Regularization

EE807: Recent Advances in Deep Learning Lecture 3

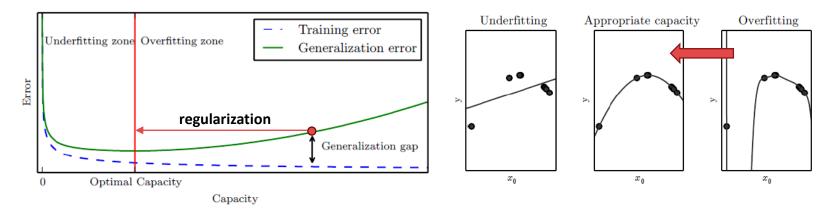
Slide made by

Jongheon Jeong and Insu Han

KAIST EE

"Any modification we make to a learning algorithm that is intended to reduce its generalization error, but not its training error" [Goodfellow et al., 2016]

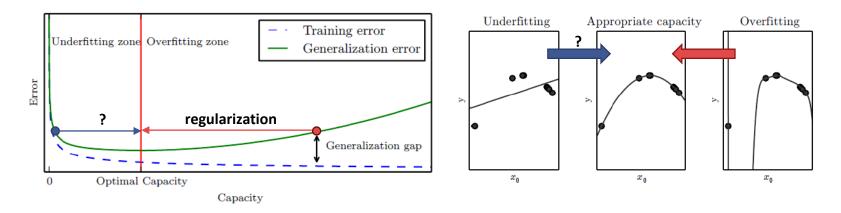
- Regularization is a central problem in machine learning
 - Making an algorithm that perform well on new inputs, not just on the training data, i.e., there is no universal model working for all tasks
 - The main challenge is to find a right model complexity for a given task



- Trading increased bias for reduced variance (bias-variance tradeoff)
- In practice: Introducing a *preference* between models with same training loss

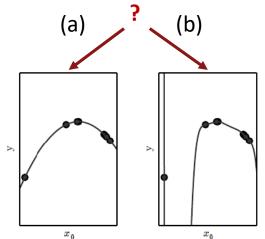
Why do we need to "regularize" our model?

- Two essential ways to find the right model complexity
 - 1. Increase the capacity from a small model
 - 2. Reduce the capacity from a large model \rightarrow regularization



- In the context of deep learning, the latter way is more favorable
 - 1. Increasing model complexity is not that simple
 - We don't know how much the true distribution would be complex
 - "Trying to fit a square peg into a round hole" [Goodfellow et al., 2016]
 - 2. Over-parametrized networks are typically easier to optimize
 - [Dauphin et al., 2014; Goodfellow et al., 2014; Arora et al., 2018]

- Specifying a preference between models for the optimizer
 Quiz: Which one do you prefer, (a) or (b) ?
- No free lunch theorem [Wolpert et al., 1997]
 ⇒ No best form of regularization
 - There can be another universe where (b) is correct!
 - We have to rely on **prior knowledge** of a given task



- Regularization in deep learning \approx **Encoding prior knowledge** into the model
- Priors widely applicable for "intellectual" tasks (e.g. visual recognition, ...)
 - Occam's razor \rightarrow Loss penalty
 - Equivariance and invariance \rightarrow Parameter sharing
 - Robustness on noise
 - ...

Table of Contents

1. Loss Penalty

- Parameter norm penalty
- Directly approximately regularizing complexity
- Penalizing confident output distributions

2. Parameter Sharing

- Convoluational neural networks
- Equivariance through parameter-sharing
- Appication: Movie recommendation

3. Noise Robustness

- Noises on inputs or hidden units
- Noises on model parameters
- Noises on gradients

4. Dataset Augmentation

- Making new data by local masking
- Mixing two samples in dataset

Table of Contents

1. Loss Penalty

- Parameter norm penalty
- Directly approximately regularizing complexity
- Penalizing confident output distributions

2. Parameter Sharing

- Convoluational neural networks
- Equivariance through parameter-sharing
- Appication: Movie recommendation

3. Noise Robustness

- Noises on inputs or hidden units
- Noises on model parameters
- Noises on gradients

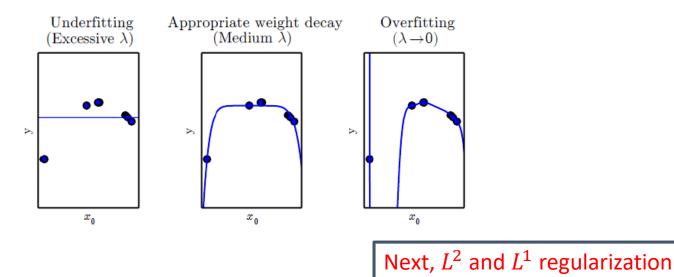
4. Dataset Augmentation

- Making new data by local masking
- Mixing two samples in dataset

- Prior: "Occam's razor"
 - Among hypotheses that are equally good, choose the simplest one
- Adding a parameter penalty $\Omega(\boldsymbol{\theta})$ to the objective L

$$\tilde{L}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) = L(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) + \lambda \Omega(\boldsymbol{\theta})$$

- $\lambda \in [0, \infty)$: a hyperparameter that controls the relative power of $\Omega(\boldsymbol{\theta})$
- Different penalty Ω results in a different solution being preferred



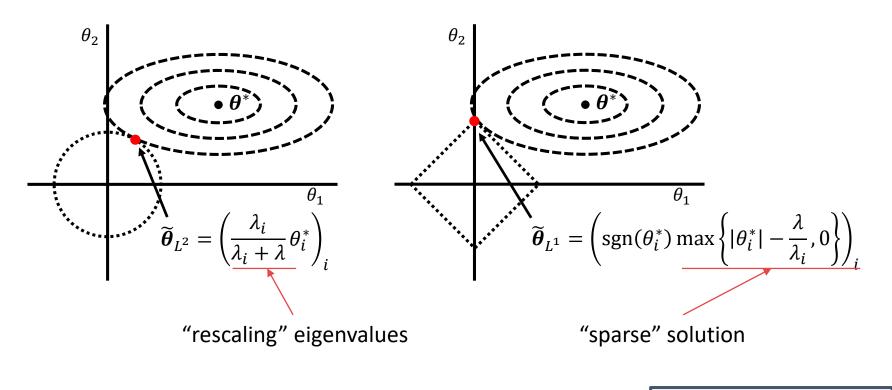
- Parameter norm penalty: Penalizing on the size of parameters $oldsymbol{ heta}$
- The two most commonly used forms: L^2 and L^1 penalty

	L^2 ("weight decay")	L^1
$\Omega(oldsymbol{ heta})$	$rac{1}{2} oldsymbol{ heta} _2^2:=rac{1}{2}\sum_i heta_i^2$	$ oldsymbol{ heta} _1:=\sum_i heta_i $
Aliases	Ridge regression Tikhonov regularization	LASSO
MAP Prior	$\mathcal{N}(heta_i;0,rac{1}{\lambda})$	$\operatorname{Laplace}(\theta_i; 0, \frac{1}{\lambda})$

• In fact, they lead the solution to the *maximum a posteriori* (MAP) estimation that a certain prior on weights is assumed

• If L is quadratic with diagonal Hessian $H = (\lambda_i)_{ii}$, we get the analytic solutions from each regularization [Goodfellow et al., 2016]:

$$\tilde{L}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) = L(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) + \lambda \Omega(\boldsymbol{\theta})$$



Next, L⁰-regularization

- We typically use the popular *L*¹-regularization to induce sparsity
 - Sparse models are advantageous on computational efficiency
 - Of course, it is a nice policy for regularization as well
- Why don't we use *L*⁰-penalty?
 - $\Omega(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_0 \coloneqq |\{\theta_i \colon \theta_i \neq 0\}|$
 - A more direct measure of sparsity
 - It does not shrink the non-sparse weights

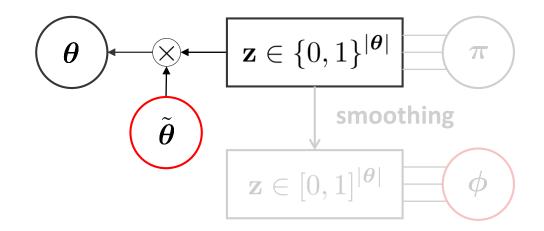


- We typically use the popular *L*¹-regularization to induce sparsity
 - Sparse models are advantageous on computational efficiency
 - Of course, it is a nice policy for regularization as well
- Why don't we use *L*⁰-penalty?
 - $\Omega(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_0 \coloneqq |\{\theta_i: \theta_i \neq 0\}|$
 - A more direct measure of sparsity
 - It does not shrink the non-sparse weights
- **Problem:** Optimization with *L*⁰-penalty is intractable in general
 - Discrete optimization with $2^{|\theta|}$ possible states
 - Standard gradient-based methods are not applicable
- Can we relax this problem so that to an efficient continuous optimization?

