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• Nowadays, Convolutional Neural Network shows impressive performance
• The problem is that a neural network is highly vulnerable to a small perturbation of 

an input

Back Side of The Neural Network Success

4
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Trend on ILSVRC classification top-5 error rates
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AlexNet (2012)
• 1st place in 2012
• 8-layer CNN
• GPU acceleration 

for training
• Dropout and ReLU

SIFT + FVs (2012)
• 2nd place in 2012
• SIFT + Fisher Vectors 
• Non-CNN

ZF-Net (2013)
• 3rd place in 2013
• By Zeiler & Fergus
• A variant of 

AlexNet

VGG-Net (2014)
• 2nd place in 2014
• By Oxford Visual Geometry Group
• 19-layer CNN

GoogLeNet (2014)
• 1st place in 2014
• 24-layer CNN
• Memory efficient 

Batch Normalization (2015)
• By Google
• Preventing internal covariate shift

Residual Network (2016)
• 1st place in 2015
• By MSRA
• > 100 layers CNNs via 

identity skip connections
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• Nowadays, Convolutional Neural Network shows impressive performance
• The problem is that a neural network is highly vulnerable to a small perturbation of 

an input
• In other words, the answer of machine is different from the answer of human

Back Side of The Neural Network Success

5*source: https://wordberry.com/choosing-human-vs-machine-website-translation/
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• Nowadays, Convolutional Neural Network shows impressive performance
• The problem is that a neural network is highly vulnerable to a small perturbation of 

an input
• In other words, the answer of machine is different from the answer of human

• Several machine learning models, including state-of-the-art neural networks, 
misclassify examples that are modified from clean data by imperceptible 
perturbations

What is The Adversarial Example?

A Human eye can not distinguish them

*source: I. Goodfellow et al., EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, In ICLR, 2015 6
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• Nowadays, Convolutional Neural Network shows impressive performance
• The problem is that a neural network is highly vulnerable to a small perturbation of 

an input
• In other words, the answer of machine is different from the answer of human

• Several machine learning models, including state-of-the-art neural networks, 
misclassify examples that are modified from clean data by imperceptible 
perturbations

What is The Adversarial Example?

It is called an adversarial example!

*source: I. Goodfellow et al., EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, In ICLR, 2015 7
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• Adversarial examples raise issues that are critical to the safety of AI in the real 
world
• e.g. An autonomous vehicle may misclassify graffiti stop signs

Threat of The Adversarial Example

8*source: K. Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification, In CVPR, 2018

Stop! Go!
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• There are various types of adversarial perturbations
• Adversarial perturbations can be constructed in local regions

• For segmentation task, adversarial perturbation could control to generate 
geometric patterns

Threat of The Adversarial Example

9

Only one pixel 
perturbed

Away from
the main object

*source: J. Su et al., One pixel attack for fooling deep neural networks, arXiv, 2017
D. Karmon et al., LaVAN: Localized and Visible Adversarial Noise, In ICML, 2018
C. Xie et al., Adversarial Examples for Semantic Segmentation and Object Detection, In ICCV, 2017
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• Studies on the adversarial example are divided into 
• Adversarial Attack

• How to find a perturbation that generate adversarial example
• Adversarial Defense

• How to prevent a perturbation that generate adversarial example

Overview: Studies on The Adversarial Example

10

Attack

Defense

*source: https://gwynteatro.wordpress.com/2011/10/30/ambiguity-and-contradiction-leadership-certainties
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• Definition: An input      is called an adversarial example of an input     if      
satisfies  

• Definition: Adversarial attack is a method of finding adversarial perturbations    
that satisfies                                 
• The smaller the size of    , the better the adversarial attack method

• Finding the smallest perturbation     is a major challenge

Formal Definitions: The Adversarial Example and Attack

12
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• How to find the adversarial perturbations?
• Random perturbation is the weakest attack method
• What information is available?

