
• Graphical models have been studied as powerful formalisms modeling inference problems

- They are also known as Markov Random Fields (MRFs)

- Applications include 
 
 
 
 
 
 
 
     Face detection            Error correcting codes        Speech separation                Image denoising

• Formal setup of pairwise binary MRFs

- Graph of      vertices : 

- Functions on vertices and edges :                                                  and

- Joint distribution of binary random variables                                 is given as  
 
 
 
 

- The normalizing factor                                                                   is called `partition function‘  

- Our result is easily extendable to general pairwise MRFs

- Any (even non-pairwise) MRF can be expressed by a pairwise MRF 
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Now consider the following joint distribution on {0, 1}n that factors according to G:

p(x) =
1

Z

∏

v∈V
ψv(xv)

∏

(u,v)∈E

ψu,v(xu, xv) for x ∈ {0, 1}n.

Here, each ψu,v and ψv are non-negative functions on {0, 1}2 and {0, 1}, respectively. These
local functions are called potential functions or compatibility functions. The normalizing factor
Z is called the partition function:

Z =
∑

x∈{0,1}n

∏

v∈V
ψv(xv)

∏

(u,v)∈E

ψu,v(xu, xv). (1)

Finally, some notations. Let N (v) be the set of neighbors of a vertex v ∈ V , dv := |N (v)|
be the degree of v ∈ V , and ∆ := maxv dv be the maximum degree in the graph G. Further, we
define

ψ∗ := max
(u,v)∈E,xu,xv∈{0,1}

{

e| lnψv(xv)|, e| lnψu,v(xu,xv)|
}

.

In this paper, we primarily focus on the case ψ∗ = O(1).2

2.1 Belief Propagation

The BP algorithm has messages {mt
u→v(·),mt

v→u(·)} := {mt
u→v(xv),m

t
v→u(xu) : (u, v) ∈ E, xv, xu ∈

{0, 1}} at the t-th iteration are on the both sides of edges and it updates them as

mt+1
u→v(xv) ∝

∑

xu∈{0,1}

ψu,v(xu, xv)ψu(xu)
∏

w∈N (u)\v

mt
w→u(xu),

where
∑

xv∈{0,1} m
t+1
u→v(xv) = 1. This is equivalent to the following updating rule on (reduced)

messages {mt
u→v,m

t
v→u}.

mt+1
u→v = fu→v

⎛

⎝

∏

w∈N (u)\v

mt
w→u

⎞

⎠ ,

where mt
u→v := mt

u→v(1)/m
t
u→v(0) and the function fu→v : R+ → R+ is defined as

fu→v(x) :=
ψu,v(0, 1)ψu(0) + ψu,v(1, 1)ψu(1) · x
ψu,v(0, 0)ψu(0) + ψu,v(1, 0)ψu(1) · x

.

Now the BP fixed point of messages {mu→v,mv→u} can be naturally defined as

mu→v = fu→v

⎛

⎝

∏

w∈N (u)\v

mw→u

⎞

⎠ ,

where one can easily argue the existence of such a fixed point using the Brouwer fixed point
theorem. This motivates the following notion of ε-approximate BP fixed point.

2This excludes the case ψu,v(·, ·) = 0. However, we note that our algorithm and its analysis still work even for
the case ψu,v(·, ·) = 0 such as the independent set model in [4].
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for the non-uniform independent-set model, which has the domain D = [0, 1]n. Furthermore,
the more significant issue is that in general graphical model the domain complexity becomes
larger, i.e. D = [0, 1]n+m where m is the number of edges in the underlying graph. This is
because the Bethe free energy should consider pairwise (or edge) marginal probabilities as well.
One can check that any similar approaches with [4] fail in the larger domain D = [0, 1]n+m. To
overcome such a technical issue, we first observe that at stationary points of F , pairwise marginal
probabilities should satisfy certain quadratic equations in terms of node marginal probabilities
in binary graphical models. This allows to express the Bethe free energy again in terms of node
marginal probabilities i.e. D = [0, 1]n. Now we study this ‘modified’ Bethe expression F ∗ to
avoid the hitting issue, which we end up with an appropriate small step-size in the gradient-
descent algorithm. Moreover, we eliminate a need to decide such a small step-size explicitly in
the algorithm, by designing an elegant time-varying projection scheme.

