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Back Side of The Neural Network Success

* Nowadays, Convolutional Neural Network shows impressive performance

* The problem is that a neural network is highly vulnerable to a small perturbation of
an input
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Back Side of The Neural Network Success

* Nowadays, Convolutional Neural Network shows impressive performance

* The problem is that a neural network is highly vulnerable to a small perturbation of
an input
* |n other words, the answer of machine is different from the answer of human

<@> WORDBERRY

- SOFTWARE TRANSLATION & LOCALIZATION

Algorithmic Intelligence Lab *source: https://wordberry.com/choosing-human-vs-machine-website-translation/ 5



What is The Adversarial Example?

* Nowadays, Convolutional Neural Network shows impressive performance
* The problem is that a neural network is highly vulnerable to a small perturbation of
an input
* |n other words, the answer of machine is different from the answer of human

e Several machine learning models, including state-of-the-art neural networks,
misclassify examples that are modified from clean data by imperceptible
perturbations

+.007 x

“panda” “nematode™ “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence

~ p

A Human eye can not distinguish them

Algorithmic Intelligence Lab *source: |. Goodfellow et al., EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, In ICLR, 2015



What is The Adversarial Example?

* Nowadays, Convolutional Neural Network shows impressive performance
* The problem is that a neural network is highly vulnerable to a small perturbation of
an input
* |n other words, the answer of machine is different from the answer of human

e Several machine learning models, including state-of-the-art neural networks,
misclassify examples that are modified from clean data by imperceptible
perturbations

+.007 x

“panda” “nematode™ “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence

It is called an adversarial example!

Algorithmic Intelligence Lab *source: |. Goodfellow et al., EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, In ICLR, 2015



Threat of The Adversarial Example

* Adversarial examples raise issues that are critical to the safety of Al in the real
world

e e.g. An autonomous vehicle may misclassify graffiti stop signs

®
N N

<@> WORDBERRY

- SOFTWARE TRANSLATION & LOCALIZATION

Algorithmic Intelligence Lab *source: K. Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification, In CVPR, 2018 8



Threat of The Adversarial Example

* There are various types of adversarial perturbations
* Adversarial perturbations can be constructed in local regions

Original Image Noised Image
Lifeboat: 89.20%, Scotch Terrier: 0.00% Lifeboat: 0.03%, Scotch Terrier: 99.77%

= Only one pixel — Away from

Jellyfish perturbed , ' the main object
Bathi . Lifeboat (89.2%) — Scotch Terrier (99.8%)
athing tub(21.18%)

* For segmentation task, adversarial perturbation could control to generate
geometric patterns

Original Adversarial Adversarial Adversarial
Image Perturbations Image Result

=T
R -

*source: J. Su et al., One pixel attack for fooling deep neural networks, arXiv, 2017
D. Karmon et al., LaVAN: Localized and Visible Adversarial Noise, In ICML, 2018
C. Xie et al., Adversarial Examples for Semantic Segmentation and Object Detection, In ICCV, 2017 9
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Overview: Studies on The Adversarial Example

 Studies on the adversarial example are divided into
e Adversarial Attack
* How to find a perturbation that generate adversarial example
* Adversarial Defense
* How to prevent a perturbation that generate adversarial example

Defense

Algorithmic Intelligence Lab *source: https://gwynteatro.wordpress.com/2011/10/30/ambiguity-and-contradiction-leadership-certainties 10
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Formal Definitions: The Adversarial Example and Attack

 Definition: An input 2’ is called an adversarial example of an input z if 2’
satisfies

(1) D(x,2") is small for some distance metric D
(2) e(x’) # ¢*(x) where ¢(-) and ¢*(-) denote the prediction and true label

* Definition: Adversarial attack is a method of finding adversarial perturbations §
that satisfies c(z + ) # c*(x)
* The smaller the size of §, the better the adversarial attack method
* Finding the smallest perturbation § is a major challenge

Algorithmic Intelligence Lab 12



Adversarial Attack: Threat Model

* How to find the adversarial perturbations?
* Random perturbation is the weakest attack method
* What information is available?

 White-box Model

* Adversary, who creates an adversarial example, has full knowledge of the neural
network classifiers

* e.g. model parameters, network architecture, training procedure, ...