• White-box Model
• Adversary, who creates an adversarial example, has full knowledge of the neural 

network classifiers
• e.g. model parameters, network architecture, training procedure, …

• Black-box Model
• Adversary has no knowledge of the neural network classifier

Adversarial Attack: Threat Model

13
*source: https://emperorsgrave.wordpress.com/2016/10/18/black-box/
https://reqtest.com/testing-blog/test-design-techniques-explained-1-black-box-vs-white-box-testing/

white-box black-box

?
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• Motivation: How to change the network’s prediction of an input?
• In white-box setting, the gradients of a network is available
• Idea: A perturbation maximizes the loss function                      would change the 

prediction
• Goal: Solving the objective optimization below by using the linear approximation to 

• Method: Fast Gradient Sign Method 
• The adversarial examples are computed by

• It can generate adversarial examples fast
• Generated adversarial examples could have any label (untargeted)

White-Box: Fast Gradient Sign Method [I. Goodfellow et al., 2015]

15
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• It is a variant of Fast Gradient Sign Method

• Motivation: How to control the prediction of the adversarial example?
• Idea: A perturbation minimizes the loss function                         would change the 

prediction to the target label
• Goal: Solving the objective optimization below by using the linear approximation to 

• Method: The adversarial examples are computed by

White-Box: Least-likely Class Method [A. Kurakin et al., 2017b]

16
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• It is a extension of Fast Gradient Sign Method

• Motivation: How to find an adversarial perturbation that is stronger than the 
perturbation from Fast Gradient Sign Method?
• Idea: Extending “single-step” to “multi-step”
• Goal: Solving the objective optimization of Fast Gradient Sign Method with the 

number of iterations

• Method: The adversarial examples are computed by

• Least-likely Class Method also can be extended to Iterative least-likely class 
method

White-Box: Basic Iterative Method [A. Kurakin et al., 2017b]

17
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• Experimental Results

• Comparison between Fast Gradient Sign, Basic Iterative Method

• Mean of perturbation and classification accuracy [K. Lee et al., 2018]

• Projected Gradient Method [A. Madry et al., 2018]
• It is a variant of Basic Iterative Method

• Motivation: Sometimes, Basic Iterative Method falls into local maxima and it does 
not generate proper adversarial examples

• Idea: Adding random initialization 
• Method: Generating a lot of randomly initialized input by adding the random 

noises before to compute Basic Iterative Method

White-Box: Basic Iterative Method [A. Kurakin et al., 2017b]

18
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• Motivation: Perturbing an input to a decision boundary direction would change 
the prediction of input
• Idea: The smallest adversarial perturbation has a direction to the closest decision 

boundary
• Goal: Finding a direction to the closest decision boundary by using linear 

approximation to decision boundaries

White-Box: DeepFool Method [S. Moosavi-Dezfooli et al., 2016]

19

Decision boundary

Linearly approximated Decision boundary
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• Motivation: Perturbing an input to a decision boundary direction would change 
the prediction of input
• Idea: The smallest adversarial perturbation has a direction to the closest decision 

boundary
• Goal: Finding a direction to the closest decision boundary by using linear 

approximation to decision boundaries
• Method: Distance     from an input     to a decision boundary between    and                     

is computed by

• Let     be the smallest distance to decision boundary and    ,           are the 
corresponding labels. Then the adversarial examples are computed by

White-Box: DeepFool Method [S. Moosavi-Dezfooli et al., 2016]

20
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• Experimental Results
• Comparison between Fast Gradient Sign, DeepFool Method

• Mean of perturbation among four different network

• DeepFool Method is a stronger method than Fast Gradient Sign Method
• Comparison among Fast Gradient Sign, Basic Iterative, DeepFool Method

• Mean of perturbation and classification accuracy [K. Lee et al., 2018]

• DeepFool Method is not a stronger method than Basic Iterative Method

White-Box: DeepFool [S. Moosavi-Dezfooli et al., 2016]

21
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White-Box: Carlini-Wagner Method [N. Carlini et al., 2017a]

