
Confident Multiple Choice Learning
Kimin Lee1, Changho Hwang1, KyoungSoo Park1, Jinwoo Shin1

1Korea Advanced Institute of Science and Technology (KAIST)

Ensemble Methods
Ensemble method has been successfully applied to many applications:

Rank Team name Entry description Mean AP

1 BDAT Submission4 0.73222

2 NUS-Qihoo_DPNs (DET) Ensemble of DPN models 0.65693

3 KAISTNIA_ETRI Ensemble Model 5 0.61022

Rank Submitter System BLEU

1 University of Edinburgh Uedin-nmt-ensemble 34.8

2 Salesforce metamind Metamind-ensemble 32.8

3 University of Edinburgh Uedin-nmt-single 32.2

ImageNet 2017 – Object detection WMT 2016

Independent ensemble (IE) [Ciregan et al., 2012] trains models inde-
pendently:

LE (D) =
N∑

i=1

∑

m∈[M ]

` (yi, fm (xi)) .

• It generally improves the performance by reducing the variance.

Multiple choice learning (MCL) [Guzman et al., 2012] makes models
specialized for subset:

LO (D) =
N∑

i=1

min
m∈[M ]

` (yi, fm (xi)) .

• It can produce diverse and plausible outputs.

Our Contribution and Key Ideas
We propose a confident multiple choice learning (CMCL).

• Confident oracle loss: integer programming variant of LO (D).

LC (D) =min
vmi

N∑

i=1

M∑

m=1

(
vmi ` (yi, Pθm (y | xi))

+ β (1− vmi )DKL (U (y) ‖ Pθm (y | xi))
)

(1a)

subject to
M∑

m=1

vmi = 1, ∀i. vmi ∈ {0, 1}, ∀i,m. (1b)

• Feature sharing: stochastically shares the features from models.

• Random labeling: noisy unbiased estimator of gradients.

5θDKL (U (y) ‖ Pθ (y | x)) w −
1

S

∑

s

5θlogPθ (ys | x).

Training Algorithm and Effects of CMCL
Algorithm for optimizing the confident oracle loss:

1. Sample random batch B ⊂ D.
2. Compute the loss of each model per each batch.
3. Most accurate model trains the task-specific loss.
4. Other models minimize the KL divergence from predictive distribu-

tion to uniform one.
5. Repeat steps 1 ∼ 4 until convergence.

Classification on CIFAR-10 using 5 CNNs (2 Conv + 2 FC):
1 Class-wise test set accuracy

1 2 3 4 5

95.8% 0.0% 4.4% 12.2% 2.2%

0.0% 0.0% 0.8% 98.6% 9.0%

0.1% 0.3% 2.4% 4.1% 94.0%

94.5% 2.6% 0.0% 0.0% 0.2%

0.0% 23.6% 1.2% 98.7% 4.5%

15.8% 8.0% 2.9% 4.7% 91.7%

7.1% 0.9% 99.2% 2.7% 0.0%

0.0% 0.0% 98.1% 0.0% 0.0%

0.0% 97.3% 0.0% 0.0% 0.0%

0.5% 96.1% 0.0% 0.0% 28.0%
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1 2 3 4 5

0.0 % 0.0 % 93.6 % 0.0 % 0.0 %

0.0 % 0.0 % 96.1 % 0.0 % 0.0 %

99.9 % 0.0 % 0.0 % 0.0 % 0.0 %

0.0 % 0.0 % 95.6 % 0.0 % 0.0 %

0.0 % 0.0 % 0.0 % 97.5 % 0.0 %

0.0 % 97.0 % 0.0 % 0.0 % 0.0 %

0.0 % 0.0 % 0.0 % 0.0 % 97.7 %

0.0 % 0.0 % 0.0 % 0.0 % 97.2 %

0.0 % 0.0 % 0.0 % 97.2 % 0.0 %

0.0 % 97.4 % 0.0 % 0.0 % 0.0 %

1 3 4 5

86.6% 85.5% 86.4% 85.7% 86.0%

90.7% 90.3% 90.5% 90.6% 90.5%

75.4% 75.9% 74.5% 76.3% 76.5%

68.5% 66.5% 66.1% 67.1% 67.1%

85.8% 86.3% 86.1% 86.1% 86.2%

76.3% 75.6% 77.5% 75.0% 76.5%

90.1% 90.7% 90.3% 91.4% 90.6%

87.3% 86.9% 86.6% 86.3% 87.2%

91.6% 91.6% 91.4% 91.7% 90.7%

90.4% 89.3% 89.8% 90.0% 90.0%
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(a) MCL (b) CMCL (c) IE

• eij = test set accuracy of j-th model on class i data.
• MCL and CMCL make each model specialized for certain classes,

while IE does not.

