Thu₂₁ ICIRVINE

A Graphical Transformation for Belief Propagation: Maximum Weight Matchings and Odd-Sized Cycles Jinwoo Shin Andrew E. Gelfand **Michael Chertkov**

- BP fails even when the LP is tight
- guaranteed to recover the LP solution

$$\max \sum_{e \in E} w_e x_e$$

s.t. $\sum_{e \in \delta(i)} x_e \leq 1, \forall i \in V$
 $x_e \in \{0, 1\}$

$$\max \sum_{e \in E} w_e x_e$$

s.t.
$$\sum_{e \in \delta(i)} x_e \leq$$

$$x_e \in [0, 1]$$

$$\sum_{e \in E(S)} x_e \leq \frac{|S|}{2}$$

$$\psi_C(y_C)$$

$$x_{e}^{\star} = \begin{cases} \frac{1}{2} \sum_{j \in V(C)} (-1)^{d_{C}(j, q)} \\ y_{e}^{\star} \end{cases}$$

- else if can find a non-intersecting odd-sized cycle C then

$$m_{e \to \alpha}^{t+1}(x_e) = \psi_e(x_e) \prod_{\alpha' \in N(e) \setminus \alpha} m_{\alpha' \to e}^t(x_e)$$

Edge Belief:
$$\eta_e^t(x_e) = \psi_e(x_e) \prod_{\alpha \in N(e)} m_{\alpha \to 1}^t$$

		Iteration Number							
] .			0	1	2	3	4	5	
)	o-Factor ges:	x_12→1		0	-2	0	-2	0	
_		x_12→2		0	-2	0	-2	0	
		x_13→1		0	-1	2	-1	2	
		x_13→3		0	-1	3	-1	3	
	∋-tc sa	x_23→2		0	-1	2	-1	2	
-	ble les	x_23→3		0	-1	3	-1	3	
	Σia	x_12→1-2-3		0	-2	0	-2	0	
	Va	x_13→1-2-3		0	-1	2	-1	2	
		x_23→1-2-3		0	-1	2	-1	2	
	Factor-to-Variable Messages:	1→x_12	0	0	1	0	1	0	
		2 → x_12	0	0	1	0	1	0	
		1→x_13	0	0	2	0	2	0	
		3 → x_13	0	0	1	0	1	0	
		2→x_23	0	0	2	0	2	0	
		3→x_23	0	0	1	0	1	0	
		1-2-3→x_12	0	0	1	0	1	0	
		1-2-3→x_13	0	0	2	0	2	0	
		1-2-3→x_23	0	0	2	0	2	0	
	o io	x_12	-2	-2	1	-2	1	-2	
	dg. lief	x_13	-1	-1	4	-1	4	-1	
						-1			

If the solution of C-LP is integral and unique, then BP on the *new* GM converges to the corresponding MAP assignment y^{\star}

 $(i,e)y_{i_C,j}^{\star}$ if $e = (i_C,j)$ for some $C \in \mathcal{C}$

otherwise

This '*degree-two*' condition is crucial to proof of convergence & correctness

1 if $n_e^T[1] > n_e^T[0]$ and $n_e^{T-1}[1] > n_e^{T-1}[0]$ 0 if $n_e^T[1] < n_e^T[0]$ and $n_e^{T-1}[1] < n_e^{T-1}[0]$ 1/2 otherwise

Factor-to-Variable Message:

 $\prod \quad m_{e' \to \alpha}^t(x_{e'})$

 $m_{\alpha \to e}^{t+1}(x_e) = \max_{x_\alpha \setminus x_e} \left| \psi_i(x_i) \right|_e$

 $_{e}(x_e)$