- Idea: Regard $\boldsymbol{\theta}$ as a random variable, where $\mathbb{E}[\|\boldsymbol{\theta}\|_0]$ is differentiable
 - 1. Consider a simple **re-parametrization** of θ :

$$\theta_j = \tilde{\theta_j} z_j, \quad z_j \in \{0, 1\}, \quad \tilde{\theta_j} \neq 0$$

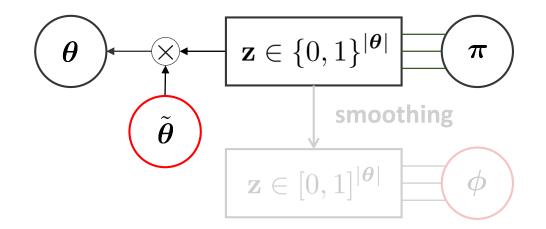
• Then, the L^0 -penalty becomes $\Omega(\theta) = ||\theta||_0 = \sum_{j=0}^{|\theta|} z_j$



- Idea: Regard $\boldsymbol{\theta}$ as a random variable, where $\mathbb{E}[\|\boldsymbol{\theta}\|_0]$ is differentiable
 - 2. Letting $q(z_i|\pi_i)$ = Bernoulli (π_i) , we define the **expected loss** \mathcal{R} :

$$\mathcal{R}(\tilde{\boldsymbol{\theta}}, \boldsymbol{\pi}) := \mathbb{E}_{q(\mathbf{z}|\boldsymbol{\pi})} \left[L(\tilde{\boldsymbol{\theta}} \odot \mathbf{z}) \right] + \lambda \sum_{j=1}^{|\boldsymbol{\theta}|} \pi_j$$

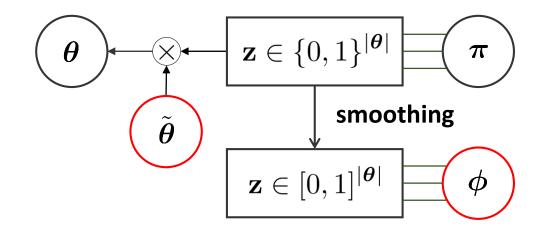
- However, optimizing $\mathcal{R}(ilde{oldsymbol{ heta}},oldsymbol{\pi})$ is still hard
 - Estimating $\nabla \mathbb{E}_{q(\mathbf{z}|\boldsymbol{\pi})} \left[L(\tilde{\boldsymbol{\theta}} \odot \mathbf{z}) \right]$ is not easy due to the discrete nature of \mathbf{z}



- Idea: Regard θ as a random variable, where $\mathbb{E}[\|\theta\|_0]$ is differentiable
 - 3. Smoothing the discrete r.v. z via a continuous r.v. s:

$$\mathbf{z} = \min(1, \max(0, \mathbf{s})), \quad \mathbf{s} \sim q(\mathbf{s}|\boldsymbol{\phi})$$

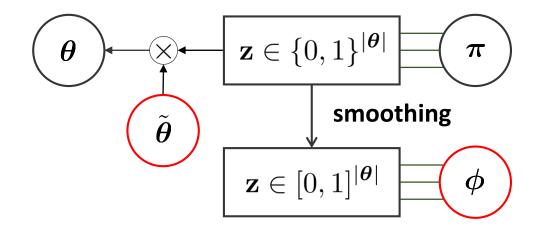
• Since $q(\mathbf{z} \neq 0 | \boldsymbol{\phi}) = 1 - \mathbb{P}(\mathbf{s} \leq 0 | \boldsymbol{\phi})$, we get: $\mathcal{R}(\tilde{\boldsymbol{\theta}}, \boldsymbol{\phi}) = \mathbb{E}_{q(\mathbf{s}|\boldsymbol{\phi})} \left[L(\tilde{\boldsymbol{\theta}} \odot \min(1, \max(0, \mathbf{s}))) \right] + \lambda \sum_{j=1}^{|\boldsymbol{\theta}|} (1 - \mathbb{P}(s_j \leq 0 | \phi_j))$



- Idea: Regard θ as a random variable, where $\mathbb{E}[\|\theta\|_0]$ is differentiable
 - Finally, the original loss \tilde{L} is transformed by:

$$\mathcal{R}(\tilde{\boldsymbol{\theta}}, \boldsymbol{\phi}) = \mathbb{E}_{q(\mathbf{s}|\boldsymbol{\phi})} \left[L(\tilde{\boldsymbol{\theta}} \odot \min(1, \max(0, \mathbf{s}))) \right] + \lambda \sum_{j=1}^{|\boldsymbol{\sigma}|} \left(1 - \mathbb{P}\left(s_j \le 0 | \phi_j \right) \right)$$

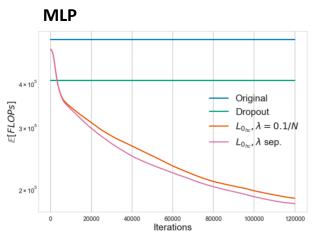
- We can optimize this via minibatch-based gradient estimation methods
 - For details, see [Kingma et al., 2013]

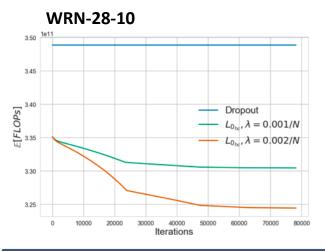


101

• L^0 -regularization leads the networks to a sparse solution, with a good regularization as well on MNIST and CIFAR-10/100

Network & size	Method	Pruned architectur	re Error (%)
MLP	Sparse VD (Molchanov et al., 2017)	512-114-72	1.8
784-300-100	BC-GNJ (Louizos et al., 2017)	278-98-13	1.8
	BC-GHS (Louizos et al., 2017)	311-86-14	1.8
	$L_{0_{hc}}, \lambda = 0.1/N$	219-214-100	1.4
	$L_{0_{hc}}^{ne}, \lambda$ sep.	266-88-33	1.8
LeNet-5-Caffe	Sparse VD (Molchanov et al., 2017)	14-19-242-131	1.0
20-50-800-500	GL (Wen et al., 2016)	3-12-192-500	1.0
	GD (Srinivas & Babu, 2016)	7-13-208-16	1.1
	SBP (Neklyudov et al., 2017)	3-18-284-283	0.9
	BC-GNJ (Louizos et al., 2017)	8-13-88-13	1.0
	BC-GHS (Louizos et al., 2017)	5-10-76-16	1.0
	$L_{0_{hc}}, \lambda = 0.1/N$	20-25-45-462	0.9
	$L_{0_{hc}}, \lambda$ sep.	9-18-65-25	1.0
Network		CIFAR-10	CIFAR-100
original-ResNet-110 (He et al., 2016a)		6.43	25.16
pre-act-ResNet-110 (He et al., 2016b)		6.37	-
WRN-28-10 (Zagoruyko & Komodakis, 2016)		4.00	21.18
WRN-28-10-dropout (Zagoruyko & Komodakis, 2016)) 3.89	18.85
WRN-28-10-L ₀	$\lambda_{ac}, \lambda = 0.001/N$	3.83	18.75
	$\lambda_{ac}^{(l)}, \lambda = 0.002/N$	3.93	19.04





Next, complexity regularization

Directly approximately regularizing complexity (DARC) [Kawaguchi et al., 2017]

- Reducing complexity of a model might be a direct way of regularization
 - But, how do we know whether a model is complex or not?
 - Computational learning theory provides a way for it
- Suppose we have a **model** *F*, i.e. a set of hypothesis functions
- **DARC** attempts to reduce the **Rademacher complexity** of *F* :

$$\operatorname{Rad}_{m}(F) := \mathbb{E}_{\mathbf{x} \sim \mathcal{D}^{m}} \left[\frac{1}{m} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{f \in F} \sum_{i=1}^{m} \sigma_{i} f(x_{i}) \right] \right]$$
sample size

- σ_1 , ..., σ_m : *i.i.d.* random variables, $\mathbb{P}(\sigma_i = 1) = \mathbb{P}(\sigma_i = -1) = \frac{1}{2}$
- High $\operatorname{Rad}_m(F) \Rightarrow F$ is more expressive on \mathcal{D}^m
- It can be used to give a bound of the generalization error in ERM
 - For details, see [Shalev-Shwartz et al., 2014]