We later realize that the ‘modified’ Bethe expression F ∗ was already proposed by Teh and
Welling [23], where they suggested gradient algorithms to minimize F ∗ using sigmoid functions.
The main difference in our work is that we study the behavior of gradient ∇F ∗ close to the
boundary of its domain and guarantee that the gradient-descent algorithm does not hit the
boundary without sigmoid functions. The success of our rigorous convergence rate analysis,
which was missing in the work of Teh and Welling (2001), primarily relies on this difference. It
is also crucial to extend the algorithm design to non-binary graphical models as we describe in
Section 4.

One can observe that our gradient-descent algorithm is implementable as a ‘BP-like’ iterative,
message passing algorithm: each node maintains a message at each iteration and passes it to
its neighbors. We prove it terminates in 2O(∆)n2ε−4 log3(nε−1) iterations for binary graphical
models until it finds an ε-approximate BP fixed point. In a complexity point of view, the only
remaining issue is that each node may require to maintain irrational messages (of infinitely
long bits). We further show that a polynomial number (with respect to 1/ε, n and 2∆) of bits
to approximate each message suffices, and hence the algorithm consists of only a polynomial
number of bitwise operations in total. Namely, it is a fully polynomial-time approximation
scheme (FPTAS) to compute an approximate BP fixed point for sparse binary graphical models
where ∆ = O(log n).

1.2 Organization

In Section 2, we provide backgrounds for graphical models, Belief Propagation and Bethe approx-
imation. In Section 3, we describe our algorithm and its time complexity for binary graphical
models. In Section 4, we discuss how to extend the result to non-binary graphical models at a
high level. From our discussion in Section 4, one can observe that it is not hard to obtain the
similar convergence rate result as well. But, we omit the further details in this paper.

2 Graphical Models

We first introduce a class of joint distributions defined with respect to (undirected) graphs,
which are called (pairwise) Markov random fields (MRFs) [16]. Specifically, let G = (V,E) be
a undirected graph with the vertices being denoted by V with |V | = n, and the edges E ⊆

(V
2

)

denoting a set of unordered pairs of vertices. The vertices of G label a collection of random
variables x = {xv | v ∈ V }. Our primary focus in this paper is on binary random variables, i.e.,
xv ∈ {0, 1} for all v ∈ V .
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 v : {0, 1} ! R+, 8v 2 V  u,v : {0, 1}2 ! R+, 8(u, v) 2 E

• How to compute marginal probabilities in the joint distribution ?

• How to compute the partition function ?

• How to compute the MAP configuration, i.e.,                              ? 

- All are NP-hard (even to approximate) in general

• BP (Belief Propagation) is a popular heuristic algorithm for these problems 

- Each vertex iteratively exchanges messages (called beliefs) with its neighbors (until they converge)

- Empirically successful in many problems, e.g., error-correcting codes [Gallager 1960], compress sensing [Donoho 
et al, 2008], image processing [Sudderth et al. 2008], etc.

COMPUTATIONAL PROBLEMS FOR GRAPHICAL MODELS AND BELIEF 
PROPAGATION

 

Algorithm A

1. Algorithm parameters:

ε ∈ (0, 1) and y(t) = [ yv(t) ∈ (0, 1) : v ∈ V ] at the t-th iteration.