• Motivation: Large-scale perturbation should change the prediction, but above 
attacks are sometimes not successful with large-scale perturbation
• Idea: Finding the smallest perturbation subject to the perturbation makes 

adversarial example
• Goal: Minimizing the scale of adversarial perturbation        subject to the 

perturbation     makes the input to be an adversarial example

• Method: Applying the Lagrangian relaxation to the objective with a function     that 
satisfying

• has the minimum value     when     is the adversarial example
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White-Box: Carlini-Wagner Method [N. Carlini et al., 2017a]

• Motivation: Large-scale perturbation should change the prediction, but above 
attacks are sometimes not successful with large-scale perturbation
• Idea: Finding the smallest perturbation subject to the perturbation makes 

adversarial example
• Goal: Minimizing the scale of adversarial perturbation        subject to the 

perturbation     makes the input to be an adversarial example

• Method: Solving the relaxed objective

• Use Gradient Descent to solve the optimization
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• Experimental Results
• Comparison between among Fast Gradient Sign, Basic Iterative, DeepFool, Carlini-

Wagner Method
• Mean of perturbation and classification accuracy [K. Lee et al., 2018]

• Carlini-Wagner Method find the smallest adversarial perturbations among the 
several attacks

• 10× slower than Basic Iterative Method

White-Box: Carlini-Wagner Method [N. Carlini et al., 2017a]

24
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• Experimental Results
• Comparison between among Fast Gradient Sign, Basic Iterative, DeepFool, Carlini-

Wagner Method
• Mean of perturbation and classification accuracy [K. Lee et al., 2018]

• Images of adversarial examples among the several attacks [Y. Song et al., 2018]

White-Box: Carlini-Wagner Method [N. Carlini et al., 2017a]

25

It is the most similar to 
clean image

*source: Y. Song et al., PIXELDEFEND: LEVERAGING GENERATIVE MODELS TO
UNDERSTAND AND DEFEND AGAINST ADVERSARIAL EXAMPLES, In ICLR, 2018
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black-box

white-box

• Some of perturbations make adversarial example among different network 
architecture

Black-Box: Transferability of Adversarial Example

27

Adversarial noise

Adversarial noise

*source: I. Goodfellow et al., EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, In ICLR, 2015

white-box attack
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• Motivation: The transferability of adversarial example allow to attack a black-
box model
• Idea: Finding an adversarial example via white-box attack on the local substitute 

model
• Goal: Training a local substitute model via FGSM-based adversarial dataset 

augmentation
• FGSM-based adversarial examples are computed to change the prediction of 

the black-box model

• Method:

Black-Box: The Local Substitute Model [N. Papernot et al., 2017]

28

Adversarial Dataset

Dataset Substitute Model
Training

White-box attack: FGSM 
*prediction of the black box model 

is used to white-box attack

Data augmentation
*Labeling the adversarial dataset 

with the black box model
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• Experimental Results
• The local substitute model training

• Initial training dataset: subset of MNIST, Handcrafted set
• Handcrafted set is used to ensure the results do not stem from the similarities 

between the MNIST test and training sets

• Accuracies of the local substitute models

Black-Box: The Local Substitute Model [N. Papernot et al., 2017]

29
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• Experimental Results
• Black-box attack to the Amazon and Google Oracle
• Two types of architecture:

• DNN: Deep Neural Network
• LR: Logistic Regression

Black-Box: The Local Substitute Model [N. Papernot et al., 2017]

30

Misclassification rates (%)

Number of queries to train the local substitute model
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• Motivation: Adversarial examples from the substitute model are sometimes 
weak
• Idea: White-box attack to an ensemble of the substitute models could generate the 

strong adversarial example
• Goal: Finding the adversarial examples from the ensemble model
• Method: Consider     number of substitute models and let                   be their 

softmax outputs. Then for given                 , the objective is follow:

• The metric                is called the Root Mean Square Deviation (RMSD)

Black-Box: Ensemble Based Method [Y. Liu et al., 2017]

31
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• Experimental Results
• Ensemble of modern architecture DNNs

