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“Any modification we make to a learning algorithm that is intended to reduce 
its generalization error, but not its training error” [Goodfellow et al., 2016]

• Regularization is a central problem in machine learning 

• Making an algorithm that perform well on new inputs, not just on the 
training data, i.e., there is no universal model working for all tasks

• The main challenge is to find a right model complexity for a given task

• Trading increased bias for reduced variance (bias-variance tradeoff)

• In practice: Introducing a preference between models with same training loss

What is regularization?
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regularization

*source : https://www.deeplearningbook.org/contents/ml.html

https://www.deeplearningbook.org/contents/ml.html
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• Two essential ways to find the right model complexity
1. Increase the capacity from a small model

2. Reduce the capacity from a large model → regularization

• In the context of deep learning, the latter way is more favorable
1. Increasing model complexity is not that simple

• We don’t know how much the true distribution would be complex

• “Trying to fit a square peg into a round hole” [Goodfellow et al., 2016]

2. Over-parametrized networks are typically easier to optimize 

• [Dauphin et al., 2014; Goodfellow et al., 2014; Arora et al., 2018]

Why do we need to “regularize” our model?
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regularization?

?

*source : https://www.deeplearningbook.org/contents/ml.html

https://www.deeplearningbook.org/contents/ml.html
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• Specifying a preference between models for the optimizer
Quiz: Which one do you prefer, (a) or (b) ?

• No free lunch theorem [Wolpert et al., 1997] 
⇒ No best form of regularization
• There can be another universe where (b) is correct!

• We have to rely on prior knowledge of a given task

• Regularization in deep learning ≈ Encoding prior knowledge into the model

• Priors widely applicable for “intellectual” tasks (e.g. visual recognition, …)

• Occam’s razor → Loss penalty

• Equivariance and invariance → Parameter sharing

• Robustness on noise

• …

How can we regularize our model?
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?(a) (b)

*source : https://www.deeplearningbook.org/contents/ml.html

https://www.deeplearningbook.org/contents/ml.html
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1. Loss Penalty
• Parameter norm penalty 
• Directly approximately regularizing complexity

• Penalizing confident output distributions

2. Parameter Sharing
• Convoluational neural networks
• Equivariance through parameter-sharing 

• Appication: Movie recommendation 

3. Noise Robustness
• Noises on inputs or hidden units
• Noises on model parameters

• Noises on gradients

4. Dataset Augmentation
• Making new data by local masking
• Mixing two samples in dataset
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• Prior: “Occam’s razor”
• Among hypotheses that are equally good, choose the simplest one

• Adding a parameter penalty Ω 𝜽 to the objective 

• λ ∈ 0,∞ : a hyperparameter that controls the relative power of Ω 𝜽

• Different penalty Ω results in a different solution being preferred 

Loss Penalty
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Next, 𝐿2 and 𝐿1 regularization

*source : https://www.deeplearningbook.org/contents/ml.html

https://www.deeplearningbook.org/contents/ml.html
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• Parameter norm penalty: Penalizing on the size of parameters 𝜽

• The two most commonly used forms: 𝑳𝟐 and 𝑳𝟏 penalty

• In fact, they lead the solution to the maximum a posteriori (MAP) estimation 
that a certain prior on weights is assumed

Parameter norm penalty 
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𝑳𝟐 (“weight decay”) 𝑳𝟏

Ω 𝜽

Aliases
Ridge regression

Tikhonov regularization
LASSO

MAP
Prior
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• If      is quadratic with diagonal Hessian 𝐻 = 𝜆𝑖 𝑖𝑖, we get the analytic solutions 
from each regularization [Goodfellow et al., 2016]:

Parameter norm penalty 
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Next, 𝐿0-regularization
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• We typically use the popular 𝐿1-regularization to induce sparsity

• Sparse models are advantageous on computational efficiency

• Of course, it is a nice policy for regularization as well

• Why don’t we use 𝑳𝟎-penalty?
• Ω 𝜽 = 𝜽 0 ≔ 𝜃𝑖: 𝜃𝑖 ≠ 0

• A more direct measure of sparsity

• It does not shrink the non-sparse weights

Parameter norm penalty: 𝑳𝟎-regularization [Louizos et al., 2018]

10*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017
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• We typically use the popular 𝐿1-regularization to induce sparsity

• Sparse models are advantageous on computational efficiency

• Of course, it is a nice policy for regularization as well

• Why don’t we use 𝑳𝟎-penalty?
• Ω 𝜽 = 𝜽 0 ≔ 𝜃𝑖: 𝜃𝑖 ≠ 0

• A more direct measure of sparsity

• It does not shrink the non-sparse weights

• Problem: Optimization with 𝐿0-penalty is intractable in general

• Discrete optimization with 2 𝜽 possible states

• Standard gradient-based methods are not applicable

• Can we relax this problem so that to an efficient continuous optimization?