• **DARC** attempts to reduce the **Rademacher complexity** of *F* :

$$\operatorname{Rad}_{m}(F) := \mathbb{E}_{\mathbf{x} \sim \mathcal{D}^{m}} \left[\frac{1}{m} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{f \in F} \sum_{i=1}^{m} \sigma_{i} f(x_{i}) \right] \right]$$
sample size

- Of course, computing $\operatorname{Rad}_m(F)$ is intractable when F is a family of NNs
- Instead, DARC uses a rough approximation of it:

$$\tilde{L}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) = L(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) + \lambda \left(\frac{1}{m} \max_{k} \sum_{i=1}^{m} |f_k(x_i; \boldsymbol{\theta})| \right)$$

mini-batch size

- $f = (f_1, \cdots, f_d) \in \mathbb{R}^d$: the model to optimize (e.g. neural network)
- In other words, here F is approximated by $\{f_k : k = 1, \cdots, d\}$

- Despite its simplicity, DARC improves state-of-the-art level models
 - Results on MNIST and CIFAR-10 are presented

Table 1: Test error (%). A standard variant of LeNet (LeCun et al., 1998) and ResNeXt-29($16 \times 64d$) (Xie et al., 2016) are used for MNIST and CIFAR-10, and compared with the addition of the studied regularizer.

Method	MNIST	CIFAR-10
Baseline	0.26	3.52
DARC1	0.20	3.43

- Comparisons in the values of DARC penalty
 - Data augmentation by itself implicitly regularize the DARC penalty

Mathad	MNIST (ND) mean stdv		MNIST		CIFAR-10	
Method	mean	stdv	mean	stdv	mean	stdv
Base	17.2	2.40	8.85	0.60	12.2	0.32
DARC1	1.30	0.07	1.35	0.02	0.96	0.01

Table 3: Values of $\frac{1}{m} \left(\max_k \sum_{i=1}^m |h_k^{(H+1)}(x_i)| \right)$

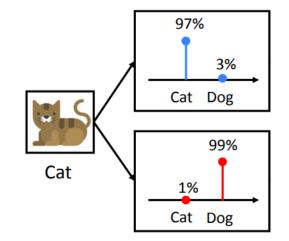
(ND) = no data augmentation

Next, Confidence penalty

Algorithmic Intelligence Laboratory

*source : Kawaguchi et al. "Generalization in Deep Learning", Arxiv 2017 19

- Regularization by preventing a network not to be over-confident
- **Confident predictions**: Output distributions that have low entropy
 - Placing all probability on a single class
 - **Overly-confident** predictions are often a sign of overfitting [Szegedy et al., 2015]



Adding the negative entropy to loss prevents the over-confidence

$$\tilde{L}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) = L(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) - \lambda H(p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{X}))$$

negative entropy

*source :

Algorithmic Intelligence Laboratory

Pereyra et al. "Regularizing Neural Networks by Penalizing Confident Output Distributions", ICLR 2017 Workshop 20

• Confidence penalty improves generalization for various datasets

Model	Layers	Size	Test
Wan et al. (2013) - Unregularized	2	800	1.40%
Srivastava et al. (2014) - Dropout	3	1024	1.25%
Wan et al. (2013) - DropConnect	2	800	1.20%
Srivastava et al. (2014) - MaxNorm + Dropout	2	8192	0.95%
Dropout	2	1024	$1.28\pm0.06\%$
Label Smoothing	2	1024	$1.23 \pm 0.06\%$
Confidence Penalty	2	1024	$1.17\pm0.06\%$

Table 3: Test error (%) for permutation-invariant MNIST.

Model	Layers	Parameters	Test
He et al. (2015) - Residual CNN	110	1.7M	13.63%
Huang et al. (2016b) - Stochastic Depth Residual CNN	110	1.7M	11.66%
Larsson et al. (2016) - Fractal CNN	21	38.6M	10.18%
Larsson et al. (2016) - Fractal CNN (Dropout)	21	38.6M	7.33%
Huang et al. (2016a) - Densely Connected CNN	40	1.0M	7.00%
Huang et al. (2016a) - Densely Connected CNN	100	7.0M	5.77%
Densely Connected CNN (Dropout)	40	1.0M	7.04%
Densely Connected CNN (Dropout + Label Smoothing)	40	1.0M	6.89%
Densely Connected CNN (Dropout + Confidence Penalty)	40	1.0M	6.77 %

Table 4: Test error (%) on Cifar-10 without data augmentation.

*source :

Algorithmic Intelligence Laboratory

Pereyra et al. "Regularizing Neural Networks by Penalizing Confident Output Distributions", ICLR 2017 Workshop 21

Table of Contents

1. Loss Penalty

- Parameter norm penalty
- Directly approximately regularizing complexity
- Penalizing confident output distributions

2. Parameter Sharing

- Convoluational neural networks
- Equivariance through parameter-sharing
- Appication: Movie recommendation

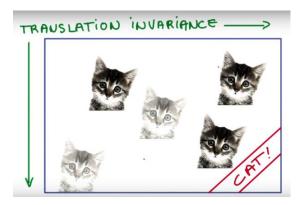
3. Noise Robustness

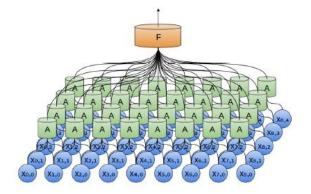
- Noises on inputs or hidden units
- Noises on model parameters
- Noises on gradients

4. Dataset Augmentation

- Making new data by local masking
- Mixing two samples in dataset

- Prior: Good representations may contain equivariance or invariance
 - **Parameter sharing** is a good way to encode equivariance or invariance of features
- **Example**: Convolutional neural networks
 - Sharing parameters across multiple image locations
 - Natural images have many statistical properties that are invariant to translation
 - Due to the sharing, CNNs have dramatically less parameters compared to DNNs with strong generalization ability





Next, equivariance through parameter-sharing

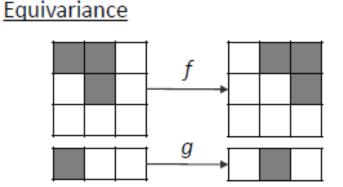
*sources :

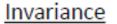
- https://www.udacity.com/course/deep-learning--ud730
- http://colah.github.io/posts/2014-07-Conv-Nets-Modular/ 23

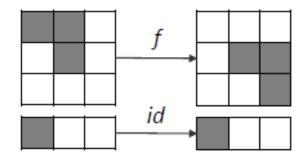
- Prior: Good representations may contain equivariance or invariance
 - **Parameter sharing** is a good way to encode equivariance or invariance of features

Definition $\phi : \mathbb{R}^N \to \mathbb{R}^M$ is (f, g)-equivariant *iff* $\phi(f(\mathbf{x})) = g(\phi(\mathbf{x})), \forall \mathbf{x} \in \mathbb{X}^N$ **Definition** $\phi : \mathbb{R}^N \to \mathbb{R}^M$ is f-invariant *iff* it is (f, id)-equivariant

- id: $\mathbb{R}^M \to \mathbb{R}^M$ is the identity function
- Equivariance is a more general concept of invariance





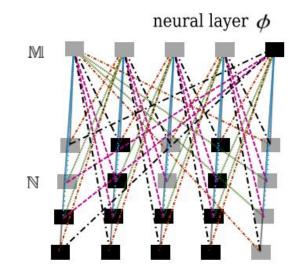


Equivariance through parameter-sharing [Ravanbakhsh et al., 2017]

- Parameter-sharing in ϕ is related to equivariance on permutations of indices
 - "indices": $\mathbb{N} = [1, ..., N]$ (input) and $\mathbb{M} = [1, ..., M]$ (output)
 - Formally, of the form $G_{\mathbb{N},\mathbb{M}} \leq S_{\mathbb{N}} \times S_{\mathbb{M}}$, where S_X : The symmetric group on X
- Consider a coloring of weights between input and output

Definition A colored multi-edged bipartite graph $\Omega = (\mathbb{N}, \mathbb{M}, \alpha)$ is a triple, where

- $\alpha: \mathbb{N} \times \mathbb{M} \to 2^{\{1,\dots,C\}}$; The edge functions that assigns colors
- Non-existing edges receives no color



• Suppose that "edges of the same color = shared parameters"

•
$$\mathbf{w} = [w_1, \dots, w_C], C$$
 parameters in total

- Consider a neural network layer $\pmb{\phi}$ constructed from Ω
 - σ : a strictly monotonic non-linearity

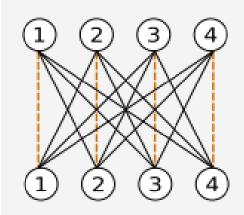
$$\phi(\mathbf{x};\mathbf{w},\Omega) := \sigma\left(\sum_{n}\sum_{c\in\alpha(n,m)}\mathbf{w}_{c}x_{n}\right)$$

<u>Theorem</u> (Ravanbakhsh et al.) $\phi(\mathbf{x}, \mathbf{w}, \Omega)$ is *equivariant* on any permutations among the same-colored edges, for any Ω .

neural layer ϕ

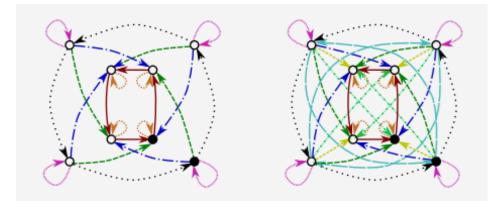
<u>Theorem</u> $\phi(\mathbf{x}, \mathbf{w}, \Omega)$ is *equivariant* on permutations among same-colored edges.