2 Histogram of the predictive entropyConfident Multiple Choice Learning
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Figure 2. Histogram of the predictive entropy of model trained by (a) MCL (b) CMCL and (c) IE on CIFAR-10 and SVHN test data. In
the case of MCL and CMCL, we separate the classes of CIFAR-10 into specialized (i.e., classes that model has a class-wise test accuracy
higher than 90%) and non-specialized (others) classes. In the case of IE, we follow the proposed method by (Lakshminarayanan et al.,
2016): train an ensemble of 5 models with adversarial training (AT) and measure the entropy using the averaged probability, i.e.,
averaging output probabilities from 5 models. (d) Detailed view of feature sharing between two models. Grey units indicate that they
are currently dropped. Masked features passed to a model are all added to generate the shared features.

3.2. Stochastic Alternating Minimization for Training

In order to minimize the confident oracle loss (3) effi-
ciently, we use the following procedure (Guzman-Rivera
et al., 2012), which optimizes model parameters {θm} and
assignment variables {vmi } alternatively:

1. Fix {θm} and optimize {vmi }.
Under fixed model parameters {θm}, the objective
(3a) is decomposable with respect to assignments
{vmi } and it is easy to find optimal {vmi }.

2. Fix {vmi } and optimize {θm}.
Under fixed assignments {vmi }, the objective (3a)
is decomposable with respect to model parameters
{θm}, and it requires each model to be trained inde-
pendently.

The above scheme iteratively assigns each data to a partic-
ular model and then independently trains each model only
using its assigned data. Even though it monotonically de-
creases the objective, it is still highly inefficient since it
requires training each model multiple times until assign-
ments {vmi } converge. To address the issue, we propose
deciding assignments and update model parameters to the
gradient directions once per each batch, similarly to (Lee
et al., 2016). In other words, we perform a single gradient-
update on parameters in Step 2, without waiting for their
convergence to a (local) optimum. In fact, (Lee et al., 2016)
show that such stochastic alternating minimization works
well for the oracle loss (1). We formally describe a de-
tailed training procedure as the ‘version 0’ of Algorithm 1,
and we will introduce the alternative ‘version 1’ later. This
direction is complementary to ours, and we do not explore
in this paper.

Algorithm 1 Confident MCL (CMCL)
Input: Dataset D = {(xi, yi) | xi ∈ X , yi ∈ Y} and
penalty parameter β
Output: Ensemble of M trained models
repeat

Let U (y) be a uniform distribution
Sample random batch B ⊂ D
for m = 1 to M do

Compute the loss of the m-th model:

Lmi ←β
∑

m̂ 6=m
DKL (U (y) ‖ Pθm̂ (y | xi))

+ ` (yi, Pθm (yi | xi)) , ∀(xi, yi) ∈ B

end for
for m = 1 to M do

for i = 1 to |B| do
if the m-th model has the lowest loss then

Compute the gradient of the training loss
` (yi, Pθm (yi | xi)) w.r.t θm

else
/∗ version 0: exact gradient ∗/
Compute the gradient of the KL divergence
βDKL (U (y) ‖ Pθm (y | xi)) w.r.t θm
/∗ version 1: stochastic labeling ∗/
Compute the gradient of the cross entropy loss
−β logPθm (ŷi | xi) using ŷi w.r.t θm where
ŷi ∼ U (y)

end if
end for
Update the model parameters

end for
until convergence

• For non-specialized data (i.e., accuracy < 80%) and unseen
dataset (i.e., SVHN), ensemble members of CMCL are not over-
confident.