Parameter norm penalty: 𝑳𝟎-regularization [Louizos et al., 2018]

11*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017
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• Idea: Regard 𝜽 as a random variable, where 𝔼 𝜽 0 is differentiable
1. Consider a simple re-parametrization of 𝜽:

• Then, the 𝐿0-penalty becomes 

Parameter norm penalty: 𝑳𝟎-regularization [Louizos et al., 2018]

12*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017

smoothing
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• Idea: Regard 𝜽 as a random variable, where 𝔼 𝜽 0 is differentiable
2. Letting 𝑞 𝑧𝑖|𝜋𝑖 = Bernoulli 𝜋𝑖 , we define the expected loss     :

• However, optimizing                 is still hard

• Estimating                                    is not easy due to the discrete nature of 𝐳

Parameter norm penalty: 𝑳𝟎-regularization [Louizos et al., 2018]

13*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017

smoothing
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• Idea: Regard 𝜽 as a random variable, where 𝔼 𝜽 0 is differentiable
3. Smoothing the discrete r.v. 𝐳 via a continuous r.v. 𝐬:

• Since                                                       , we get:

Parameter norm penalty: 𝑳𝟎-regularization [Louizos et al., 2018]

14*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017

smoothing
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• Idea: Regard 𝜽 as a random variable, where 𝔼 𝜽 0 is differentiable
• Finally, the original loss     is transformed by:

• We can optimize this via minibatch-based gradient estimation methods

• For details, see [Kingma et al., 2013]

Parameter norm penalty: 𝑳𝟎-regularization [Louizos et al., 2018]
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smoothing

*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017
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• 𝐿0-regularization leads the networks to a sparse solution, with a good 
regularization as well on MNIST and CIFAR-10/100

Parameter norm penalty: 𝑳𝟎-regularization [Louizos et al., 2018]

16*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017

Next, complexity regularization

WRN-28-10

MLP
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• Reducing complexity of a model might be a direct way of regularization
• But, how do we know whether a model is complex or not?

• Computational learning theory provides a way for it

• Suppose we have a model , i.e. a set of hypothesis functions

• DARC attempts to reduce the Rademacher complexity of     :

• 𝜎1, … , 𝜎𝑚: i.i.d. random variables, 

• High                    ⇒ is more expressive on 

• It can be used to give a bound of the generalization error in ERM

• For details, see [Shalev-Shwartz et al., 2014]

Directly approximately regularizing complexity (DARC) [Kawaguchi et al., 2017]

17*source : Kawaguchi et al. “Generalization in Deep Learning”, Arxiv 2017

sample size
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• DARC attempts to reduce the Rademacher complexity of     :

• Of course, computing                    is intractable when      is a family of NNs

• Instead, DARC uses a rough approximation of it:

• : the model to optimize (e.g. neural network)

• In other words, here     is approximated by 

Directly approximately regularizing complexity (DARC) [Kawaguchi et al., 2017]
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sample size

mini-batch size

*source : Kawaguchi et al. “Generalization in Deep Learning”, Arxiv 2017
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• Despite its simplicity, DARC improves state-of-the-art level models
• Results on MNIST and CIFAR-10 are presented

• Comparisons in the values of DARC penalty 
• Data augmentation by itself implicitly regularize the DARC penalty

Directly approximately regularizing complexity (DARC) [Kawaguchi et al., 2017]
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(ND) = no data augmentation 
Next, Confidence penalty

*source : Kawaguchi et al. “Generalization in Deep Learning”, Arxiv 2017
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• Regularization by preventing a network not to be over-confident

• Confident predictions: Output distributions 
that have low entropy
• Placing all probability on a single class

• Overly-confident predictions are often 
a sign of overfitting [Szegedy et al., 2015]

• Adding the negative entropy to loss prevents the over-confidence

Penalizing confident output distributions [Pereyra et al., 2017]

20
*source : 
Pereyra et al. “Regularizing Neural Networks by Penalizing Confident Output Distributions”, ICLR 2017 Workshop

negative entropy
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• Confidence penalty improves generalization for various datasets