• “-model A” means an ensemble without “model A”
• RMSD: Root Mean Square Deviation of adversarial perturbations 

Black-Box: Ensemble Based Method [Y. Liu et al., 2017]

32

Adversarial examples from the ensemble models via white-box attack

Black-box models
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• Experimental Results
• Black-box attack on Clarifai.com (commercial black-box image classification 

system)

Black-Box: Ensemble Based Method [Y. Liu et al., 2017]

33
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• How to defend such adversarial attack?
• 3 types of Defense scenarios

• Adversarial training: Re-train with adversarial examples
• Input pre-processing: Pre-process an input to make a clean example
• Robust network construction: Construct a new network to be robust

Adversarial Defense

35

Defense-scenarios

Adversarial training

Input pre-processing

Robust network construction
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• Motivation: Training a model with adversarial examples would make the model 
to be robust on adversarial examples
• Idea: Re-training a model with adversarial examples which are combined to true 

labels
• Goal: Solving the min-max objective optimization below

• Adversarial examples could substitutes the inner-maximization of the objective

• Question: How to generate adversarial examples?

• FGSM: Fast and simple (single-step) method

• BIM: Slow, but strong (multi-step) method

• Carlini-Wagner Method: Extremely slow to use adversarial training

• Not appropriate to adversarial training

Defense-Scenarios: FGSM Adversarial Training [I. Goodfellow et al., 2015]

37
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• Method: Generate adversarial examples via FGSM during the training
• Then total loss function is

• Experimental Results
• Robust in FGSM-attack, but not in BIM-attack [A. Kurakin et al., 2017b]

Defense-Scenarios: FGSM Adversarial Training [I. Goodfellow et al., 2015]

38
*source: I. Goodfellow et al., EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, In ICLR, 2015
A. Kurakin et al., ADVERSARIAL MACHINE LEARNING AT SCALE, In ICLR, 2017

FGSM example
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• Motivation: Adversarial training against a strong adversarial attacks (e.g. BIM) 
makes the network be a constant
• It sacrifices the classification performance
• Idea: Large capacity network would not sacrifice the classification performance

• Goal: Solving the min-max objective optimization below

• Substituting the inner-maximization of the objective via strong adversarial 
attack (PGD)

• Method: Generate adversarial examples via PGD during the training

• Then total loss function is

Defense-Scenarios: PGD Adversarial Training [A. Madry et al., 2018]

39*source: A. Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, In ICLR, 2018

PGD example
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• Experimental Results
• PGD adversarial training with small and large capacity
• MNIST

• CIFAR10

Defense-Scenarios: PGD Adversarial Training [A. Madry et al., 2018]

40

(a) Standard Training     (b) FGSM Adv. Training  (c) PGD Adv. Training

*Capacity scale 8 means 
8× wider network

- Test acc.
- FGSM
- PGD

*Simple: ResNet
Wide: ResNet with 10× wider

(a) Standard Training     (b) FGSM Adv. Training  (c) PGD Adv. Training
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• Motivation: Adversarial examples substitute the inner-maximization objective 
of adversarial training,

• But, the gap between the worst case (inner-maximization objective) and the 
adversarial example depends on adversarial attack methods

• It can not be ensured that white-box attacks converges to the worst case
• Inner-maximization objective is generally non-concave

• Idea: Making a concave objective by applying the Lagrangian relaxation to the 
inner-maximization objective 

• The adversarial-training objective is newly defined as

Defense-Scenarios: Wasserstein Adversarial Training [A. Sinha et al., 2018]

41
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• can be written as the Wasserstein metric 

• Wasserstein metric between distributions      and      is defined as

• The objective cover the worst-case with some

• Lagrangian relaxation for a fixed parameter     induces the objective to

Defense-Scenarios: Wasserstein Adversarial Training [A. Sinha et al., 2018]

42
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• Furthermore, theorem [J. Blanchet et al., 2016] induces the relaxed objective to

• It is the final objective of Wasserstein adversarial training [A. Shinha et al., 2018]