* Black-box Model
e Adversary has no knowledge of the neural network classifier

white-box black-box

) ) ) *source: https://emperorsgrave.wordpress.com/2016/10/18/black-box/
Algorithmic Intelligence Lab https://reqtest.com/testing-blog/test-design-techniques-explained-1-black-box-vs-white-box-testing/ 13
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White-Box: Fast Gradient Sign Method [I. Goodfellow et al., 2015]

* Motivation: How to change the network’s prediction of an input?
* In white-box setting, the gradients of a network is available

* |Idea: A perturbation maximizes the loss function B(az, ytrue) would change the
prediction

* Goal: Solving the objective optimization below by using the linear approximation to ¢

maximize £(x + 9, Ytrue)
0:]|0]] o <€

* Method: Fast Gradient Sign Method
* The adversarial examples are computed by

' =x 4 ¢e-sign(Vil(z, Yirue))

* It can generate adversarial examples fast
* Generated adversarial examples could have any label (untargeted)

Algorithmic Intelligence Lab 15



White-Box: Least-likely Class Method [A. Kurakin et al., 2017b]

* Itis avariant of Fast Gradient Sign Method

* Motivation: How to control the prediction of the adversarial example?

* lIdea: A perturbation minimizes the loss function E(:c, ytarget) would change the
prediction to the target label

» Goal: Solving the objective optimization below by using the linear approximation to ¢

minimize £(x + 9, Ysarget )
0:(6]] oo <€

* Method: The adversarial examples are computed by

/

xr =x —¢- s1gn(Va;€(:B, ytarget))

Yt arget

+ 0.005 x

Algorithmic Intelligence Lab 16



White-Box: Basic Iterative Method [A. Kurakin et al., 2017b]

* It is a extension of Fast Gradient Sign Method

* Motivation: How to find an adversarial perturbation that is stronger than the
perturbation from Fast Gradient Sign Method?

* |dea: Extending “single-step” to “multi-step”

* Goal: Solving the objective optimization of Fast Gradient Sign Method with the
number of iterations

maximize £(x + 9, Ytrue)
6:(6]| oo <e

* Method: The adversarial examples are computed by
Li41 = Tt + Q- Sign(vmt€($t7 ytrue))
where ||zg — x|, < e for all ¢

* Least-likely Class Method also can be extended to Iterative least-likely class
method

17



White-Box: Basic Iterative Method [A. Kurakin et al., 2017b]

* Experimental Results
* Comparison between Fast Gradient Sign, Basic Iterative Method
* Mean of perturbation and classification accuracy [K. Lee et al., 2018]

CIFAR-10 CIFAR-100 SVHN
L. Acc. L. Acc. L Acc.

Clean 0 95.19% 0 77.63% 0 96.38%
DenseNet FGSM | 0.21 20.04% | 021 486% | 0.21 56.27%
BIM 0.22 0.00% | 0.22 0.02% | 0.22 0.67%

Clean 0 93.67% 0 78.34% 0 96.68%
ResNet FGSM | 0.25 23.98% | 0.25 11.67% | 0.25 49.33%
BIM | 0.26 0.02% | 0.26 0.21% | 0.26  2.37%

* Projected Gradient Method [A. Madry et al., 2018]

* |tis a variant of Basic Iterative Method

* Motivation: Sometimes, Basic Iterative Method falls into local maxima and it does
not generate proper adversarial examples

* |dea: Adding random initialization

* Method: Generating a lot of randomly initialized input by adding the random
noises before to compute Basic Iterative Method

Algorithmic Intelligence Lab 18



White-Box: DeepFool Method [S. Moosavi-Dezfooli et al., 2016]

* Motivation: Perturbing an input to a decision boundary direction would change
the prediction of input
* |dea: The smallest adversarial perturbation has a direction to the closest decision
boundary

* Goal: Finding a direction to the closest decision boundary by using linear
approximation to decision boundaries

-7 Decision boundary

Algorithmic Intelligence Lab 19



White-Box: DeepFool Method [S. Moosavi-Dezfooli et al., 2016]

* Motivation: Perturbing an input to a decision boundary direction would change
the prediction of input

* |dea: The smallest adversarial perturbation has a direction to the closest decision
boundary

* Goal: Finding a direction to the closest decision boundary by using linear
approximation to decision boundaries

* Method: Distance d from an input = to a decision boundary between ¥ and Ytrue
is computed by

d _ |fy(x)_fytrue(x>|
vafy(x)_viﬂfytrue (x)H2

where f;(-) is a i-th logit output of the classifier f(-)

