KAIST

Ensemble Methods

Ensemble method has been successfully applied to many applications:
ImageNet 2017 — Object detection WMT 2016

Rank | Team name Entry description Mean AP Rank | Submitter System BLEU

1 BDAT Submission4 0.73222 1 University of Edinburgh | Uedin-nmt-ensemble | 34.8
2 NUS-Qihoo_DPNs (DET) | Ensemble of DPN models | 0.65693 2 Salesforce metamind Metamind-ensemble | 32.8
3 KAISTNIA_ETRI Ensemble Model 5 0.61022 3 University of Edinburgh | Jedin-nmt-single 32.2

Independent ensemble (IE) [Ciregan et al., 2012] trains models inde-
pendently:
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e |t generally improves the performance by reducing the variance.

Multiple choice learning (MCL) [Guzman et al., 2012] makes models
specialized for subset:
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e |t can produce diverse and plausible outputs.

Our Contribution and Key Ildeas
We propose a confident multiple choice learning (CMCL).

e Confident oracle Ioss: integer programming variant of Lo (D).
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e Feature sharing: stochastically shares the features from models.
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e Random labeling: noisy unbiased estimator of gradients.

VoDkr (U (y) || Po(y|x)) = ——ZVMO%P@( | X).
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Training Algorithm and Effects of CMCL

Algorithm for optimizing the confident oracle loss:

1. Sample random batch 5 C D.
2. Compute the loss of each model per each batch.
3. Most accurate model trains the task-specific loss.

4. Other models minimize the KL divergence from predictive distribu-
tion to uniform one.

5. Repeat steps 1 ~ 4 until convergence.

Classification on CIFAR-10 using 5 CNNs (2 Conv + 2 FC):
1 Class-wise test set accuracy
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e ¢;; — test set accuracy of j-th model on class : data.

e MCL and CMCL make each model specialized for certain classes,
while |E does not.

2 Histogram of the predictive entropy
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e For non-specialized data (i.e., accuracy < 80%) and unseen
dataset (i.e., SVHN), ensemble members of CMCL are not over-
confident.

3 Contribution by each technique

Ensemble Feature Stochastic Oracle Top-1
Method  Sharing Labeling  Error Rate  Error Rate
IE - - 10.65% 15.34%
MCL - - 4.40% 60.40%
- - 4.49% 15.65%
CMCL v - 5.12% 14.83%
v v 3.32% 14.78 %

e Both feature sharing and stochastic labeling improve the perfor-
mance of CMCL.
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Experiments

Image classification
e Ensemble of small-scale CNN models.

Ensemble Size M = 5
Oracle Error Rate  Top-1 Error Rate

Ensemble Size M = 10

Ensemble Method K Oracle Error Rate  Top-1 Error Rate

IE - 10.65% 15.34% 9.26% 15.34%
1 4.40% 60.40% 0.00% 76.88%
MCL 2 3.75% 20.66% 1.46% 49.31%
3 4.73% 16.24% 1.52% 22.63%
4 5.83% 15.65% 1.82% 17.61%
1 3.32% 14.78% 1.96% 14.28%
CMCL 2 3.69% 14.25% (-7.11%) 1.22% 13.95%
3 4.38% 14.38% 1.53% 14.00%
4 5.82% 14.49% 1.73% 13.94% (-9.13%)

e Ensemble of 5 large-scale CNN models.

Model Name Ensemble CIFAR-10 SVHN
Method  Oracle Error Rate  Top-1 Error Rate Oracle Error Rate  Top-1 Error Rate
- (single) 10.65% 10.65% 5.22% 5.22%
IE 3.27% 8.21% 1.99% 4.10%
VEGNetI7 - yieL 2.52% 45.58% 1.45% 45.30%
CMCL 2.95% 7.83% (-4.63%) 1.65% 3.92% (-4.39%)
- (single) 10.15% 10.15% 4.59% 4.59%
IE 3.37% 7.97% 1.78% 3.60%
GoogleNet-18 e 2.41% 52.03% 1.39% 37.92%
CMCL 2."78% 7.51% (-5.77%) 1.36 % 3.44% (-4.44%)
- (single) 14.03% 14.03% 5.31% 5.31%
ResNet.20 IE 3.83% 10.18% 1.82% 3.94%
MCL 2.47 % 53.37% 1.29% 40.91%
CMCL 2.79% 8.75% (-14.05%) 1.42 % 3.68% (-6.60%)

e Figure 1(a) compares the effects of feature sharing.
Foreground-background segmentation

e Pixel-level classification problem with 2 classes, i.e., 0 (back-
ground) or 1 (foreground) using fully convolutional networks.

e Foreground-background segmentation for a few samples.

IE model 1 IE model 2

A |

10.28 % 10.99 %

AN

8.96 % 9.79 %

CMCL model 1 CMCL model 2 1 MCL model 1 MCL model 2

. . "
: B By
' g ! 4 i,
. i .
B - .
EEr . . -
'
n rn, - .
P T
. \ ¥

Input Ground truth

T rN

Prediction error rate:

38.17 % 8.71 %

7.82 % 33.39%

23.81 % 8.34 %

6.78 % 34.12 %

L 8 N N N _§ § § &8 § § N N N § § § § B N |

L 8 N N N _§ § § &8 § § N N N § § § § B N |

8 N N N N N N _§ B8 §8 §8 N § N N _§ &8 § N § |
LI

Prediction error rate:

e Figure 1(b) and 4(c) show both top-1 and oracle error rates for all
ensemble methods.
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Figure 1: (a) Ensemble of M ResNets with 20 layers, (b) Top-1 error and (c)
oracle error on iCoseg.



