Stochastic Chebyshev Gradient Descent for Spectral Optimization

Insu Han¹, Haim Avron², and Jinwoo Shin¹

¹Korea Advanced Institute of Science and Technology (KAIST) and ²Tel Aviv University

Optimizing Spectral-sums

For optimization, the gradient-based methods are commonly used:

\[\theta - \theta - n \nabla_x \text{tr} (f(A)) \]

- Computing \(\nabla_x \text{tr} (f(A)) \) requires matrix decompositions with \(O(d^2) \) costs.
- One can use stochastically approximate the gradient (with random \(v \)) as

\[\theta - \theta - n \nabla_x \text{tr} (\left< f(A), v \right>) \]

- It can be computed efficiently using matrix-vector multiplications with \(A \) and \(\partial A / \partial \theta \) (details omitted), thus the complexity reduces to \(O(d^2) \).
- With stochastic gradients, we can use SGD, SVRG, etc.

Critical issue: biased gradient estimator

- Even if the gradient estimate \(\nabla_v \text{tr} \left(p_n(A) v \right) \) is fast and accurate, it is biased:

\[E \left[\nabla_v \text{tr} \left(p_n(A) v \right) \right] = \nabla_v \text{tr} (f(A)) \neq 0 \]

- The bias slows the convergence since errors accumulate over iterations.

Randomized Chebyshev Expansions

So far, we deterministically choose the truncation degree:

\[f(x) = \sum_{j=0}^{d} b_j T_j(x), \quad p_n(x) = \sum_{j=0}^{d} b_j T_j(x). \]

Our proposal: randomly sample degree \(n \) with probability \(q_n \) and define

\[\tilde{p}_n(x) = \sum_{j=0}^{\min(n, d)} b_j T_j(x). \]

- We get an unbiased estimator:

\[E \left[\tilde{p}_n(x) \right] = f(x). \]
- SGD for spectral-sums: \(\theta - \theta - n \nabla_v \text{tr} \left(\tilde{p}_n(A) v \right) \) (random \(v \) and \(n \)).
- Under mild assumptions on \(q_n \), an estimator with small variance leads to faster convergence.

Optimal Degree Minimization for Minimum Variance

We aim to minimize the Chebyshev weighted variance:

\[\min_{n \in \mathbb{N}} \text{Var} \left[\tilde{p}_n \right] = E \left[\int_0^1 \left(\tilde{p}_n(x) - f(x) \right)^2 \, dx \right] \]

with constraint the average degree \(E \left[n \right] \) is given by \(N \).

Theorem (Han, Avron and Shin, 2018). Suppose analytic function \(f \) is \(|f(x)| \leq U \) and bounded by ellipse with foci \(+1, -1 \) and sum of major and minor semi-axes lengths equals to \(p > 1 \). Let \(k = \min \left[N, \frac{1}{2} p^2 \right] \), then the distribution that minimizes the variance is given by:

\[q_n = \begin{cases} 0 & \text{for } n < N - k \\ \frac{1 - k(p - 1)}{p} & \text{for } n = N - k \\ \frac{k(p - 1)^2}{p^2 + 1} & \text{for } n > N - k \end{cases} \]

In short: the optimal \(q_n \) minimizes the variance of unbiased estimator.

Algorithm and Analysis

We consider general spectral-sums optimization:

\[\min_{\theta} \text{tr} \left(f(A) \theta + g(\theta) \right) \]

where \(C \) is a parameter space and \(g \) is some simple function. For analysis, we assume:

1. All eigenvalues of \(A \) for \(\theta \in C \) are bound in some interval.
2. The objective is \(1 \)-strongly convex and continuous function of \(\theta \).
3. \(A(\theta) \) is \(L_1 \)-Lipschitz for \(\| \cdot \|_1 \), and \(g(\theta) \) is \(L_2 \)-Lipschitz and \(\beta \)-smooth.

Algorithm 1. Stochastic gradient descent (SGD) with \(\{ \theta_k \}_{k=1}^{\infty} \) and \(\eta_n \rightarrow q_n \).

Theorem (Han, Avron and Shin, 2018). Let \(\theta(0) \in C \) be the parameter after \(t \) updates. If one chooses the step-size \(\eta_n = \eta / n \), then it holds that

\[\text{E} \left[\theta(T) - \theta^{*} \right] \leq \frac{4}{\eta^2} \max \left(E \left[\| \frac{1}{n} \sum_{k=0}^{n-1} f(\theta_k) \|_2^2 \right], \frac{d L_2^2}{\eta^2} \right) \]

where \(C_1, C_2 > 0 \) are constants independent of \(M, N \), \(\eta \) is the global optimum. In short: the optimal \(q_n \) makes small variance and we can bound the error.

Algorithm 2. Stochastic variance reduction gradient (SVRG) with \(\{ \theta_k \}_{k=1}^{\infty} \).

Theorem. Let \(\beta^2 = \frac{2}{\eta^2} \left(\frac{L_2^2}{\eta^2} + \frac{d L_2^2}{\eta^2} \right) \) for some constants \(D_1, D_2 \geq 0 \) independent of \(M, N \). Choose \(\eta = \frac{1}{2 \beta} \) and \(T \geq 2(\beta^2 / \eta)^2 \). Then, it holds

\[\text{E} \left[\theta(T) - \theta^{*} \right] \leq \frac{8}{T^2} \left(\frac{\text{E} \left[\| \theta(0) - \theta^{*} \|_2^2 \right]}{T^2} \right), \]

where \(0 < \eta / 2 < 1 \) is some constant.

In short: the optimal \(q_n \) with variance reduction yields better convergence rate.

Experiments

1. Schatten norm minimization for matrix completion under MovieLens 1M/10M.

- Methods: exact gradient descent (GD), deterministic Chebyshev expansion (SGD-DET), randomized approximation (SGD) and SVRG (best and up to 6 times faster than others).
- Optimal \(q_n \) shows much faster convergence than other distributions.

2. Log-determinant maximization for Gaussian process under sound/humid data

- Methods: exact gradient descent (GD), deterministic Chebyshev expansion (SGD-DET), randomized approximation (SGD) and SVRG (best and up to 6 times faster than others).
- Optimal \(q_n \) shows much faster convergence than other distributions.

- LANDOS (state-of-the-art) can be often stuck at a local optimum, while SGD is more favorable to avoid it.