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Proof Sketch

e We provide a proof for Theorem 1 (b), I.e., the practical setting.

Motivation: Torpid Mixing of Gibbs Sampler Swendsen-Wang Dynamics

e Gibbs sampler is one of the most popular Markov chains used for e Swendsen-Wang dynamics is a Markov chain running on attractive

learning and inference problems in graphical models. These tasks
are computationally intractable in general, and Gibbs sampler often
suffers from slow mixing.

In this research, we study Swendsen-Wang dynamics (SW) which
IS @ more sophisticated Markov chain for attractive Ising models
designed to overcome bottlenecks of Gibbs sampler.

Recently, Guo et al. proved O(|V|'") mixing of SW for Ising mod-
els on arbitrary graphs. Rapid mixing of SW has been studied for
complete graph (Peres et al., Vigoda et al.), grid graph (Ullrich)
which have fully symmetric graphical structures.

Ising Model and Stochastic Partitioned Model

e Given a graph (V, E), Ising model, equivalently pairwise binary
model, is a joint distribution on z € {—1,1}" defined as
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e Stochastic partitioned model is a random graph model such that
given vertices and disjoint communities of vertices 54, ...,.5,, any
edge between communities .S; and \S; exists with probability p;;.

e Social graphs, Erdos-Rényi random graphs and r-partite graphs
are examples of stochastic partitioned models.

Ising model (i.e., 8,, > 0) which converges to the distribution of
Ising model. The transition from X* to X**! is as follows:
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1. Delete edges between vertices of different spins in X?.
2. For each remaining edge (u, v), delete it with probability ¢(3,. ).

3. For each connected component (', assign a spin 1 to vertices in C
with probability ¢(v¢) and —1 with probability 1 — q(v¢).

4. Denote X! as a resulting state.

Main Result: Rapid Mixing of Swendsen-Wang

e Our main result is proving the rapid mixing of Swendsen-Wang
dynamics for Ising models on stochastic partitioned graphs while
Gibbs sampler suffers from exponential running time.

Theorem 1 The mixing time of Swendsen-Wang chain on a stochastic

partitioned model is O(log |V'|) a.a.s. ifv > 0 and either (a) or (b) holds:
(a) For allv and for all u,v € S;, pii, Buw = 2(1).

(b) Foralli # j and for allu € S;,v € S;, pij, Buv = Q(1).

e Theorem 1 states that Swendsen-Wang dynamics rapidly mixes
under mild conditions (3, p = (1)).

e |sing models on social graphs, restricted Boltzmann machine, deep
Boltzmann machine are application of Theorem 1.

Theorem 2 The mixing time of Swendsen-Wang chain on a complete
bipartite graph is O(log |V'|) if 3 = k/|V'| where k = 2 is any constant.

e Theorem 2 states that Swendsen-Wang dynamics on a complete
bipartite graph rapidly mixes in the high temperature region.

e Theorem 2 is theoretically challenging as only fully symmetric
graphs were analyzed so far.

Lemma 1 The mixing time is bounded above by

1
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e From Lemma 1, we address to bound the probability P(X* £ Y?).

Lemma 2 For any X, the larger spin class St of X* is connected after
step 2 of Swendsen-Wang dynamics. fort = O(log |V'|) a.a.s. Also,

B[S > 5(V] +15).

e From Lemma 2 and Markov’s inequality, X* consists of a single
spin, i.e., S* =V, forsome t = O(log |V|) a.a.s.

e Same argument holds for Y*. Therefore, P(X* =Y") =1 — o(1)
for some t = O(log |V'|) which directly bounds the mixing time.

Experiments

e We compare Swendsen-Wang dynamics and Gibbs sampler by
learning parameters of Ising models using contrastive divergence.

e Learning tasks are performed for attractive Ising models on two
real world social graphs and synthetic graphs while parameters
are randomly chosen from ~, ~ Unif(—1,1) and 3,, ~ Unif(0, x).

e Facebook Graph: 4039 vertices and 88234 edges
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