3 Contribution by each techniqueConfident Multiple Choice Learning

From the above, we induce the following noisy unbiased
estimator of gradients with Monte Carlo samples from the
uniform distribution:

− EU(y)[5θlogPθ (y | x)] w −
1

S

∑

s

5θlogPθ (ys | x),

where ys ∼ U (y) and S is the number of samples. This
random estimator takes samples from the uniform distribu-
tion U (y) and constructs estimates of the gradient using
them. In other words, 5θlogPθ (ys | x) is the gradient of
the cross entropy loss under assigning a random label to x.
This stochastic labeling provides efficiency in implementa-
tion/computation and stochastic regularization effects. We
formally describe detailed procedures, as the version 1 of
Algorithm 1.

5. Experiments
We evaluate our algorithm for both classification and
foreground-background segmentation tasks using CIFAR-
10 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al.,
2011) and iCoseg (Batra et al., 2010) datasets. In all exper-
iments, we compare the performance of CMCL with those
of traditional IE and MCL using deep models. We provide
the more detailed experimental setups including model ar-
chitectures in the supplementary material.1

5.1. Image Classification

Setup. The CIFAR-10 dataset consists of 50,000 training
and 10,000 test images with 10 image classes where each
image consists of 32× 32 RGB pixels. The SVHN dataset
consists of 73,257 training and 26,032 test images.2 We
pre-process the images with global contrast normalization
and ZCA whitening following (Ian J. Goodfellow & Ben-
gio, 2013; Zagoruyko & Komodakis, 2016), and do not use
any data augmentation. Using these datasets, we train vari-
ous CNNs, e.g., VGGNet (Simonyan & Zisserman, 2015),
GoogLeNet (Szegedy et al., 2015), and ResNet (He et al.,
2016). Similar to (Zagoruyko & Komodakis, 2016), we use
the softmax classifier, and train each model by minimizing
the cross-entropy loss using the stochastic gradient descent
method with Nesterov momentum.

For evaluation, we measure the top-1 and oracle error rates
on the test dataset. The top-1 error rate is calculated by av-
eraging output probabilities from all models and predicting
the class of the highest probability. The oracle error rate is
the rate of classification failure over all outputs of individ-
ual ensemble members for a given input, i.e., it measures
whether none of the members predict the correct class for

1Our code is available at https://github.com/
chhwang/cmcl.

2We do not use the extra SVHN dataset for training.

Ensemble
Method

Feature
Sharing

Stochastic
Labeling

Oracle
Error Rate

Top-1
Error Rate

IE - - 10.65% 15.34%
MCL - - 4.40% 60.40%

CMCL
- - 4.49% 15.65%
X - 5.12% 14.83%
X X 3.32% 14.78%

Table 1. Classification test set error rates on CIFAR-10 using var-
ious ensemble methods.

an input. While a lower oracle error rate suggests higher
diversity, a lower oracle error rate does not always bring
a higher top-1 accuracy as this metric does not reveal the
level of overconfidence of each model. By collectively
measuring the top-1 and oracle error rates, one can grasp
the level of specialization and confidence of a model.

Contribution by each technique. Table 1 validates con-
tributions of our suggested techniques under comparison
with other ensemble methods IE and MCL. We evaluate an
ensemble of five simple CNN models where each model
has two convolutional layers followed by a fully-connected
layer. We incrementally apply our optimizations to gauge
the stepwise improvement by each component. One can
note that CMCL significantly outperforms MCL in the top-
1 error rate even without feature sharing or stochastic la-
beling while it still provides a comparable oracle error rate.
By sharing the 1st ReLU activated features, the top-1 er-
ror rates are improved compared to those that employ only
confident oracle loss. Stochastic labeling further improves
both error rates. This implies that stochastic labeling not
only reduces computational burdens but also provides reg-
ularization effects.

Overlapping. As a natural extension of CMCL, we also
consider picking K specialized models instead of having
only one specialized model, which was investigated for
original MCL (Guzman-Rivera et al., 2012; Lee et al.,
2016). This is easily achieved by modifying the constraint
(3b) as

∑M
m=1 v

m
i = K, where K is an overlap parame-

ter that controls training data overlap between the models.
This simple but natural scheme brings extra gain in top-1
performance by generalizing each model better. Table 2
compares the performance of various ensemble methods
with varying values of K. Under the choice of K = 4,
CMCL of 10 CNNs provides 9.13% relative reduction in
the top-1 error rates from the corresponding IE. Somewhat
interestingly, IE has similar error rates on ensembles of
both 5 and 10 CNNs, which implies that the performance
of CMCL might be impossible to achieve using IE even if
one increases the number of models in IE.