- Example: Permutation-equivariant layer
 - Ω constists $\mathbb{N} = \mathbb{M} = [1, 2, 3, 4]$, and α of 2 colors
 - $\phi(\mathbf{x}; \mathbf{w} = [w_1, w_2], \Omega) = \sigma((w_1\mathbf{I} + w_2(\mathbf{1}\mathbf{1}^T \mathbf{I}))\mathbf{x})$
 - Then, ϕ is equivariant on $\{(g,g) | g \in S_{\mathbb{N}}\} \cong S_{\mathbb{N}}$

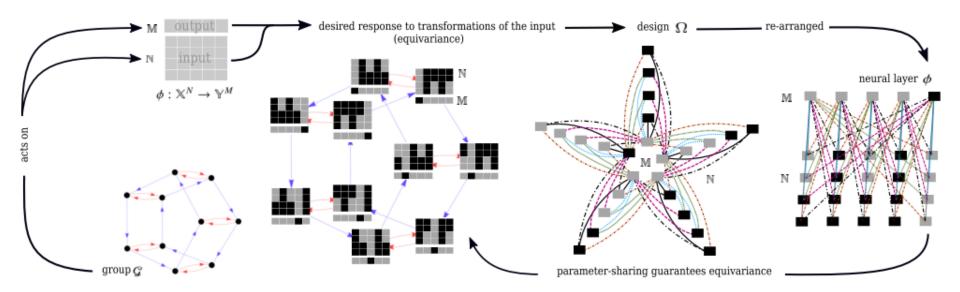


N = M = 4

- Now, suppose we have a group G
- Can we design a colored bipartite graph Ω , that is *G*-equivariant?
 - Yes, if G is of the form $\{(k_{\mathbb{N}}, k_{\mathbb{M}}) | k \in K\}$ for a finite group K
- **Example:** Equivariance to 90° rotations
 - $\pm 90^{\circ}$ rotations is produced as the action of cyclic group $\mathbb{Z}_4 = \{e, g, g^2, g^3\}$
 - Letting $\mathbb{N} = \mathbb{M} = [1, ..., 8]$, possible Ω 's are presented below

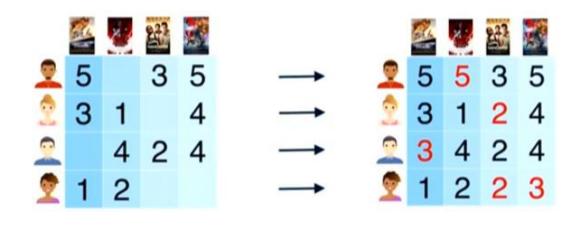


- Now, suppose we have a group G
- Can we design a colored bipartite graph Ω , that is G-equivariant?
 - Yes, if G is of the form $\{(k_{\mathbb{N}}, k_{\mathbb{M}}) | k \in K\}$ for a finite group K



Next, application to movie recommendation

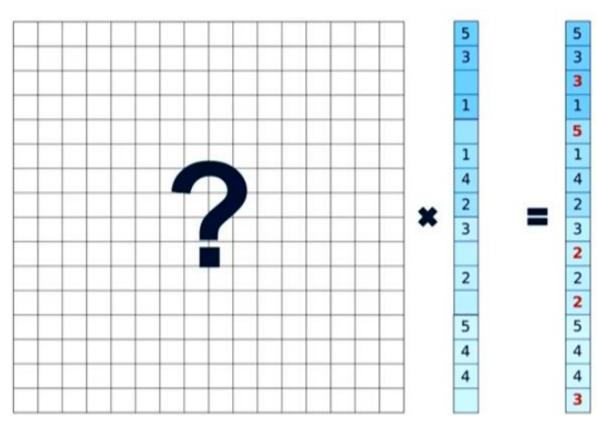
- Example: Movie recommendation
 - Predicting movie ratings from the previous incomplete matrix of ratings
 - Well-known as the matrix completion
- How can be build a deep model for this problem?
- Idea: The prediction must be equivariant on permuting rows & columns
 - "Exchangeable matrix"

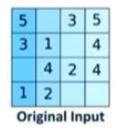


- **Example:** Movie recommendation
- Exchangeable matrix layer
 - We have an input matrix, which can be in a *flatten* form

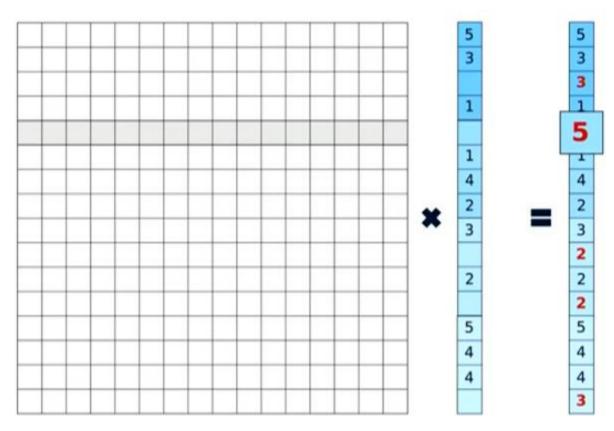
5		3	5
3	1		4
	4	2	4
1	2		1

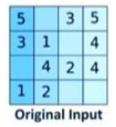
- Example: Movie recommendation
- Exchangeable matrix layer
 - Goal: Design a matrix layer that is equivariant on permuting the original input



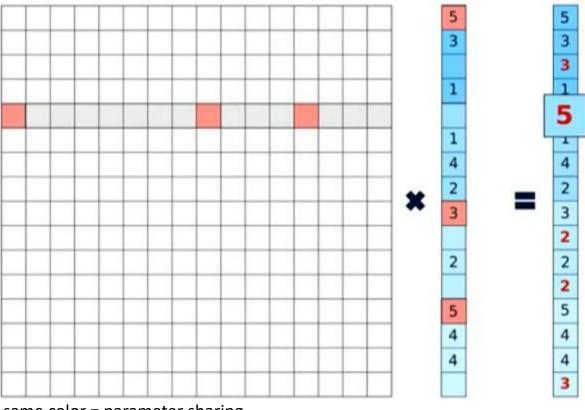


- Example: Movie recommendation
- Exchangeable matrix layer
 - Suppose we calculate a single entry in the output (i.e. dot product)

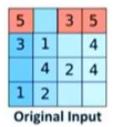




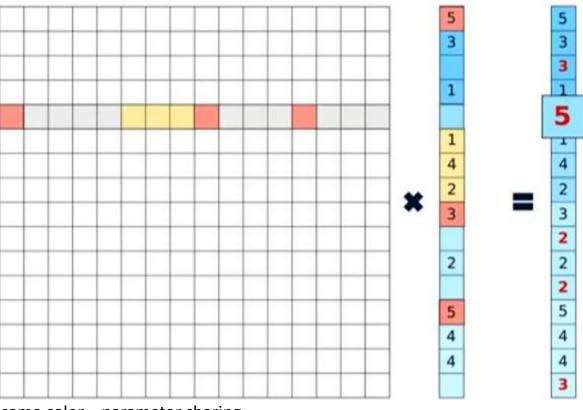
- Example: Movie recommendation
- Exchangeable matrix layer
 - The ratings for other movies affects to the prediction, regardless to its order



same color = parameter sharing



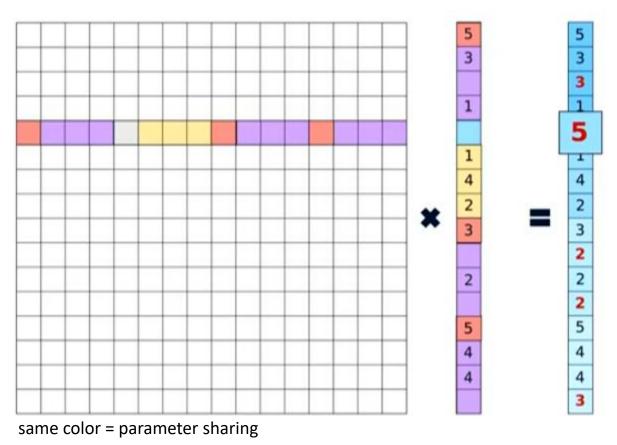
- Example: Movie recommendation
- Exchangeable matrix layer
 - Ratings of other users for a movie also affects, regardless to its order as well

