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(a) regression (b) recommender system (c) video summarization

A variety of machine learning applications are involved in matrix spectral functions.

Definition of Spectral-sums

For a scalar function f : R — R, spectral-sums is defined as

> F) = e (F(4)),

where A1, \a, ..., \g are eigen (or singular) values of a symmetric A € R4*4,
Some examples :

Problems and Contributions

Challenges in spectral optimization:

optimizing spectral sums
ming tr (f(A(0)))

approximating spectral sums

tr (f(A(0))) = 2; f(h) =7

Both problems have at least O(d?) computational complexity for a d x d matrix.

Our contributions are following:

e [Past works] We developed a fast algorithm for approximating spectral-sums
of large-scale matrices with rigorous provable guarantee.

e [In this work] We propose a fast unbiased gradient estimator for optimizing
spectral-sums that guarantees to converge to the optimal.

Approximating Spectral-sums

e For appropriate random v € R?, we have for every B: tr (B) = E |[v' Bv]
Generate M Rademacher random vectors vy, ..., vy € {—1,1}¢ and estimate

M
1
tr (f(A4)) M;Vz f(A)v
e Truncated Chebyshev expansion of f: f(z) = Y72 b;Tj(z) = Y"

M /=0
1 o e
tr (f(A)) ~ Y >4>4ij7;TTj(A)V7;

i=1 j=0
where T);(A)v; can be computed efficiently using recursion.
e The overall running time is O (M x n x cost for multiplications A) .

b; T;(z)
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Optimizing Spectral-sums
For optimization, the gradient-based methods are commonly used:

0 < 0—nVotr (f(A(H))) (n : step-size)

Computing Vgtr (f(A(0))) requires matrix decompositions with O(d*) costs.
One can use stochastically approximate the gradient (with random v) as

0 0—nVev p,(A0))V.

It can be computed efficiently using mairix-vector multiplications with A and
0A /00 (details omitted), thus the complexity reduces to O(d?).

e With stochastic gradients, we can use SGD, SVRG, etc.

Critical issue: biased gradient estimator

e Even if the gradient estimate Vyv ' p,,(A)v is fast and accurate, it is biased:

E [Vov  pu(A)v] = Votr (pa(A)) # Vatr (£(4))

f(w) _pn(w) 7& 0.

e The bias slows the convergence since errors accumulate over iterations.

Randomized Chebyshev Expansions

So far, we deterministically choose the truncation degree:

o n

flz) =) bTi(x), palz):=> biTy(x).

7=0 7=0
Our proposal: randomly sample degree n with probability ¢,, and define

— Tj (.CE)
o 1~ Zg:é qi

e We get an unbiased estimator: E [p,,(z)] = f(x).
e SGD for spectral-sums: 0 < 0 — Vv ' p,,(A(0))v (random v and n).

e Under mild assumptions on ¢,,, an estimator with small variance leads to faster
convergence.

Optimal Degree Distribution for Minimum Variance

We aim to minimize the Chebyshev weighted variance:

/1 (Du(2) — f(2))°
V1 — 12

with constraint the average degree E [n] is given by N.

min Var|p,| :=E
{qni’nZO} [p ] —1

(1)

Theorem (Han, Avron and Shin, 2018). Suppose analytic function f is |f(z)| < U and

bounded by ellipse with foci +1, —1 and sum of major and minor semi-axis lengths equals to p > 1.
Let k = min{N, {ﬁJ }, then the distribution that minimizes the variance (1) is:

sIm7Z
f(z)|<U

0 for n < N —k

l—k(p_l) for n=N —k
p

k(p— 1)
pn—l—l

for n > N —k

\

In short: the optimal distribution ¢ minimizes the variance of unbiased estimator.
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Pursuing the Unknown

Algorithm and Analysis

We consider general spectral-sums optimization:

min r (£(A(6))) + (0

where C is a parameter space and g is some simple function. For analysis, we assume
1. All eigenvalues of A(8) for 8 € C are bound in some interval,
2. The objective is a-strongly convex and continuous function of 6,
3. A(0) is L 4-Lipschitz for || - || 7, Lnuc-Lipschitz for || - ||nuc, @and g(0) is L,-Lipschitz
and 5,-smooth.

Algorithm 1. Stochastic gradient descent (SGD) with random {v;}}, and n ~ ¢,,.

Theorem (Han, Avron and Shin, 2018). Let ) € R? be the parameter after t updates.
If one chooses the step-size n, = 1/adt, then it holds that

E 4 o (205 .o - CyN*
2] S aQ—TmaX (Lg,< M i dLnuC Cl i p2N

where C, Cy > 0 are constants independent of M, N, and 0™ is the global optimum.
In short: the optimal ¢ makes small variance and we can bound the error.

E[H9<T> s

Algorithm 2. Stochastic variance reduction gradient (SVRG) with {v;}%, and n.

Theorem. Let 3? = 263 + (Lil“j\zﬁ A | Lj) (D1 | Dp 22]},78) for some constants
D1, Dy > 0 independent of M, N. Choose n = 7% and T > 25832 /«®. Then, it holds

2 2

I

E[H§<S> s
2

| < TSE[HH(O) _ ¢

2
where 0 < r < 1 is some constant.

In short: the optimal ¢, with variance reduction yields better convergence rate.

Experiments

1. Schatten norm minimization for matrix completion under MovieLens 1M/10M.
[mineeRdl xdy tT(VO'0) + A Z(z‘,j)eENTRIEs(H’i,j — Bij)” ]
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e Methods: exact gradient descent (GD), deterministic Chebyshev expansion (SGD-DET),
randomized approximation (SGD) and SVRG (best and up to 6 times faster than others).

e Optimal ¢,, shows much faster convergence than other distributions.
2. Log-determinant maximization for Gaussian process under sound/humid data

[ ming — log det Kernel(X, ) +y ' Kernel(X, 0)y j
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e LANCZOS (state-of-the-art) can be often stuck at alocal optimum, while SGD is more
favorable to avoid it.