Penalizing confident output distributions [Pereyra et al., 2017]

21
*source : 
Pereyra et al. “Regularizing Neural Networks by Penalizing Confident Output Distributions”, ICLR 2017 Workshop
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1. Loss Penalty
• Parameter norm penalty 
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• Prior: Good representations may contain equivariance or invariance
• Parameter sharing is a good way to encode equivariance or invariance of features

• Example: Convolutional neural networks
• Sharing parameters across multiple image locations

• Natural images have many statistical properties that are invariant to translation

• Due to the sharing, CNNs have dramatically less parameters compared to DNNs 
with strong generalization ability

Parameter sharing: Convolutional neural networks
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Next, equivariance through parameter-sharing

*sources : 
- https://www.udacity.com/course/deep-learning--ud730
- http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

https://www.udacity.com/course/deep-learning--ud730
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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• Prior: Good representations may contain equivariance or invariance
• Parameter sharing is a good way to encode equivariance or invariance of features

Definition is            -equivariant iff

Definition is    -invariant iff it is            -equivariant

• id: ℝ𝑀 → ℝ𝑀 is the identity function

• Equivariance is a more general concept of invariance

Equivariance through parameter-sharing [Ravanbakhsh et al., 2017]

24
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• Parameter-sharing in 𝜙 is related to equivariance on permutations of indices

• “indices”: ℕ = [1,… , 𝑁] (input) and 𝕄 = 1,… ,𝑀 (output)

• Formally, of the form 𝐺ℕ,𝕄 ≤ 𝒮ℕ × 𝒮𝕄, where 𝒮𝑋: The symmetric group on 𝑋

• Consider a coloring of weights between input and output

Definition A colored multi-edged bipartite graph Ω = (ℕ,𝕄, α) is a triple, where

• α:ℕ ×𝕄 → 2 1,…,𝐶 ; The edge functions that assigns colors

• Non-existing edges receives no color

Equivariance through parameter-sharing [Ravanbakhsh et al., 2017]

25*source : Ravanbakhsh et al. “Equivariance Through Parameter-Sharing”, ICML 2017
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• Suppose that “edges of the same color = shared parameters”

• 𝐰 = [w1, … , w𝐶], 𝐶 parameters in total

• Consider a neural network layer 𝜙 constructed from 

• 𝜎: a strictly monotonic non-linearity

Equivariance through parameter-sharing [Ravanbakhsh et al., 2017]
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Theorem (Ravanbakhsh et al.) 𝜙 𝐱,𝐰, Ω is equivariant on any 
permutations among the same-colored edges, for any Ω.

*source : Ravanbakhsh et al. “Equivariance Through Parameter-Sharing”, ICML 2017
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Theorem 𝜙 𝐱,𝐰,Ω is equivariant on permutations among same-colored edges.

• Example: Permutation-equivariant layer

• Ω constists ℕ = 𝕄 = 1, 2, 3, 4 , and α of 2 colors

•

• Then, 𝜙 is equivariant on 𝑔, 𝑔 𝑔 ∈ 𝒮ℕ} ≅ 𝒮ℕ

Equivariance through parameter-sharing [Ravanbakhsh et al., 2017]
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𝑁 = 𝑀 = 4

*source : Ravanbakhsh et al. “Equivariance Through Parameter-Sharing”, ICML 2017
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• Now, suppose we have a group 𝐺

• Can we design a colored bipartite graph Ω, that is 𝐺-equivariant?

• Yes, if 𝐺 is of the form 𝑘ℕ, 𝑘𝕄 | 𝑘 ∈ 𝐾 for a finite group 𝐾

• Example: Equivariance to 90∘ rotations

• ±90∘ rotations is produced as the action of cyclic group ℤ4 = 𝑒, 𝑔, 𝑔2, 𝑔3

• Letting ℕ = 𝕄 = 1,… , 8 , possible Ω’s are presented below

Equivariance through parameter-sharing [Ravanbakhsh et al., 2017]

28*source : Ravanbakhsh et al. “Equivariance Through Parameter-Sharing”, ICML 2017
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• Now, suppose we have a group 𝐺

• Can we design a colored bipartite graph Ω, that is 𝐺-equivariant?