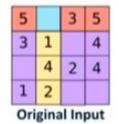


same color = parameter sharing

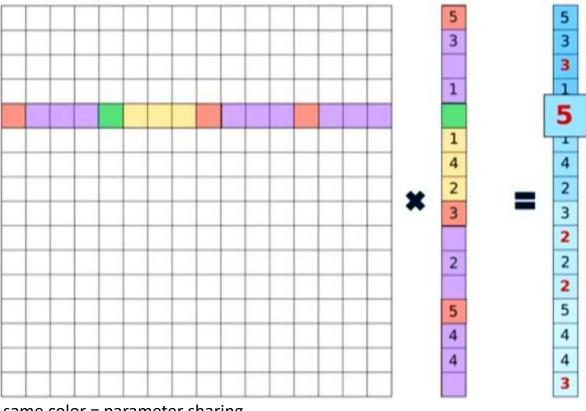


- Example: Movie recommendation
- Exchangeable matrix layer
 - The same argument holds for the other parameters except one

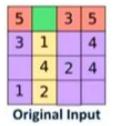




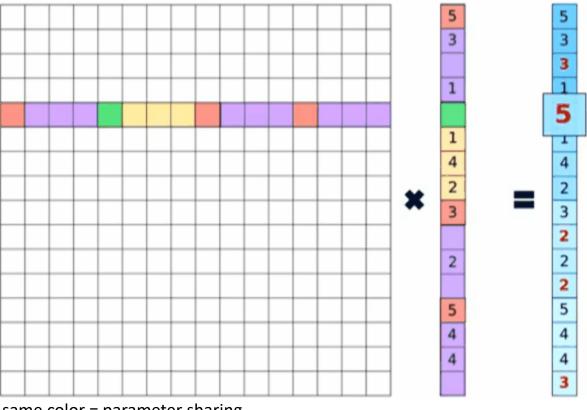
- Example: Movie recommendation
- Exchangeable matrix layer
 - The same argument holds for the other parameters except one

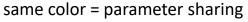


same color = parameter sharing

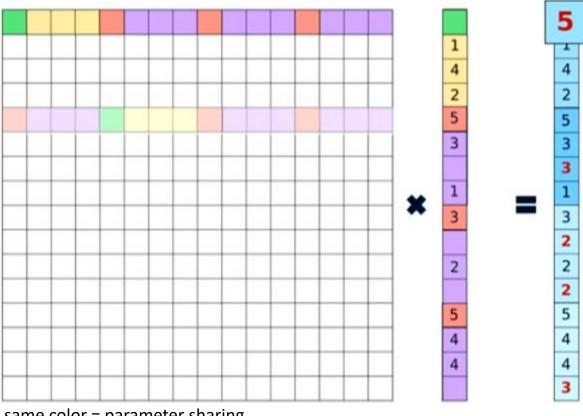


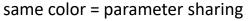
- Example: Movie recommendation
- Exchangeable matrix layer
 - Exchangeability also holds for column-wise permutations





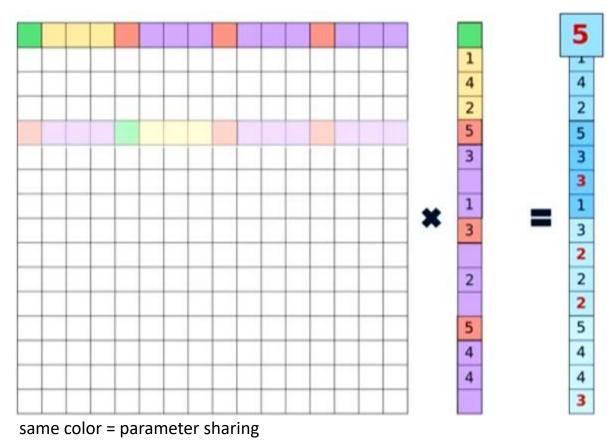
- Example: Movie recommendation
- Exchangeable matrix layer
 - Exchangeability also holds for column-wise permutations

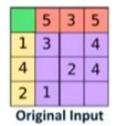




- Example: Movie recommendation
- Exchangeable matrix layer

Quiz: How should we color the remaining part of the matrix?

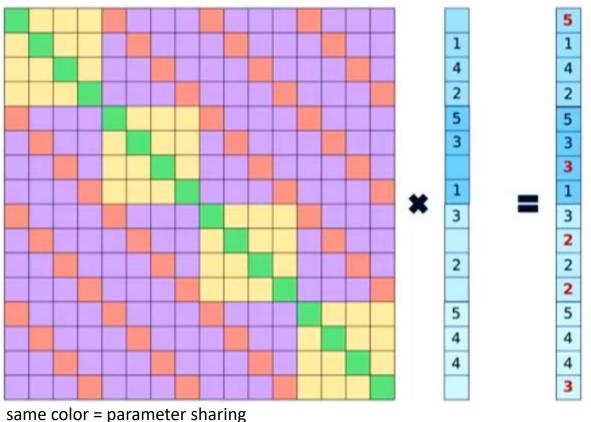




Algorithmic Intelligence Laboratory

- Example: Movie recommendation
- Exchangeable matrix layer

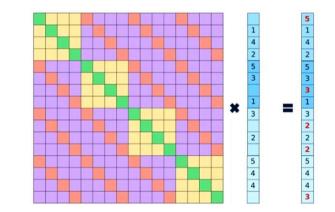
Quiz: How should we color the remaining part of the matrix?



same color – parameter sna

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

- **Example:** Movie recommendation
 - Deep models constructed from this matrix outperforms many existing benchmarks
 - The model trained on MovieLens-100k surprisingly generalize well on other datasets



Algorithmic Intelligence Laboratory

*source : Hartford et al. "Deep Models of Interactions Across Sets", ICML 2018 42

Table of Contents

1. Loss Penalty

- Parameter norm penalty
- Directly approximately regularizing complexity
- Penalizing confident output distributions

2. Parameter Sharing

- Convoluational neural networks
- Equivariance through parameter-sharing
- Appication: Movie recommendation

3. Noise Robustness

- Noises on inputs or hidden units
- Noises on model parameters
- Noises on gradients
- 4. Dataset Augmentation
 - Making new data by local masking
 - Mixing two samples in dataset

Noise robustness

- Prior: Most AI tasks have certain levels of resilience on noise
- One can incorporate such prior by injecting noises to the network

 $+.007 \times$ =x + $\operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y}))$ \boldsymbol{x} $\epsilon \operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y}))$ y = "panda""nematode" "gibbon" w/ 57.7% w/ 8.2% w/ 99.3 %

- Noise robustness is also related to **adversarial examples**
 - We will discuss this topic more in detail later

*sources :

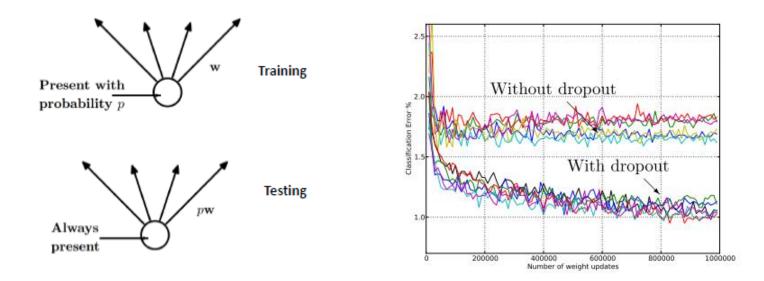
- Chatbri, Houssem et al. "Using scale space filtering to make thinning algorithms robust against noise in sketch images." Pattern Recognition Letters 42 (2014): 1-10.