« Letd be the smallest distance to decision boundary and ¥, ¥Ytrue are the
corresponding labels. Then the adversarial examples are computed by

Tit1 = Tt T C/Z\(fﬂ(flft) — fyerue (7))

Algorithmic Intelligence Lab 20



White-Box: DeepFool [S. Moosavi-Dezfooli et al., 2016]

* Experimental Results
* Comparison between Fast Gradient Sign, DeepFool Method
* Mean of perturbation among four different network

Lee | MNIST | CIFARI0
Classifier | LeNet | FC500-150-10 | NIN | LeNet
Testacc. | 99% |  983% | 88.5% | 77.4%
FGSM 0.26 0.11 0.024 | 0.028

| DeeoFool | 0.10 0.04 0.008 | 0.015 |

* DeepFool Method is a stronger method than Fast Gradient Sign Method
* Comparison among Fast Gradient Sign, Basic Iterative, DeepFool Method
* Mean of perturbation and classification accuracy [K. Lee et al., 2018]

CIFAR-10 CIFAR-100 SVHN
L. Acc. L. Acc. L Acc.

Clean 0 95.19% 0 77.63% 0 96.38%
FGSM 0.21 20.04% | 0.21 4.86% | 0.21 56.27%
| BIM 022 0.00% | 0.22  0.02% | 022 0.67% )
DeepFool | 0.30 0.23% | 0.25 0.23% | 0.57 0.50%

Clean 0 9367% | 0 7834% | 0  96.68%

FGSM | 0.25 2398% | 0.25 11.67% | 0.25 49.33%
L_BIM 026 0.02% | 026 0.21% | 0.26__ 2.37% |
DeepFool | 036 0.33% | 0.27 0.37% | 0.62 13.20%

DenseNet

ResNet

* DeepFool Method is not a stronger method than Basic Iterative Method

Algorithmic Intelligence Lab
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White-Box: Carlini-Wagner Method [N. Carlini et al., 2017a]

* Motivation: Large-scale perturbation should change the prediction, but above
attacks are sometimes not successful with large-scale perturbation

* |dea: Finding the smallest perturbation subject to the perturbation makes
adversarial example

* Goal: Minimizing the scale of adversarial perturbation ||§|| subject to the
perturbation § makes the input to be an adversarial example

minimize ||d]],
d:c(x+9)=Ytarget

* Method: Applying the Lagrangian relaxation to the objective with a function g that
satisfying

o) = (xS0~ Fe <:c>)+

1#target

where f;(-) is a i-th logit output of the given classifier f(-)
and (e)™ = max(e, 0)

 g(x)has the minimum value () when z is the adversarial example

Algorithmic Intelligence Lab



White-Box: Carlini-Wagner Method [N. Carlini et al., 2017a]

* Motivation: Large-scale perturbation should change the prediction, but above
attacks are sometimes not successful with large-scale perturbation

* |dea: Finding the smallest perturbation subject to the perturbation makes
adversarial example

* Goal: Minimizing the scale of adversarial perturbation ||d]| subject to the
perturbation § makes the input to be an adversarial example

minimize ||d]],
d:c(x+9)=Ytarget

* Method: Solving the relaxed objective

mini(smize 19|, + - g(z+9)

a: hyper-parameter

* Use Gradient Descent to solve the optimization

Algorithmic Intelligence Lab
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White-Box: Carlini-Wagner Method [N. Carlini et al., 2017a]

* Experimental Results
* Comparison between among Fast Gradient Sign, Basic Iterative, DeepFool, Carlini-
Wagner Method
* Mean of perturbation and classification accuracy [K. Lee et al., 2018]

CIFAR-10 CIFAR-100 SVHN
L. Acc. L. Acc. L Acc.

Clean 0 95.19% 0 77.63% 0 96.38%

FGSM | 0.21 20.04% | 021 4.86% | 0.21 56.27%

DenseNet BIM 022 0.00% | 022 0.02% | 0.22 0.67%
DeepFool | 0.30  0.23% | 0.25 0.23% | 0.57  0.50%

{ CW 0.05 0.10% | 0.03 0.16% | 0.12  0.54%)

Clean 0 9367% | 0 7834% | 0  96.68%

FGSM | 025 2398% | 025 11.67% | 025 49.33%

ResNet BIM | 026 0.02% | 026 021% | 026 237%
DeepFool | 036 033% | 027 037% | 062 13.20%

