Hierarchical Novelty Detection for Visual Object Recognition

Kibok Lee† Kimin Lee‡ Kyle Min† Yuting Zhang† Jinwoo Shin† Honglak Lee‡

Why Hierarchical Novelty Detection?

- Conventional novelty detection framework does not provide more information than "novelty" of an object.
- Our hierarchical novelty detection framework aims to find the most specific class label of any data on the hierarchical taxonomy built with known labels.

Approach

- a. Top-down (TD) method
- b. Leave-one-out (LOO) method

Experimental Results

- a. Compared algorithms
- b. Quantitative results
- c. Qualitative results

References

Hierarchical Taxonomy

- Class types
 - Known leaf class
 - Super class
 - Ancestor of leaf classes, also known Novel class
- Method
 - Leave-one-out
 - Classification rule:

Why Hierarchical Novelty Detection?

- Conventional novelty detection framework does not provide more information than "novelty" of an object.
- Our hierarchical novelty detection framework aims to find the most specific class label of any data on the hierarchical taxonomy built with known labels.

Approach

a. Top-down (TD) method

Training objective: \[\min_{\theta} E_{P_{\mathcal{D}}}[\log P(y|x;\theta)] = \sum_{y \in \{0,1\}} \log P(N(P(o))|x;\theta) + \lambda \]

Classification rule: \[\hat{y} = \arg \max_{y} P(y|x;\theta), \quad \text{if confident,} \quad \hat{y} = \arg \max_{y} N(s), \quad \text{otherwise.} \]

b. Leave-one-out (LOO) method

Training objective: \[\min_{\theta} E_{P_{\mathcal{D}}}[\log P(y|x;\theta)] = \sum_{y \in \{0,1\}} \log P(N(P(o))|x;\theta) + \lambda \]

Classification rule: \[\hat{y} = \arg \max_{y} P(y|x;\theta), \quad \text{if confident,} \quad \hat{y} = \arg \max_{y} N(s), \quad \text{otherwise.} \]

Experimental Results

- a. Compared algorithms
- b. Quantitative results
- c. Qualitative results

References