MovieLens 1M/10M.�� ��minθ∈Rd1×d2 tr(

√
θ>θ) + λ

∑
(i,j)∈ENTRIES(θi,j −Bi,j)
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• Methods: exact gradient descent (GD), deterministic Chebyshev expansion (SGD-DET),
randomized approximation (SGD) and SVRG (best and up to 6 times faster than others).

• Optimal q∗n shows much faster convergence than other distributions.

2. Log-determinant maximization for Gaussian process under sound/humid data�� ��minθ − log detKernel(X, θ) + y>Kernel(X, θ)y
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• LANCZOS (state-of-the-art) can be often stuck at alocal optimum, while SGD is more
favorable to avoid it.