(cw 1008 000% | 008 0.01% | 0.15 _ 0.04%)

* Carlini-Wagner Method find the smallest adversarial perturbations among the
several attacks
* 10X slower than Basic Iterative Method

Algorithmic Intelligence Lab



White-Box: Carlini-Wagner Method [N. Carlini et al., 2017a]

* Experimental Results

e Comparison between among Fast Gradient Sign, Basic Iterative, DeepFool, Carlini-
Wagner Method

* Mean of perturbation and classification accuracy [K. Lee et al., 2018]

* Images of adversarial examples among the several attacks [Y. Song et al., 2018]

( )

BIM CW

It is the most similar to
clean image

frog bird cat bird \ bird

*source: Y. Song et al., PIXELDEFEND: LEVERAGING GENERATIVE MODELS TO
Algorithmic Intelligence Lab UNDERSTAND AND DEFEND AGAINST ADVERSARIAL EXAMPLES, In ICLR, 2018 25
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Black-Box: Transferability of Adversarial Example

* Some of perturbations make adversarial example among different network
architecture

white-box attack
)

& Adversarial noise

white-box /

“gibbon™

“panda™ Adversarial noise black-box

Algorithmic Intelligence Lab *source: |. Goodfellow et al., EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, In ICLR, 2015 27



Black-Box: The Local Substitute Model [N. Papernot et al., 2017]

* Motivation: The transferability of adversarial example allow to attack a black-
box model

* ldea: Finding an adversarial example via white-box attack on the local substitute
model

* Goal: Training a local substitute model via FGSM-based adversarial dataset
augmentation

* FGSM-based adversarial examples are computed to change the prediction of
the black-box model

' =x 4 ¢ -sign(V (2, Ypred))

Substitute Model

White-box attack: FGSM

e Method:

Data augmentation
*Labeling the adversarial dataset
with the black box model

Training

is used to white-box attack

Adversarial Dataset

Algorithmic Intelligence Lab

*prediction of the black box model
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Black-Box: The Local Substitute Model [N. Papernot et al., 2017]

* Experimental Results
* The local substitute model training
* Initial training dataset: subset of MNIST, Handcrafted set

* Handcrafted set is used to ensure the results do not stem from the similarities
between the MNIST test and training sets

Of71213151S]4] 259

* Accuracies of the local substitute models

Substitute | Initial Substitute Training Set from
Epoch MNIST test set | Handcrafted digits

0 24.86% 18.70%

1 41.37% 19.89%

2 65.38% 29.79%

3 74.86% 36.87%

4 80.36% 40.64%

5 79.18% 56.95%

6 81.20% 67.00%

Algorithmic Intelligence Lab



Black-Box: The Local Substitute Model [N. Papernot et al., 2017]

* Experimental Results

* Black-box attack to the Amazon and Google Oracle

* Two types of architecture:
* DNN: Deep Neural Network

* LR: Logistic Regression

Misclassification rates (%)

([ ) Amazon Google
Epochs || Queries ||| DNN LR DNN LR
p=3 800 87.44 | 96.19 | 84.50 | 88.94
p=~06 6,400 96.78 | 96.43 | 97.17 | 92.05

Algorithmic Intelligence Lab

Number of queries to train the local substitute model

30



Black-Box: Ensemble Based Method [Y. Liu et al., 2017]

* Motivation: Adversarial examples from the substitute model are sometimes
weak

* |dea: White-box attack to an ensemble of the substitute models could generate the
strong adversarial example

* Goal: Finding the adversarial examples from the ensemble model

* Method: Consider & number of substitute models and let J1, ..., Ji be their
softmax outputs. Then for given (z, yt,ve ), the objective is follow:

k
mini(smize —log | 1 — Z a;Ji(x +9) + Ad(zx,x + 9)
=1

Yerue-th softmax output of the ensemble model
. . L k
where «; is a ensemble weight with > -, o; =1,

d(z,z") =/, (zh — x;)?/N), z,a’ e RN

A: hyper-parameter

* The metric d(x, x’) is called the Root Mean Square Deviation (RMSD)

Algorithmic Intelligence Lab
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Black-Box: Ensemble Based Method [Y. Liu et al., 2017]