• Goal: Solving the final objective optimization below

• The objective of previous adversarial training is follow:

Defense-Scenarios: Wasserstein Adversarial Training [A. Sinha et al., 2018]

43
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• Method: Wasserstein adversarial training algorithm

• Large enough     makes                                     concave, and it helps the optimization 
be easy

• The algorithm is attack-agnostic
• It does not need any adversarial attack method

Defense-Scenarios: Wasserstein Adversarial Training [A. Sinha et al., 2018]

44

Size of 
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• Experimental Results: white-box attack with     and      metric 
• It shows Wasserstein adversarial training (WRM) outperform the baselines (other 

adversarial trainings)

Defense-Scenarios: Wasserstein Adversarial Training [A. Sinha et al., 2018]

45

Best performance among 
the baselines 

* PGD attack* PGD attack
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• Motivation: Pre-process a input to make a clean data
• Denoise adversarial perturbation
• Idea: Double-check an input with Detector and Reformer

• Detecting an input whether it is an adversarial example or not
• Reforming the input which is detected as clean one to prepare in case of the 

Detector’s failure

Defense-Scenarios: MagNet [D. Meng et al., 2017]

47*source: D. Meng et al., MagNet: a Two-Pronged Defense against Adversarial Examples, In CCS, 2017
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• Goal: Training Detector and Reformer which are based on auto-encoders
• Method:

• Detector: Detect an input     is an adversarial example or not 
• Training an auto-encoder         to minimize the loss over the training data

• Detector decides abnormality via the reconstruction error or Jensen-
Shannon Divergence with a threshold      with a given classifier

Defense-Scenarios: MagNet [D. Meng et al., 2017]

48
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• Goal: Training Detector and Reformer which are based on auto-encoders
• Method:

• Reformer: Reform an input    to lie on the data manifold 
• Training an auto-encoder         to minimize the loss over the training data

• To strengthen the network on adversarial attacks, Detector and Reformer are 
randomly selected from large number of trained Detectors and Reformers with 
different architectures

• Experimental Results
• The Effect of Reformer

Defense-Scenarios: MagNet [D. Meng et al., 2017]

49



Algorithmic Intelligence Lab

• Experimental Results
• MagNet [D. Meng et al., 2017] reports that it defends CW method

• But, the results is broken [N. Carlini et al., 2017c]
• CW method by performing 10,000 iterations of gradient descent

Defense-Scenarios: MagNet [D. Meng et al., 2017]

50*source: D. Meng et al., MagNet: a Two-Pronged Defense against Adversarial Examples, In CCS, 2017
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• Motivation: Pre-process an input to make a clean data via WGAN [M. Arjovsky
et al., 2017]
• MagNet [D. Meng et al., 2017] is based on auto-encoders
• WGAN: For input data     and random vectors     , generator     and discriminator      

minimize the following min-max loss 

• Idea: The minimizer of reconstruction error would generate the clean data 

• Method: Finding a minimizer      of the reconstruction error for given generator      
and input

• Choose initial    randomly
• Use Gradient Descent (GD) with some fixed step (e.g. 200-step)

Defense-Scenarios: Defense GAN [P. Samangouei et al., 2018]

51

*min-max loss of original GAN: 
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• Motivation: Pre-process an input to make a clean data via WGAN [M. Arjovsky
et al., 2017]
• MagNet [D. Meng et al., 2017] is based on auto-encoders
• WGAN: For input data     and random vectors     , generator     and discriminator      

minimize the following min-max loss 

• Idea: The minimizer of reconstruction error would generate the clean data 

• Method: 
• Classifier can be trained by using either original data or reconstructed data
• The flow of Defense-GAN is

Defense-Scenarios: Defense GAN [P. Samangouei et al., 2018]

52
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• Experimental Result
• The effect of Generator

• The reconstructed data are clean, but it often different from the original

Defense-Scenarios: Defense GAN [P. Samangouei et al., 2018]