Large-scale CNNs. We now evaluate the performance of
our ensemble method when it is applied to larger-scale
CNN models for image classification tasks on CIFAR-10

• Both feature sharing and stochastic labeling improve the perfor-
mance of CMCL.

Experiments
Image classification
• Ensemble of small-scale CNN models.Confident Multiple Choice Learning

Ensemble Method K
Ensemble Size M = 5 Ensemble Size M = 10

Oracle Error Rate Top-1 Error Rate Oracle Error Rate Top-1 Error Rate
IE - 10.65% 15.34% 9.26% 15.34%

MCL

1 4.40% 60.40% 0.00% 76.88%
2 3.75% 20.66% 1.46% 49.31%
3 4.73% 16.24% 1.52% 22.63%
4 5.83% 15.65% 1.82% 17.61%

CMCL

1 3.32% 14.78% 1.96% 14.28%
2 3.69% 14.25% (-7.11%) 1.22% 13.95%
3 4.38% 14.38% 1.53% 14.00%
4 5.82% 14.49% 1.73% 13.94% (-9.13%)

Table 2. Classification test set error rates on CIFAR-10 with varying values of the overlap parameter K explained in Section 5.1. We
use CMCL with both feature sharing and stochastic labeling. Boldface values in parentheses represent the relative reductions from the
best results of MCL and IE.

Model Name Ensemble
Method

CIFAR-10 SVHN
Oracle Error Rate Top-1 Error Rate Oracle Error Rate Top-1 Error Rate

VGGNet-17

- (single) 10.65% 10.65% 5.22% 5.22%
IE 3.27% 8.21% 1.99% 4.10%

MCL 2.52% 45.58% 1.45% 45.30%
CMCL 2.95% 7.83% (-4.63%) 1.65% 3.92% (-4.39%)

GoogLeNet-18

- (single) 10.15% 10.15% 4.59% 4.59%
IE 3.37% 7.97% 1.78% 3.60%

MCL 2.41% 52.03% 1.39% 37.92%
CMCL 2.78% 7.51% (-5.77%) 1.36% 3.44% (-4.44%)

ResNet-20

- (single) 14.03% 14.03% 5.31% 5.31%
IE 3.83% 10.18% 1.82% 3.94%

MCL 2.47% 53.37% 1.29% 40.91%
CMCL 2.79% 8.75% (-14.05%) 1.42% 3.68% (-6.60%)

Table 3. Classification test set error rates on CIFAR-10 and SVHN for various large-scale CNN models. We train an ensemble of 5
models, and use CMCL with both feature sharing and stochastic labeling. Boldface values in parentheses indicate relative error rate
reductions from the best results of MCL and IE.

and SVHN datasets. Specifically, we test VGGNet (Si-
monyan & Zisserman, 2015), GoogLeNet (Szegedy et al.,
2015), and ResNet (He et al., 2016). We share the non-
linear activated features right before the first pooling layer,
i.e., the 6th, 2nd, and 1st ReLU activations for ResNet
with 20 layers, VGGNet with 17 layers, and GoogLeNet
with 18 layers, respectively. This choice is for maxi-
mizing the regularization effect of feature sharing while
minimizing the statistical dependencies among the ensem-
ble models. For all models, we choose the best hyper-
parameters for confident oracle loss among the penalty pa-
rameter β ∈ {0.5, 0.75, 1, 1.25, 1.5} and the overlapping
parameter K ∈ {2, 3, 4}. Table 3 shows that CMCL con-
sistently outperforms all baselines with respect to the top-1
error rate while producing comparable oracle error rates to
those of MCL. We also apply the feature sharing to IE as re-
ported in Figure 4(a). Even though the feature sharing also
improves the performance of IE, CMCL still outperforms
IE: CMCL provides 6.11% relative reduction of the top-1

error rate from the IE with feature sharing under the choice
of M = 10. We also remark that IE with feature shar-
ing has similar error rates as the ensemble size increases,
while CMCL does not (i.e., the gain is more significant for
CMCL). This implies that feature sharing is more effec-
tively working for CMCL.