2. y(t) is updated as:

yv(t+ 1) =

[

yv(t) +
1√
t

(

ψ(v) + ln
1− yv(t)

yv(t)

+
∑

u∈N (v)

ln

(

1− yv(t)− yu(t) + yu,v(t)

1− yv(t)
· yv(t)

yv(t)− yu,v(t)

)

)]

∗

,

where the projection [·]∗ at the t-th iteration is defined as

[x]∗ =

⎧

⎪

⎨

⎪

⎩

x if 1
t1/4
≤ x ≤ 1− 1

t1/4
1

t1/4
if x < 1

t1/4

1− 1
t1/4

if x > 1− 1
t1/4

,

and yu,v(t) > 0 is computed as the unique solution satisfying

eψ
(u,v) · yu(t)− yu,v(t)

1− yu(t)− yv(t) + yu,v(t)
· yv(t)− yu,v(t)

yu,v(t)
= 1 and yu,v(t) < min{yv(t), yu(t)}.

3. Compute messages {mu→v,mv→u} as

mu→v =
ψu,v(0, 1)

ψu,v(0, 0)
· 1− yv(t)− yu(t) + yu,v(t)

1− yv(t)
· yv(t)

yv(t)− yu,v(t)
.

4. Terminate if {mu→v,mv→u} is an ε-approximate BP fixed point.

The algorithm is clearly implementable through message-passing where each node u sends
yu(t) to all of its neighbors v ∈ N (u) at each iteration. We also note that solving the second
step for computing yu,v(t) can be done efficiently since it is solving a quadratic equation whose
coefficients are decided by yv(t) and yu(t). We establish the following running time of the
algorithm.

Theorem 2 Algorithm A terminates in 2O(∆)n2ε−4 log3(nε−1) iterations as long as ψ∗ = O(1).

The proof of Theorem 2 is presented in the following section. Note that the algorithm may
require to maintain irrational messages or rational messages of long bits. In Section 3.2, we
present a minor modification of the algorithm to fix the issue, which leads to a fully poly-time
approximation algorithm (FPTAS) to compute an approximate BP fixed point.
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OUR ALGORITHM

• BP often does not converge

- Then, it does not provide any answer

- However, a fixed point message of BP always exists due to Brouwer’s theorem

• Goal : Design a BP-like algorithm always converging to  
                        a fixed point message of BP in polynomial time

- Then, it becomes a better alternative to BP (i.e. fixing its convergence issue)

- In general, the fixed point computation is PPAD-hard

• Known algorithms converging a fixed-point message of BP

- e.g. [Teh and Welling 2001],  [Yuille 2002]

- Not guaranteed to converge in polynomial time (provably, in any sense)

OUR GOAL -- FIXING CONVERGENCE OF BP -- PROVABLY

• The algorithm outputs an approximate BP-fixed point message    

- In                        iterations

-      : (multiplicative) approximation parameter

-      :  maximum degree of underlying graph

MAIN THEOREM

2O(�)n2/"5

• It is known [Yedidia, Freeman and Weiss 2004] that 
 
                   Fixed points of BP         Zero gradient points of 

-           is called `Bethe free energy function’ and provide an approximation of 

• However, finding a zero gradient is hard since           is not convex

- In general, the zero gradient point (i.e. local minimum) computation is PLS-hard

QUESTION I -- WHY HARD TO FIND A FIXED POINT OF BP ?

• One can hope the gradient algorithm finds a zero gradient point 
 

-   is called the step-size

• When does it work ?

- Sufficient conditions : Bounded derivatives and Unbounded underlying domain

- Then, one can choose the step-size for converging with provable convergence rate

• However, the Bethe free energy function has two issues

- The underlying domain D of            is bounded (hence, a projection may require)

- Derivatives of            are unbounded close to the boundary of D

QUESTION II -- DO GRADIENT ALGORITHMS WORK ?

• We prove that It is possible to choose the step-size so that the 
gradient algorithm for the Bethe free energy function           always 
keeps    -far from the boundary of its domain D

- Hence, derivatives computed by the gradient algorithm is bounded

- Furthermore, a projection is not necessary 

- We study the behavior of gradient                near the boundary of domain D

MAIN LEMMA -- HOW TO FIX THE ISSUES ?

 

SIMULATION RESULTS
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G

logZ

x⇤ = argmax
x

p(x)