• Yes, if 𝐺 is of the form 𝑘ℕ, 𝑘𝕄 | 𝑘 ∈ 𝐾 for a finite group 𝐾

Equivariance through parameter-sharing [Ravanbakhsh et al., 2017]
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Next, application to movie recommendation

*source : Ravanbakhsh et al. “Equivariance Through Parameter-Sharing”, ICML 2017
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• Example: Movie recommendation 
• Predicting movie ratings from the previous incomplete matrix of ratings

• Well-known as the matrix completion

• How can be build a deep model for this problem?

• Idea: The prediction must be equivariant on permuting rows & columns
• “Exchangeable matrix”

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

30*source : Hartford et al. “Deep Models of Interactions Across Sets”, ICML 2018
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• Example: Movie recommendation 

• Exchangeable matrix layer
• We have an input matrix, which can be in a flatten form

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

31*source : Hartford et al. “Deep Models of Interactions Across Sets”, ICML 2018
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• Example: Movie recommendation 

• Exchangeable matrix layer
• Goal: Design a matrix layer that is equivariant on permuting the original input

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

32*source : Hartford et al. “Deep Models of Interactions Across Sets”, ICML 2018
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• Example: Movie recommendation 

• Exchangeable matrix layer
• Suppose we calculate a single entry in the output (i.e. dot product)

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

33*source : Hartford et al. “Deep Models of Interactions Across Sets”, ICML 2018
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• Example: Movie recommendation 

• Exchangeable matrix layer
• The ratings for other movies affects to the prediction, regardless to its order

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

34*source : Hartford et al. “Deep Models of Interactions Across Sets”, ICML 2018

same color = parameter sharing
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• Example: Movie recommendation 

• Exchangeable matrix layer
• Ratings of other users for a movie also affects, regardless to its order as well

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

35*source : Hartford et al. “Deep Models of Interactions Across Sets”, ICML 2018

same color = parameter sharing
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• Example: Movie recommendation 

• Exchangeable matrix layer
• The same argument holds for the other parameters except one

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

36*source : Hartford et al. “Deep Models of Interactions Across Sets”, ICML 2018

same color = parameter sharing
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• Example: Movie recommendation 

• Exchangeable matrix layer
• The same argument holds for the other parameters except one

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

37*source : Hartford et al. “Deep Models of Interactions Across Sets”, ICML 2018

same color = parameter sharing
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• Example: Movie recommendation 

• Exchangeable matrix layer
• Exchangeability also holds for column-wise permutations

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

38*source : Hartford et al. “Deep Models of Interactions Across Sets”, ICML 2018

same color = parameter sharing
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• Example: Movie recommendation 

• Exchangeable matrix layer
• Exchangeability also holds for column-wise permutations

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

39*source : Hartford et al. “Deep Models of Interactions Across Sets”, ICML 2018

same color = parameter sharing
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• Example: Movie recommendation 

• Exchangeable matrix layer
Quiz: How should we color the remaining part of the matrix?

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

40*source : Hartford et al. “Deep Models of Interactions Across Sets”, ICML 2018

same color = parameter sharing
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• Example: Movie recommendation 

• Exchangeable matrix layer
Quiz: How should we color the remaining part of the matrix?

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

41*source : Hartford et al. “Deep Models of Interactions Across Sets”, ICML 2018

same color = parameter sharing
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• Example: Movie recommendation 
• Deep models constructed from this matrix 

outperforms many existing benchmarks

• The model trained on MovieLens-100k 
surprisingly generalize well on other datasets

Equivariance through parameter-sharing: Application [Hartford et al., 2018]

42*source : Hartford et al. “Deep Models of Interactions Across Sets”, ICML 2018
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1. Loss Penalty
• Parameter norm penalty 
• Directly approximately regularizing complexity

• Penalizing confident output distributions

2. Parameter Sharing
• Convoluational neural networks
• Equivariance through parameter-sharing 

• Appication: Movie recommendation 

3. Noise Robustness
• Noises on inputs or hidden units
• Noises on model parameters

• Noises on gradients

4. Dataset Augmentation
• Making new data by local masking
• Mixing two samples in dataset
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• Prior: Most AI tasks have certain levels of resilience on noise

• One can incorporate such prior by injecting noises to the network

• Noise robustness is also related to adversarial examples
• We will discuss this topic more in detail later