5.2. Foreground-Background Segmentation

In this section, we evaluate if ensemble models trained with
CMCL produce high-quality segmentation of foreground
and background of an image with the iCoseg dataset. The
foreground-background segmentation is formulated as a
pixel-level classification problem with 2 classes, i.e., 0
(background) or 1 (foreground). To tackle the problem, we
design fully convolutional networks (FCNs) model (Long
et al., 2015) based on the decoder architecture presented in
(Radford et al., 2016). The dataset consists of 38 groups of
related images with pixel-level ground truth on foreground-
background segmentation of each image. We only use im-

• Ensemble of 5 large-scale CNN models.
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Ensemble Method K
Ensemble Size M = 5 Ensemble Size M = 10

Oracle Error Rate Top-1 Error Rate Oracle Error Rate Top-1 Error Rate
IE - 10.65% 15.34% 9.26% 15.34%

MCL

1 4.40% 60.40% 0.00% 76.88%
2 3.75% 20.66% 1.46% 49.31%
3 4.73% 16.24% 1.52% 22.63%
4 5.83% 15.65% 1.82% 17.61%

CMCL

1 3.32% 14.78% 1.96% 14.28%
2 3.69% 14.25% (-7.11%) 1.22% 13.95%
3 4.38% 14.38% 1.53% 14.00%
4 5.82% 14.49% 1.73% 13.94% (-9.13%)

Table 2. Classification test set error rates on CIFAR-10 with varying values of the overlap parameter K explained in Section 5.1. We
use CMCL with both feature sharing and stochastic labeling. Boldface values in parentheses represent the relative reductions from the
best results of MCL and IE.

Model Name Ensemble
Method

CIFAR-10 SVHN
Oracle Error Rate Top-1 Error Rate Oracle Error Rate Top-1 Error Rate

VGGNet-17

- (single) 10.65% 10.65% 5.22% 5.22%
IE 3.27% 8.21% 1.99% 4.10%

MCL 2.52% 45.58% 1.45% 45.30%
CMCL 2.95% 7.83% (-4.63%) 1.65% 3.92% (-4.39%)

GoogLeNet-18

- (single) 10.15% 10.15% 4.59% 4.59%
IE 3.37% 7.97% 1.78% 3.60%

MCL 2.41% 52.03% 1.39% 37.92%
CMCL 2.78% 7.51% (-5.77%) 1.36% 3.44% (-4.44%)

ResNet-20

- (single) 14.03% 14.03% 5.31% 5.31%
IE 3.83% 10.18% 1.82% 3.94%

MCL 2.47% 53.37% 1.29% 40.91%
CMCL 2.79% 8.75% (-14.05%) 1.42% 3.68% (-6.60%)

Table 3. Classification test set error rates on CIFAR-10 and SVHN for various large-scale CNN models. We train an ensemble of 5
models, and use CMCL with both feature sharing and stochastic labeling. Boldface values in parentheses indicate relative error rate
reductions from the best results of MCL and IE.

and SVHN datasets. Specifically, we test VGGNet (Si-
monyan & Zisserman, 2015), GoogLeNet (Szegedy et al.,
2015), and ResNet (He et al., 2016). We share the non-
linear activated features right before the first pooling layer,
i.e., the 6th, 2nd, and 1st ReLU activations for ResNet
with 20 layers, VGGNet with 17 layers, and GoogLeNet
with 18 layers, respectively. This choice is for maxi-
mizing the regularization effect of feature sharing while
minimizing the statistical dependencies among the ensem-
ble models. For all models, we choose the best hyper-
parameters for confident oracle loss among the penalty pa-
rameter β ∈ {0.5, 0.75, 1, 1.25, 1.5} and the overlapping
parameter K ∈ {2, 3, 4}. Table 3 shows that CMCL con-
sistently outperforms all baselines with respect to the top-1
error rate while producing comparable oracle error rates to
those of MCL. We also apply the feature sharing to IE as re-
ported in Figure 4(a). Even though the feature sharing also
improves the performance of IE, CMCL still outperforms
IE: CMCL provides 6.11% relative reduction of the top-1

error rate from the IE with feature sharing under the choice
of M = 10. We also remark that IE with feature shar-
ing has similar error rates as the ensemble size increases,
while CMCL does not (i.e., the gain is more significant for
CMCL). This implies that feature sharing is more effec-
tively working for CMCL.