* Experimental Results
e Ensemble of modern architecture DNNs
* “-model A” means an ensemble without “model A”
* RMSD: Root Mean Square Deviation of adversarial perturbations

e ™ Black-box models
RMSD || ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet
-ResNet-152 | 17.17 0% 0% 0% 0% 0%
-ResNet-101 | 17.25 0% 1% 0% 0% 0%
-ResNet-50 17.25 0% 0% 2% 0% 0%
-VGG-16 17.80 0% 0% 0% 6% 0%
-GoogLeNet | 17.41 0% 0% 0% 0% 5%
- /

Adversarial examples from the ensemble models via white-box attack

Algorithmic Intelligence Lab



Black-Box: Ensemble Based Method [Y. Liu et al., 2017]

* Experimental Results
» Black-box attack on Clarifai.com (commercial black-box image classification

system)
original true Clarifai.com target targetec_i Clarifai.com results
image label results of label adversarial of targeted
original image example adversarial example
bridge, window,
sight, window wall,
viaduct arch, old,
. screen .
river, decoration,
sky design
fruit, Buddha,
hip, rose fall, stupa gold,
hip, food, tope, temple,
rosehip little, P celebration,
wildlife artistic
dogsled, | group together, cherry,
dog four, hip, rose branch,
sled, sledge, hip, fruit,
dog sled, rosehip food,
sleigh enjoyment season
pug, sea seal,
friendship, ocean,
upli(gl’o adorable, sea lion head,
pug-dog purebred, sea,
sit cute

Algorithmic Intelligence Lab
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Adversarial Defense

* How to defend such adversarial attack?
* 3 types of Defense scenarios
* Adversarial training: Re-train with adversarial examples
* Input pre-processing: Pre-process an input to make a clean example
* Robust network construction: Construct a new network to be robust

Adversarial training
N\ (
Defense-scenarios Input pre-processing
J L
p
— Robust network construction
L

Algorithmic Intelligence Lab
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Defense-Scenarios: FGSM Adversarial Training [I. Goodfellow et al., 2015]

* Motivation: Training a model with adversarial examples would make the model
to be robust on adversarial examples

* ldea: Re-training a model with adversarial examples which are combined to true
labels

* Goal: Solving the min-max objective optimization below

minimize K

nim max ((0;x+6,y)

P (50l o <e

* Adversarial examples could substitutes the inner-maximization of the objective
* Question: How to generate adversarial examples?

* FGSM: Fast and simple (single-step) method

* BIM: Slow, but strong (multi-step) method

e Carlini-Wagner Method: Extremely slow to use adversarial training

* Not appropriate to adversarial training

Algorithmic Intelligence Lab
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Defense-Scenarios: FGSM Adversarial Training [l. Goodfellow et al., 2015]

* Method: Generate adversarial examples via FGSM during the training

* Then total loss function is

00;x,y) = al ((0:2,9)) + (1 — a)l (03 + esign (Vo L(0; 2,))), v)

* Experimental Results
* Robust in FGSM-attack, but not in BIM-attack [A. Kurakin et al., 2017b]

a: hyper-parameter

i RN
FGSM Clean | e =2 [/e=4 ] e=8 | € = 16
Standard trainin topl | 78.4% | 30.8% ||27.2% | 27.2% | 29.5%
g top5 | 94.0% | 60.0% | 55.6% | 55.6% | 57.2%
Adv. training topl | 77.6% | 73.5% | 74.0% | 74.5% | 73.9%
' top5 | 93.8% | 91.7% [ 91.9% | 92.0% | 91.4%
BIM Clean | e=2 ||e=4 | =8| =16
Standard trainin topl | 77.4% | 29.1% || 7.5% | 3.0% 1.5%
g top5 | 93.9% | 56.9% | 21.3% | 9.4% 5.5%
Adv. training topl | 78.3% | 23.3% || 5.5% 1.8% 0.7%
' top5 | 94.1% | 49.3% (\18.8% | 7.8% | 4.4% )
N— _

Algorithmic Intelligence Lab

N

FGSM example

noise scale ¢ € [0, 255]

*source: |. Goodfellow et al., EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, In ICLR, 2015
A. Kurakin et al., ADVERSARIAL MACHINE LEARNING AT SCALE, In ICLR, 2017

38



Defense-Scenarios: PGD Adversarial Training [A. Madry et al., 2018]

* Motivation: Adversarial training against a strong adversarial attacks (e.g. BIM)
makes the network be a constant

It sacrifices the classification performance
Idea: Large capacity network would not sacrifice the classification performance