- https://www.deeplearningbook.org/contents/ml.html

Algorithmic Intelligence Laboratory

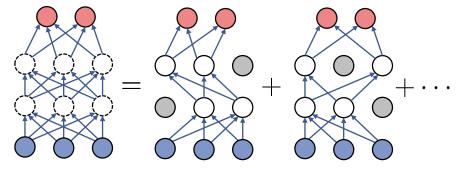
- **Prior:** Most AI tasks have certain levels of resilience on noise
- One can incorporate such prior by injecting noises to the network
- There can be many ways to impose noises:
 - 1. On **inputs** or **hidden units** (e.g. *Dropout*)
 - Noise with infinitesimal variance at the input is equivalent to imposing a penalty on the norm of the weights for some models [Bishop, 1995a,b]
 - 2. On model parameters (e.g. Variational dropout)
 - A stochastic implementation of a Bayesian inference over the weights
 - 3. On **gradients** during optimization (e.g. *Shake-shake regularization*)
 - In practice, SGD can generalize better than full GD in training DNNs [Keskar et al., 2016]

- Dropout [Srivastava et al., 2014] randomly drops a neuron with probability p during training
 - Same as **multiplying a noise** $\mu \sim \text{Bernulli}(p)$ to each neuron
- At testing, each weights are scaled by p
- Dropout is applied to **hidden units** typically
 - Destruction of high-level information e.g. edges, nose, ...

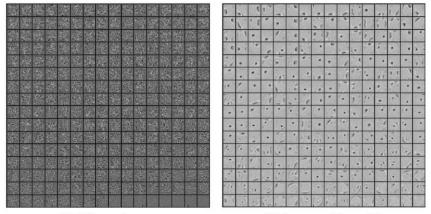


Why dropout generalizes well?

1. It can be thought of as ensemble of 2^n subnets with parameter sharing



- 2. Dropout prevents co-adaptation of neurons
 - Noisy neurons are less reliable
 - Each neuron must be prepared on which other neurons are dropped



(a) Without dropout

(b) Dropout with p = 0.5.

Algorithmic Intelligence Laboratory

*source : Srivastava et al. "Dropout: A Simple Way to Prevent Neural Networks from Overfitting". JMLR 2014 47

The fully understanding on why dropout works is still an open question

• Stochasticity might not be necessary

• **Fast dropout** [Wang et al., 2013]: A deterministic version of dropout with analytic marginalization

Dropout as an ensemble is not enough

• Dropout offers additional improvements to generalization error beyond those obtained by ensembles of independent models [Warde-Farley et al., 2013]

Dropping neurons are not necessary

- In principle, any kind of random modification is admissible
- Gaussian dropout, i.e. $\mu \sim \mathcal{N}(1, \frac{1-p}{p})$, can work as well as the original dropout with probability p, or even work better

Algorithmic Intelligence Laboratory

- In dropout, one have to find the best *p* manually
 - What if we want different rates for each of neurons?
- Variational dropout (VD) allows to learn the dropout rates separately
- Unlike Dropout, VD imposes noises on **model parameters** $\boldsymbol{\theta}$:

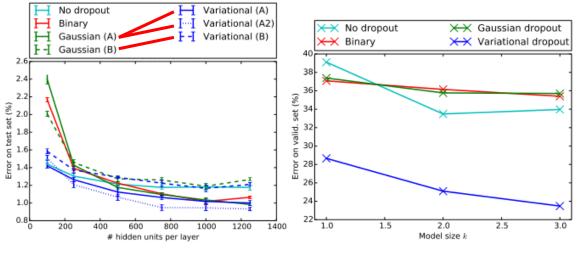
$$w_i := \theta_i \cdot \xi_i, \quad \text{where} \quad p_{\alpha_i}(\xi_i) = \mathcal{N}(1, \alpha_i)$$

- A Bayesian generalization of Gaussian dropout [Srivastava et al., 2014]
- The random vector $\mathbf{w}=(w_i)_i$ is adapted to data in Bayesian sense by updating $\pmb{\alpha}$ and $\pmb{\theta}$
- **Re-parametrization trick** allows **w** to be learned via minibatch-based gradient estimation methods [Kingma et al., 2013]
 - $\boldsymbol{\alpha}$ and $\boldsymbol{\theta}$ can be "optimized" separated from noises

$$w_i = \theta_i + (\theta_i \sqrt{\alpha_i}) \cdot \varepsilon_i, \quad \text{where} \quad \varepsilon_i \sim \mathcal{N}(0, 1)$$

Algorithmic Intelligence Laboratory

- VD lead to a better model than dropout
- VD could also improve CNN as well, while dropout could not^(1b)



(a) Classification error on the MNIST dataset

(b) Classification error on the CIFAR-10 dataset

Figure 1: Best viewed in color. (a) Comparison of various dropout methods, when applied to fullyconnected neural networks for classification on the MNIST dataset. Shown is the classification error of networks with 3 hidden layers, averaged over 5 runs. he variational versions of Gaussian dropout perform equal or better than their non-adaptive counterparts; the difference is especially large with smaller models, where regular dropout often results in severe underfitting. (b) Comparison of dropout methods when applied to convolutional net a trained on the CIFAR-10 dataset, for different settings of network size k. The network has two convolutional layers with each 32k and 64k feature maps, respectively, each with stride 2 and followed by a softplus nonlinearity. This is followed by two fully connected layers with each 128k hidden units.

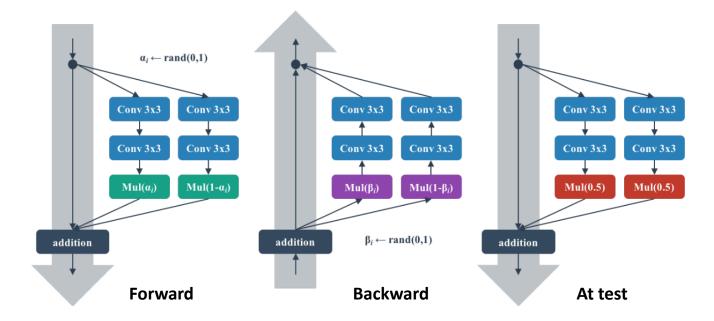
Next, shake-shake regularization

Algorithmic Intelligence Laboratory

*source : Kingma et al. "Variational dropout and the local reparametrization trick". NIPS 2015 50

Noises on gradients: Shake-shake regularization [Gastaldi, 2017]

- Noises can be injected even in **gradients** during back-propagation
- Shake-shake regularization considers a 3-branch ResNeXt [Xie et al., 2017]



- Here, notice that α_i and β_i are independent random variables
 - α_i stochastically blends the outputs from two branches
 - β_i randomly re-distributes the returning gradient between two branches
- Those re-scaling are done in channel-wise

Method	Depth	Params	C10	C100
Wide ResNet	28	36.5M	3.8	18.3
ResNeXt-29, 16x64d	29	68.1M	3.58	17.31
DenseNet-BC (k=40)	190	25.6M	3.46	17.18
C10 Model S-S-I C100 Model S-E-I	26 29	26.2M 34.4M	2.86	15.85