5.2. Foreground-Background Segmentation

In this section, we evaluate if ensemble models trained with
CMCL produce high-quality segmentation of foreground
and background of an image with the iCoseg dataset. The
foreground-background segmentation is formulated as a
pixel-level classification problem with 2 classes, i.e., 0
(background) or 1 (foreground). To tackle the problem, we
design fully convolutional networks (FCNs) model (Long
et al., 2015) based on the decoder architecture presented in
(Radford et al., 2016). The dataset consists of 38 groups of
related images with pixel-level ground truth on foreground-
background segmentation of each image. We only use im-

• Figure 1(a) compares the effects of feature sharing.

Foreground-background segmentation

• Pixel-level classification problem with 2 classes, i.e., 0 (back-
ground) or 1 (foreground) using fully convolutional networks.
• Foreground-background segmentation for a few samples.

23.81 % 8.34 %10.28 % 10.99 %

Input Ground truth IE model 1 CMCL model 1

Prediction error rate:

6.78 % 34.12 %8.96 % 9.79 %Prediction error rate: 7.82 % 33.39 %

38.17 % 8.71 %

IE model 2 CMCL model 2 MCL model 1 MCL model 2

• Figure 1(b) and 4(c) show both top-1 and oracle error rates for all
ensemble methods.
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23.81 % 8.34 %10.28 % 10.99 %

Input Ground truth IE model 1 CMCL model 1

Prediction error rate:

6.78 % 34.12 %8.96 % 9.79 %Prediction error rate: 7.82 % 33.39 %

38.17 % 8.71 %

IE model 2 CMCL model 2 MCL model 1 MCL model 2

Figure 3. Prediction results of foreground-background segmentation for a few sample images. A test error rate is shown below each
prediction. The ensemble models trained by CMCL and MCL generate high-quality predictions specialized for certain images.
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Figure 4. (a) Top-1 error rate on CIFAR-10. We train an ensemble of M ResNets with 20 layers, and apply feature sharing (FS) to IE
and CMCL. (b) Top-1 error rate and (c) oracle error rate on iCoseg by varying the ensemble sizes. The ensemble models trained by
CMCL consistently improves the top-1 error rate over baselines.

ages that are larger than 300 × 500 pixels. For each class,
we randomly split 80% and 20% of the data into training
and test sets, respectively. We train on 75 × 125 resized
images using the bicubic interpolation (Keys, 1981). Sim-
ilar to (Guzman-Rivera et al., 2012; Lee et al., 2016), we
initialize the parameters of FCNs with those trained by IE
for MCL and CMCL. For all experiments, CMCL is used
with both feature sharing and stochastic labeling.

Similar to (Guzman-Rivera et al., 2012), we define the per-
centage of incorrectly labeled pixels as prediction error
rate. We measure the oracle error rate (i.e., the lowest error
rate over all models for a given input) and the top-1 error
rate. The top-1 error rate is measured by following the pre-
dictions of the member model that has a lower pixel-wise
entropy, i.e., picking the output of a more confident model.
For each ensemble method, we vary the number of ensem-
ble models and measure the oracle error rate and test error
rate. Figure 4(b) and 4(c) show both top-1 and oracle er-
ror rates for all ensemble methods. We remark that the en-
semble models trained by CMCL consistently improves the
top-1 error rate over baselines. In an ensemble of 5 models,
we find that CMCL achieve up to 6.77% relative reduction

in the top-1 error rate from the corresponding IE. As shown
in Figure 3, an individual model trained by CMCL gen-
erates high-quality solutions by specializing itself in spe-
cific images (e.g., model 1 is specialized for ‘lobster’ while
model 2 is specialized for ‘duck’) while each model trained
by IE does not.

6. Conclusion
This paper proposes CMCL, a novel ensemble method of
deep neural networks that produces diverse/plausible con-
fident prediction of high quality. To this end, we address
the over-confidence issues of MCL, and propose a new
loss, architecture and training method. In our experiments,
CMCL outperforms not only the known MCL, but also the
traditional IE, with respect to the top-1 error rates in clas-
sification and segmentation tasks. The recent trend in the
deep learning community tends to make models bigger and
wider. We believe that our new ensemble approach brings a
refreshing angle for developing advanced large-scale deep
neural networks in many related applications.

Figure 1: (a) Ensemble of M ResNets with 20 layers, (b) Top-1 error and (c)
oracle error on iCoseg.