Noise robustness

44

*sources : 
- Chatbri, Houssem et al. “Using scale space filtering to make thinning algorithms 

robust against noise in sketch images.” Pattern Recognition Letters 42 (2014): 1-10.
- https://www.deeplearningbook.org/contents/ml.html

https://www.deeplearningbook.org/contents/ml.html


Algorithmic Intelligence Laboratory

• Prior: Most AI tasks have certain levels of resilience on noise

• One can incorporate such prior by injecting noises to the network 

• There can be many ways to impose noises:
1. On inputs or hidden units (e.g. Dropout)

• Noise with infinitesimal variance at the input is equivalent to imposing 
a penalty on the norm of the weights for some models [Bishop, 1995a,b] 

2. On model parameters (e.g. Variational dropout)

• A stochastic implementation of a Bayesian inference over the weights

3. On gradients during optimization (e.g. Shake-shake regularization)

• In practice, SGD can generalize better than full GD in training DNNs 
[Keskar et al., 2016]

Noise robustness

45

Next, dropout
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• Dropout [Srivastava et al., 2014] randomly drops a neuron with probability 𝑝
during training

• Same as multiplying a noise 𝜇 ∼ Bernulli(𝑝) to each neuron

• At testing, each weights are scaled by 𝑝

• Dropout is applied to hidden units typically
• Destruction of high-level information e.g. edges, nose, …

Noises on inputs or hidden units: Dropout [Srivastava et al., 2014] 

46*source : Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. JMLR 2014
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Why dropout generalizes well? 

1. It can be thought of as ensemble of 2𝑛 subnets with parameter sharing

2. Dropout prevents co-adaptation of neurons
• Noisy neurons are less reliable

• Each neuron must be prepared on which other neurons are dropped

Noises on inputs or hidden units: Dropout [Srivastava et al., 2014] 

47*source : Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. JMLR 2014
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The fully understanding on why dropout works is still an open question

• Stochasticity might not be necessary
• Fast dropout [Wang et al., 2013]: A deterministic version of dropout with analytic 

marginalization

• Dropout as an ensemble is not enough
• Dropout offers additional improvements to generalization error beyond those 

obtained by ensembles of independent models [Warde-Farley et al., 2013]

• Dropping neurons are not necessary
• In principle, any kind of random modification is admissible

• Gaussian dropout, i.e.                             , can work as well as the original dropout 
with probability 𝑝, or even work better

Noises on inputs or hidden units: Dropout [Srivastava et al., 2014] 

48

Next, variational dropout

*source : Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. JMLR 2014
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• In dropout, one have to find the best 𝑝 manually

• What if we want different rates for each of neurons?

• Variational dropout (VD) allows to learn the dropout rates separately

• Unlike Dropout, VD imposes noises on model parameters 𝜽:

• A Bayesian generalization of Gaussian dropout [Srivastava et al., 2014]

• The random vector                     is adapted to data in Bayesian sense by 
updating 𝛂 and 𝜽

• Re-parametrization trick allows 𝐰 to be learned via minibatch-based gradient 
estimation methods [Kingma et al., 2013]

• 𝛂 and 𝜽 can be “optimized” separated from noises

Noises on model parameters: Variational dropout [Kingma et al., 2015]

49*source : Kingma et al. “Variational dropout and the local reparametrization trick”. NIPS 2015
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• VD lead to a better model than dropout

• VD could also improve CNN as well, while dropout could not(1b)

Noises on model parameters: Variational dropout [Kingma et al., 2015]

50

Next, shake-shake regularization
*source : Kingma et al. “Variational dropout and the local reparametrization trick”. NIPS 2015
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• Noises can be injected even in gradients during back-propagation

• Shake-shake regularization considers a 3-branch ResNeXt [Xie et al., 2017]

• Here, notice that α𝑖 and β𝑖 are independent random variables

• α𝑖 stochastically blends the outputs from two branches

• β𝑖 randomly re-distributes the returning gradient between two branches

• Those re-scaling are done in channel-wise

Noises on gradients: Shake-shake regularization [Gastaldi, 2017]

51

Forward Backward At test

*source : Gastaldi, X. “Shake-Shake regularization”. Arxiv 2017



Algorithmic Intelligence Laboratory

• Shake-shake shows one of the current state-of-the-art result on CIFAR-10/100

• Shake-shake reduces layer-wise correlations between two branches 

Noises on gradients: Shake-shake regularization [Gastaldi, 2017]

52*source : Gastaldi, X. “Shake-Shake regularization”. Arxiv 2017
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1. Loss Penalty
• Parameter norm penalty 
• Directly approximately regularizing complexity