• Shake-shake shows one of the current state-of-the-art result on CIFAR-10/100

• Shake-shake reduces layer-wise correlations between two branches

EER

						E-E-D											2-2-1					
	1	0.06	0.01	-0.07	0.02	0.01	0.00	0.03	0.08	0.08		1	0.28	-0.04	-0.07	-0.03	0.32	-0.03	0.00	-0.03	0.35	
	2	0.51	-0.18	0.20	-0.40	0.48	0.23	0.17	0.04	0.49		2	0.17	0.01	0.04	0.00	0.22	0.00	-0.06	-0.03	0.10	
	3	0.39	0.15	-0.05	0.12	0.37	0.00	-0.16	-0.15	0.13		3	0.12	-0.01	0.04	0.00	0.21	-0.03	-0.04	-0.04	0.00	
×	4	0.41	-0.11	-0.01	0.32	-0.10	0.14	0.05	-0.01	0.09	×	4	0.24	0.05	0.02	0.02	0.20	0.02	0.02	-0.03	-0.04	Value
block	5	0.24	0.18	-0.12	-0.23	0.45	-0.37	0.13	-0.14	0.73	olo	5	0.31	-0.04	0.04	-0.03	0.36	0.10	0.04	0.06	0.32	1.00
	6	0.24	0.11	0.11	0.15	0.31	0.11	0.06	-0.05	0.45	alb	6	0.19	0.03	0.00	-0.03	0.12	-0.03	0.03	0.00	0.15	0.50
Residual	7	0.39	0.25	-0.26	-0.05	0.30	-0.16	-0.09	-0.27	0.44	Residual block	7	0.11	0.01	-0.01	0.03	0.12	0.02	0.06	0.03	0.11	0.00
esi	8	0.30	0.16	0.23	0.08	0.23	0.08	0.10	-0.06	0.29	esi	8	0.07	0.04	0.04	0.04	0.15	0.04	0.00	0.06	0.19	-0.50
R	9	0.55	0.14	-0.03	-0.04	0.51	-0.05	0.04	-0.11	0.61	£	9	0.27	-0.01	-0.01	-0.02	0.19	0.00	-0.03	0.02	0.21	-1.00
	10	0.43	0.12	0.16	0.13	0.38	0.20	0.23	0.14	0.37		10	0.18	-0.03	-0.03	-0.02	0.22	0.06	-0.01	0.06	0.23	
	11	0.29	0.13	0.23	0.04	0.41	0.13	0.01	0.04	0.21		11	0.14	-0.01	-0.02	-0.02	0.22	0.10	0.00	0.09	0.26	
	12	0.91	0.30	0.47	0.31	0.90	0.32	0.54	0.33	0.94		12	0.27	-0.06	0.00	-0.09	0.30	0.15	-0.01	0.13	0.33	
	L1R1 L1R2 L1R3 L2R1 L2R2 L2R3 L3R1 L3R2 L3R3									L1R1	L1R2	L1R3	L2R1	L2R2	L2R3	L3R1	L3R2	L3R3				
	Layers used for correlation calculation									Lay	ers us	ed for	correl	ation o	alcula	tion						

122

Table of Contents

1. Loss Penalty

- Parameter norm penalty
- Directly approximately regularizing complexity
- Penalizing confident output distributions

2. Parameter Sharing

- Convoluational neural networks
- Equivariance through parameter-sharing
- Appication: Movie recommendation

3. Noise Robustness

- Noises on inputs or hidden units
- Noises on model parameters
- Noises on gradients

4. Dataset Augmentation

- Making new data by local masking
- Mixing two samples in dataset

- **Prior:** The best way to generalize better is to gain more data
- Create fake data and add it to the training set
 - Requires some knowledge on making good "fakes"
- Particularly effective for classification tasks
 - Some tasks may not be readily applicable, e.g. density estimation
- Example: Rigid transformation symmetries
 - Translation, dilation, rotation, mirror symmetry, ...
 - Forms an affine group on pixels: $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \mapsto \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \begin{vmatrix} a_1 & a_2 \\ a_3 & a_4 \end{vmatrix} \begin{vmatrix} u_1 \\ u_2 \end{vmatrix}$

Translation

Dilation

Rotation

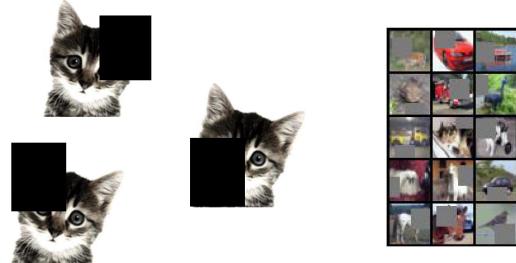
Mirror symmetry

Making new data by local masking: CutOut [Devries et al., 2017]

- Dropout appears to be less powerful when used with convolutional layers
 - Dropping pixels randomly **may disturb gradients** due to parameter sharing
 - Neighboring pixels in CNNs would contains much of the dropped information
- Channel-wise dropout [Tompson et al., 2015] may alleviate these issues
 - However, the network capacity may be considerably reduced
- What do we expect by performing dropout on images?
 - Preventing co-adaptation on high-level objects (nose, eyes, ...)
 - For images, this can be also done by just using local masking

Algorithmic Intelligence Laboratory *source : Devries & Taylor. "Improved Regularization of Convolutional Neural Networks with Cutout", Arxiv 2017 55

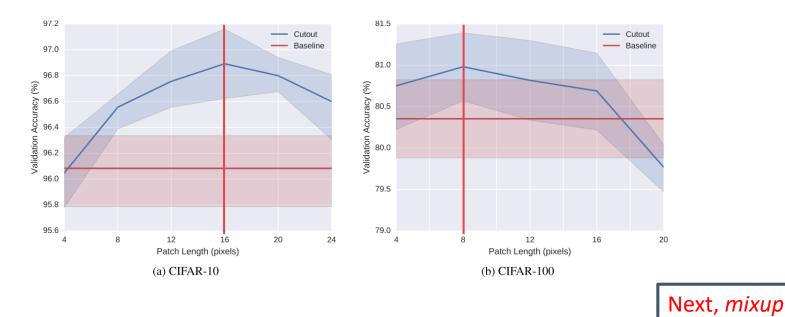
- What do we expect by performing dropout on images?
 - Preventing co-adaptation on high-level objects (nose, eyes, ...)
 - For images, this can be also done by just using local masking
- CutOut directly brings this into data augmentation
 - Data augmentation via square-masking randomly on images



• CutOut further improved Shake-shake regularization [Gastaldi, 2017] achieving the state-of-the-art result on CIFAR-10/100

Method	C10	C10+	C100	C100+	SVHN
ResNet18 [5]	10.63 ± 0.26	4.72 ± 0.21	36.68 ± 0.57	22.46 ± 0.31	-
ResNet18 + cutout	9.31 ± 0.18	3.99 ± 0.13	34.98 ± 0.29	21.96 ± 0.24	-
WideResNet [22]	6.97 ± 0.22	3.87 ± 0.08	26.06 ± 0.22	18.8 ± 0.08	1.60 ± 0.05
WideResNet + cutout	5.54 ± 0.08	3.08 ± 0.16	23.94 ± 0.15	18.41 ± 0.27	1.30 ± 0.03
Shake-shake regularization [4]	-	2.86	-	15.85	-
Shake-shake regularization + cutout	-	2.56 ± 0.07	-	15.20 ± 0.21	-

• The size of the square should be set as a hyperparameter



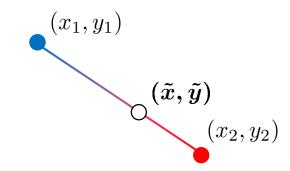
Algorithmic Intelligence Laboratory

*source : Devries & Taylor. "Improved Regularization of Convolutional Neural Networks with Cutout", Arxiv 2017 57

• In *mixup*, a new training example is constructed by:

$$\tilde{x} = \lambda x_1 + (1 - \lambda) x_2$$
$$\tilde{y} = \lambda y_1 + (1 - \lambda) y_2$$

- $\lambda \sim \operatorname{Beta}(\alpha, \alpha) \in [0, 1]$, where α : hyperparameter
- (x_i, y_i) 's are uniformly sampled from the training data

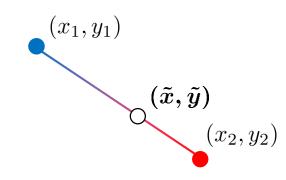


- Surprisingly, this simple scheme outperforms empirical risk minimization (ERM)
 - A new state-of-art performance on CIFAR-10/100 and ImageNet
 - Robustness when learning from corrupt labels
 - Handling adversarial examples
 - Stabilizing GANs
 - ..

• In *mixup*, a new training example is constructed by:

$$\tilde{x} = \lambda x_1 + (1 - \lambda) x_2$$
$$\tilde{y} = \lambda y_1 + (1 - \lambda) y_2$$

- $\lambda \sim \text{Beta}(\alpha, \alpha) \in [0, 1]$, where α : hyperparameter
- (x_i, y_i) 's are uniformly sampled from the training data





(a) Prediction errors in-between training data. Evaluated at $x = \lambda x_i + (1-\lambda)x_j$, a prediction is counted as a "miss" if it does not belong to $\{y_i, y_j\}$. The model trained with *mixup* has fewer misses.

• What is *mixup* doing?