53

Reconstructed data with various L

L: a number of GD iterations

Different from the original
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• Experimental Result
• White-box attack with FGSM and CW method

• Black-box attack with FGSM

Defense-Scenarios: Defense GAN [P. Samangouei et al., 2018]

54

MNIST

F-MNIST
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• Motivation: Model robustness would be related to the margin of model
• Idea: Construct a model to have a large margin

• Margin is the smallest distance from the training data to the decision 
boundary

• Define a margin     as follow:

Defense-Scenarios: Large Margin Classifier [G. Elsayed et al., 2018]

56

margin
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• Motivation: Model robustness would be related to the margin of model
• Idea: Construct a model to have a large margin

• Margin is the smallest distance from the training data to the decision 
boundary

• Define a margin     as follow:

• Appling linear approximation to     
• The approximated margin     can be written in closed form as follow:

Defense-Scenarios: Large Margin Classifier [G. Elsayed et al., 2018]

57
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• Goal: Solving a new loss function to maximize the margin

• Method: Adding cross-entropy loss with a small coefficient (less than 0.1%) to 
keep the classification performance
• Various metrics can be used

•
• The above margin is about input    , but it can be extended to hidden features

Defense-Scenarios: Large Margin Classifier [G. Elsayed et al., 2018]

margin

58
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• Experimental Result
• Test accuracy of standard model: 99.5%
• Test accuracy of the margin classifier models: 99.3~99.5%
• White-box: BIM attack

• Xent: Cross-entropy loss

Defense-Scenarios: Large Margin Classifier [G. Elsayed et al., 2018]

59

Large margin classifiers
Input     : applying the margin loss on first layer (input) only
All    : applying the margin loss on all hidden layer (hidden features)

applying on multiple layer
(input, output, some conv layers)

MNIST CIFAR 10
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CIFAR 10

• Experimental Result
• Test accuracy of standard model: 99.5%
• Test accuracy of the margin classifier models: 99.3~99.5%
• Black-box: BIM attack to Xent model

• Xent: Cross-entropy loss

Defense-Scenarios: Large Margin Classifier [G. Elsayed et al., 2018]

60

MNIST

Large margin classifiers
Input     : applying the margin loss on first layer (input) only
All    : applying the margin loss on all hidden layer (hidden features)

applying on multiple layer
(input, output, some conv layers)
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• Motivation: Model robustness would be related to the Lipchitz constant of 
model
• Idea: The global Lipchitz constant of model is bounded by the function of Lipchitz 

constants of all layers
• Goal: Controlling the Lipchitz constants (the spectral norm) of all linear and 

convolutional layers to be smaller than 1
• Method: Perseval regularization with

• A weight matrix is called approximately a Parseval tight frame if satisfies

• Consider layer-wise regularizer of a weight matrix as follow:

• Optimizing the regularizer is expensive
• The gradient of the regularizer is follow:

• Performing the following update for regularizer to reduce the cost

Defense-Scenarios: Parseval Network [M. Cisse et al., 2017]

61
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• Experimental Result
• The effect of the perseval regularization

• Singular values of the weight matrices at the first and last layers of fully 
connected network in CIFAR10

Defense-Scenarios: Parseval Network [M. Cisse et al., 2017]

62

First Layer Last Layer

The largest singular value (the spectral norm) is almost 1
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• Experimental Result
• White-box: FGSM attack

• Signal to Noise Ratio (SNR)

Defense-Scenarios: Parseval Network [M. Cisse et al., 2017]

63

MNIST CIFAR10

Adversarial Training (Data Augmentation)
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• In this lecture, we cover threat of adversarial examples and various methods of 
adversarial attack and adversarial defense
• Adversary could control the prediction of neural network via adversarial examples

• White-box attacks are mainly based on the gradient of model
• FGSM, BIM, CW method

• Transferability of adversarial examples allow black-box attack
• [Y. Liu et al., 2017]
• [N. Papernot et al., 2017]

• There are many adversarial defense methods, but there is no perfect one
• The most of defenses are heuristic

Summary

64
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