* Goal: Solving the min-max objective optimization below

migierélize Ep(z) L Hrghax 0(0; x + 0, y)]

e Substituting the inner-maximization of the objective via strong adversarial
attack (PGD)

Method: Generate adversarial examples via PGD during the training

* Then total loss function is

00; z,y) = al ((6;2,9)) + (1 — a)l (Ofz

a: hyper-parameter PGD example

Algorithmic Intelligence Lab *source: A. Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, In ICLR, 2018 39



Defense-Scenarios: PGD Adversarial Training [A. Madry et al., 2018]

* Experimental Results
* PGD adversarial training with small and large capacity

* MNIST
- Test acc.
100 - 100} ' 1 100} ] s| - FGSM
= 80f 1 80} 1 80} - PGD
<60 60 1 60f 1
§ 40 40 40} :
<< 20 20 20
0f P—t—t—r 0 : 0 — ‘
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Capacity scale Capacity scale Capacity scale *Capacity scale 8 means
(a) Standard Training  (b) FGSM Adv. Training (c) PGD Adv. Training 8 wider network
* CIFAR1O0
(a) Standard Training (b) FGSM Adv. Training (c) PGD Adv. Training
Simple | Wide | Simple | Wide | Simple | Wide
Testacc. | 92.7% | 95.2% | 87.4% | 90.3% | 79.4% | 87.3%
FGSM 27.5% | 32.7% | 90.9% | 95.1% | 51.7% | 56.1%
PGD 0.8% 3.5% 0.0% 0.0% 43.7% | 45.85%

*Simple: ResNet

Algorithmic Intelligence Lab

Wide: ResNet with 10X wider
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Defense-Scenarios: Wasserstein Adversarial Training [A. Sinha et al., 2018]

* Motivation: Adversarial examples substitute the inner-maximization objective
of adversarial training,

minimize K, . [5 max_ £(0;z + 9, y)]

0O ||6]] . <e

* But, the gap between the worst case (inner-maximization objective) and the
adversarial example depends on adversarial attack methods

* |t can not be ensured that white-box attacks converges to the worst case
* Inner-maximization objective is generally non-concave

* |dea: Making a concave objective by applying the Lagrangian relaxation to the
inner-maximization objective

* The adversarial-training objective is newly defined as

minimize sup Ep [¢(0; Z)]
0e®  pcp

where Z = (X,Y) ~ Py with the training data X and the label Y’

and P is a class of distribution around the data-generating distribution F,

Algorithmic Intelligence Lab 41



Defense-Scenarios: Wasserstein Adversarial Training [A. Sinha et al., 2018]

e P can be written as the Wasserstein metric W,
P={P:W.P,Py) < p} where a hyper-parameter p > 0

* Wasserstein metric W, between distributions P and () is defined as

W.(P,Q):= inf Eple(Z, 72’
c( Q) Me[1(P.Q) M [ ( )]
where c(z,2') = ||z — :z:’Hf) + 00 - 12y, 1, is a indicator function

* The objective cover the worst-case with some P’ € W .(P’, Py) < p

minimize sup Ep [E(H; Z)]
0cO PeEW.(P,Py)<p

* Lagrangian relaxation for a fixed parameter 7 induces the objective to

mmdp minimize sup Ep [(0; Z) — yW.(P, Py)]
0cO P
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Defense-Scenarios: Wasserstein Adversarial Training [A. Sinha et al., 2018]

* Furthermore, theorem [J. Blanchet et al., 2016] induces the relaxed objective to

mm) minimize Ep, [sup {6(9; z) — ye(z, ZO)}]
e z€Z

* |tis the final objective of Wasserstein adversarial training [A. Shinha et al., 2018]
* Goal: Solving the final objective optimization below

minimize Ep, [sup {6(9; z) — ye(z, ZO)}]
0O z€Z

where ¢(z, ') = ||z — 517/“; + 00 - 1,2,, 1, is a indicator function

* The objective of previous adversarial training is follow:

milgier(ralize Ep(z,y) [&lg}ﬁfﬁe 0(0;x + 0, y)]

Algorithmic Intelligence Lab
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Defense-Scenarios: Wasserstein Adversarial Training [A. Sinha et al., 2018]

 Method: Wasserstein adversarial training algorithm

Algorithm 1 Distributionally robust optimization with adversarial training

INPUT: Sampling distribution P, constraint sets © and Z, stepsize sequence {ca; > 0};[:_01
fort=0,...,7—1do
Sample z! ~ Py and find an e-approximate maximizer z* of [E(@t; z) —ye(z, zt)]
011 < Projg (0" — o, Vel (0% 21))