- Incorporating prior knowledge: the model should behave linearly in-between training examples
- It reduces the amount of undesirable oscillations when predicting outside the training examples

• *mixup* significantly improves generalization in CIFIAR-10/100 and ImageNet

Dataset	Model	ERM	mixup	Model	Method	Epochs	Top-1 Error	Top-5 Error
CIFAR-10	PreAct ResNet-18 WideResNet-28-10 DenseNet-BC-190	5.6 3.8 3.7	$3.9 \\ 2.7 \\ 2.7$	ResNet-50	ERM mixup $\alpha = 0.2$	200 200	23.6 22.1	7.0 6.1
CIFAR-100	PreAct ResNet-18 WideResNet-28-10	25.6 19.4	$\frac{2.7}{21.1}$ 17.5	ResNet-101 ResNeXt-101 32*4d	$\frac{\text{ERM}}{\text{mixup } \alpha = 0.2}$ ERM	$-\frac{200}{200}$	22.0 20.8 21.3	6.1 5.4 5.9
CIFAR-100	DenseNet-BC-190	19.4 19.0	16.8	Resident-101 52+4d	mixup $\alpha = 0.4$	200 200	21.5 20.1	5.9 5.0

(a) Test errors for the CIFAR experiments.

Table 1: Validation errors for ERM and mixup on the development set of ImageNet-2012.

mixup also shows robustness on corrupted labels while improving memorization [Zhang et al., 2016]

Label corruption	Method	Test	error	Training error			
		Best	Last	Real	Corrupted		
	ERM	12.7	16.6	0.05	0.28		
20%	ERM + dropout $(p = 0.7)$	8.8	10.4	5.26	83.55		
	mixup ($\alpha = 8$)	5.9	6.4	2.27	86.32		
	ERM	18.8	44.6	0.26	0.64		
50%	ERM + dropout $(p = 0.8)$	14.1	15.5	12.71	86.98		
	mixup ($\alpha = 32$)	11.3	12.7	5.84	85.71		
	ERM	36.5	73.9	0.62	0.83		
80%	ERM + dropout $(p = 0.8)$	30.9	35.1	29.84	86.37		
	mixup ($\alpha = 32$)	25.3	30.9	18.92	85.44		

Algorithmic Intelligence Laboratory

- Reducing the test error, possibly at the expense of increased training error
- No free lunch theorem says that there is **no best form of regularization**
- We have to express our **prior knowledge** for each problem to guide the networks properly that generalizes well
- Developing effective regularizations is one of the major research in the field
- Nevertheless, as we are focusing on AI tasks, there could be some general strategies for a wide range of our problems
 - Loss penalty
 - Parameter sharing
 - Noise robustness
 - Dataset augmentation
 - ... there can be many other ways!

- [Bishop, 1995a] Bishop, C. (1995). Regularization and Complexity Control in Feed-forward Networks. In *Proceedings International Conference on Artificial Neural Networks* (pp. 141–148). link : <u>https://www.microsoft.com/en-us/research/publication/regularization-and-complexity-control-in-feed-forward-networks/</u>
- [Bishop, 1995b] Bishop, C. (1995). Training with Noise is Equivalent to Tikhonov Regularization. *Neural Computation*, 7, 108–116. link : <u>https://ieeexplore.ieee.org/document/6796505/</u>
- [Wolpert et al., 1997] Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. *IEEE Transactions on Evolutionary Computation*, 1(1), 67–82.
 link : <u>https://ieeexplore.ieee.org/document/585893/</u>
- [Hinton et al., 2012] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. *arXiv preprint arXiv:1207.0580*. link : <u>https://arxiv.org/abs/1207.0580</u>
- [Kingma et al., 2013] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*.
 link : <u>https://arxiv.org/abs/1312.6114</u>
- [Wang et al., 2013] Wang, S., & Manning, C. (2013). Fast dropout training. In *Proceedings of the 30th International Conference on Machine Learning* (Vol. 28, pp. 118–126). Atlanta, Georgia, USA: PMLR.
 link : <u>http://proceedings.mlr.press/v28/wang13a.html</u>
- [Warde-Farley et al., 2013] Warde-Farley, D., Goodfellow, I. J., Courville, A., & Bengio, Y. (2013). An empirical analysis of dropout in piecewise linear networks. *ArXiv Preprint ArXiv:1312.6197*.
 link : <u>https://arxiv.org/abs/1312.6197</u>

- [Dauphin et al., 2014] Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014). Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. *Advances in Neural Information Processing Systems 27* (pp. 2933–2941).
 link : <u>https://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-optimization</u>
- [Goodfellow et al., 2014] Goodfellow, I. J., & Vinyals, O. (2014). Qualitatively characterizing neural network optimization problems. *CoRR*, *abs/1412.6544*. link : https://arxiv.org/abs/1412.6544
- [Shalev-Shwartz et al., 2014] Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107298019 link : <u>https://www.cambridge.org/core/books/understanding-machine-learning/3059695661405D25673058E43C8BE2A6</u>
- [Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. *Journal of Machine Learning Research*, 15, 1929–1958. link : <u>http://jmlr.org/papers/v15/srivastava14a.html</u>
- [Tompson et al., 2015] Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C. (2015). Efficient object localization using convolutional networks. In *Computer Vision and Pattern Recognition* (pp. 648–656). link : <u>https://arxiv.org/abs/1411.4280</u>
- [Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep Learning*. MIT Press, pp.221-265. link : <u>https://www.deeplearningbook.org/</u>
- [Kingma et al., 2015] Kingma, D. P., Salimans, T., & Welling, M. (2015). Variational dropout and the local reparameterization trick. In Advances in Neural Information Processing Systems (pp. 2575-2583). link : <u>https://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick</u>

- [Maddison et al. 2016] Maddison, C. J., Mnih, A., & Teh, Y. W. (2016). The concrete distribution: A continuous relaxation of discrete random variables. In *International Conference on Learning Representations*. link : <u>https://openreview.net/forum?id=S1jE5L5gl</u>
- [Keskar et al., 2016] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2016). On large-batch training for deep learning: Generalization gap and sharp minima. In *International Conference on Learning Representations*.

link : <u>https://openreview.net/forum?id=H1oyRIYgg</u>

- [Zhang et al., 2016] Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2016). Understanding deep learning requires rethinking generalization. *CoRR*, *abs/1611.03530*.
 link : <u>https://arxiv.org/abs/1611.03530</u>
- [Ravanbakhsh et al., 2017] Ravanbakhsh, S., Schneider, J., & Póczos, B. (2017). Equivariance Through Parameter-Sharing. In *Proceedings of the 34th International Conference on Machine Learning* (Vol. 70, pp. 2892–2901). International Convention Centre, Sydney, Australia: PMLR. link : <u>http://proceedings.mlr.press/v70/ravanbakhsh17a.html</u>
- [Devries et al., 2017] Devries, T., & Taylor, G. W. (2017). Improved Regularization of Convolutional Neural Networks with Cutout. *CoRR*, *abs/1708.04552*. Retrieved from <u>http://arxiv.org/abs/1708.04552</u> link : <u>https://arxiv.org/abs/1708.04552</u>
- [Gastaldi, 2017] Gastaldi, X. (2017). Shake-Shake regularization. CoRR, abs/1705.07485. link : <u>http://arxiv.org/abs/1705.07485</u>
- [Kawaguchi et al., 2017] Kawaguchi, K., Kaelbling, L. P., & Bengio, Y. (2017). Generalization in deep learning. arXiv preprint arXiv:1710.05468.
 link : https://arxiv.org/abs/1710.05468

- [Pereyra et al., 2017] Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., & Hinton, G. (2017). Regularizing neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548.
 link : <u>https://arxiv.org/abs/1701.06548</u>
- [Xie et al., 2017] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In *Computer Vision and Pattern Recognition* (pp. 5987–5995). link : <u>http://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.pdf</u>
- [Arora et al., 2018] Arora, S., Cohen, N., & Hazan, E. (2018). On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization. In *Proceedings of the 35th International Conference on Machine Learning* (Vol. 80, pp. 244–253). Stockholmsmässan, Stockholm Sweden: PMLR. link : <u>http://proceedings.mlr.press/v80/arora18a.html</u>
- [Hartford et al., 2018] Hartford, J., Graham, D., Leyton-Brown, K., & Ravanbakhsh, S. (2018). Deep Models of Interactions Across Sets. In *Proceedings of the 35th International Conference on Machine Learning* (Vol. 80, pp. 1909–1918). Stockholmsmässan, Stockholm Sweden: PMLR. Link : <u>http://proceedings.mlr.press/v80/hartford18a.html</u>
- [Louizos et al., 2018] Louizos, C., Welling, M., & Kingma, D. P. (2018). Learning Sparse Neural Networks through L_0 Regularization. In International Conference on Learning Representations. link : <u>https://openreview.net/forum?id=H1Y8hhg0b</u>
- [Zhang et al., 2018] Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). *mixup*: Beyond Empirical Risk Minimization. In *International Conference on Learning Representations*. link : <u>https://openreview.net/forum?id=r1Ddp1-Rb</u>