• Penalizing confident output distributions

2. Parameter Sharing
• Convoluational neural networks
• Equivariance through parameter-sharing 

• Appication: Movie recommendation 

3. Noise Robustness
• Noises on inputs or hidden units
• Noises on model parameters

• Noises on gradients

4. Dataset Augmentation
• Making new data by local masking
• Mixing two samples in dataset
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• Prior: The best way to generalize better is to gain more data

• Create fake data and add it to the training set
• Requires some knowledge on making good “fakes”

• Particularly effective for classification tasks
• Some tasks may not be readily applicable, e.g. density estimation

• Example: Rigid transformation symmetries
• Translation, dilation, rotation, mirror symmetry, …

• Forms an affine group on pixels:

Dataset augmentation

54

Translation Dilation Rotation Mirror symmetry

Next, CutOut

*source : https://github.com/joanbruna/MathsDL-spring18/blob/master/lectures/lecture2.pdf

https://github.com/joanbruna/MathsDL-spring18/blob/master/lectures/lecture2.pdf
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• Dropout appears to be less powerful when used with convolutional layers
• Dropping pixels randomly may disturb gradients due to parameter sharing

• Neighboring pixels in CNNs would contains much of the dropped information

• Channel-wise dropout [Tompson et al., 2015] may alleviate these issues
• However, the network capacity may be considerably reduced 

• What do we expect by performing dropout on images? 
• Preventing co-adaptation on high-level objects (nose, eyes, …)

• For images, this can be also done by just using local masking

Making new data by local masking: CutOut [Devries et al., 2017] 

55*source : Devries & Taylor. “Improved Regularization of Convolutional Neural Networks with Cutout”, Arxiv 2017
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• What do we expect by performing dropout on images? 
• Preventing co-adaptation on high-level objects (nose, eyes, …)

• For images, this can be also done by just using local masking

• CutOut directly brings this into data augmentation
• Data augmentation via square-masking randomly on images

Making new data by local masking: CutOut [Devries et al., 2017] 

56*source : Devries & Taylor. “Improved Regularization of Convolutional Neural Networks with Cutout”, Arxiv 2017
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• CutOut further improved Shake-shake regularization [Gastaldi, 2017] achieving 
the state-of-the-art result on CIFAR-10/100

• The size of the square should be set as a hyperparameter

Making new data by local masking: CutOut [Devries et al., 2017] 

57

Next, mixup
*source : Devries & Taylor. “Improved Regularization of Convolutional Neural Networks with Cutout”, Arxiv 2017
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• In mixup, a new training example is constructed by:

• , where    : hyperparameter

• ’s are uniformly sampled from the training data

• Surprisingly, this simple scheme outperforms empirical risk minimization (ERM)
• A new state-of-art performance on CIFAR-10/100 and ImageNet

• Robustness when learning from corrupt labels

• Handling adversarial examples

• Stabilizing GANs

• …

Mixing two samples in dataset: mixup [Zhang et al., 2018]

58*source : Zhang, H. et al. “mixup: Beyond Empirical Risk Minimization”, ICLR 2018
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• In mixup, a new training example is constructed by:

• , where    : hyperparameter

• ’s are uniformly sampled from the training data

• What is mixup doing?
• Incorporating prior knowledge: the model should 

behave linearly in-between training examples

• It reduces the amount of undesirable oscillations 
when predicting outside the training examples

Mixing two samples in dataset: mixup [Zhang et al., 2018]

59*source : Zhang, H. et al. “mixup: Beyond Empirical Risk Minimization”, ICLR 2018



Algorithmic Intelligence Laboratory

• mixup significantly improves generalization in CIFIAR-10/100 and ImageNet

• mixup also shows robustness on corrupted labels while improving 
memorization [Zhang et al., 2016]

Mixing two samples in dataset: mixup [Zhang et al., 2018]

60*source : Zhang, H. et al. “mixup: Beyond Empirical Risk Minimization”, ICLR 2018
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• Reducing the test error, possibly at the expense of increased training error

• No free lunch theorem says that there is no best form of regularization

• We have to express our prior knowledge for each problem to guide the 
networks properly that generalizes well

• Developing effective regularizations is one of the major research in the field

• Nevertheless, as we are focusing on AI tasks, there could be some general 
strategies for a wide range of our problems
• Loss penalty

• Parameter sharing

• Noise robustness

• Dataset augmentation

• … there can be many other ways!

Summary

61
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