* Large enough makes £(0'; z) — vc(z, z!) concave, and it helps the optimization
be easy

Sizeof 7 |

)
| ) — mllz — zo||?
—(z) — llx — 2ol
)

]
1
|}
]
1
1
9 1
— yllz — zo|”

ek e

o z

e The algorithm is attack-agnostic
* |t does not need any adversarial attack method
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Defense-Scenarios: Wasserstein Adversarial Training [A. Sinha et al., 2018]

* Experimental Results: white-box attack with /sand [, metric

* It shows Wasserstein adversarial training (WRM) outperform the baselines (other
adversarial trainings)

lO() - 10(] .

g0ty S0
ERM ERM
IFGM IFGM
FGM FGM
PGM PGM
. D-ran . ["=w+mj Best performance among
0 0.05 0.1 0.15 02 0.25 0 0.05 0.1 0.15 02 the baselines
€adv €adv
(a) Test error vs. €,qy for || - ||2-FGM attack (b) Test error vs. €aay for || - ||c-FGM attack *ERM: Standard Training
*IFGM: BIM Adv. Training
_ 0. ..
10° 10 *FGM: FGSM Adv. Training
*PGM: PGD Adv. Training
*WRM: Wasserstein Adv. Training
S0t S0t
S &)
ERM ERM
i IFGM é IFGM
FGM FGM
PGM PGM
102 B WRM 102 B WRM
0 0.05 0:1 0.115 0?2 0.‘25 0 0.;)5 ()jl ()‘lIS 0?2
(:ul\'/CZ (:ul\-/Cx
(a) Test error vs. €aqy for || - ||2 (b) Test error vs. €ady for || - ||oo
* *
Algorithmic Intelligence Lab PGD attack PGD attack
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Defense-Scenarios: MagNet [D. Meng et al., 2017]

* Motivation: Pre-process a input to make a clean data
* Denoise adversarial perturbation
* |dea: Double-check an input with Detector and Reformer

e Detecting an input whether it is an adversarial example or not
* Reforming the input which is detected as clean one to prepare in case of the

Detector’s failure

Classifier

Detect

Is X adversarial for
any detector?

example X

Yes

\ |—> X is adversarial

/ ) '¢ x' \
,—> Reform *b[ Target ]—»class label y

/

Algorithmic Intelligence Lab *source: D. Meng et al., MagNet: a Two-Pronged Defense against Adversarial Examples, In CCS, 2017 47



Defense-Scenarios: MagNet [D. Meng et al., 2017]

* Goal: Training Detector and Reformer which are based on auto-encoders

e Method:

* Detector: Detect an input x is an adversarial example or not
* Training an auto-encoder fAr to minimize the loss over the training data X

((X) = |71| erx |z — fAE(@”Q

* Detector decides abnormality via the reconstruction error E or Jensen-
Shannon Divergence JSD with a threshold ¢; with a given classifier f

E(z) = ||z — fae(x)|, > t1 where t; = sup ||z — far(z)]

p
xEXval

where X,,) is the validation data
JSD (fsots (x)|| fsott (fag(x))) > ta where to is a hyper-parameter

where fsort () is the softmax ouput of the classifier f on an input z

Algorithmic Intelligence Lab
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Defense-Scenarios: MagNet [D. Meng et al., 2017]

* Goal: Training Detector and Reformer which are based on auto-encoders

e Method:

* Reformer: Reform an input x to lie on the data manifold
* Training an auto-encoder fag to minimize the loss over the training data X

U(X) = |Tl| 2 zex 12— fae()ll,

* To strengthen the network on adversarial attacks, Detector and Reformer are
randomly selected from large number of trained Detectors and Reformers with
different architectures

* Experimental Results il
. The Effectof Reformer  Seenpe
= AN AN

Perturbation g : o o 0
Reformed é
Examples .......
Reformed ey
Perturbation .
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Defense-Scenarios: MagNet [D. Meng et al., 2017]

* Experimental Results
* MagNet [D. Meng et al., 2017] reports that it defends CW method

(a) MNIST

Attack Norm Parameter No Defense ( With Defensew

Carlini L2 0.0% 99.5%
Carlini L™® 0.0% 99.8%
Carlini L0 0.0% 92.0%
(b) CIFAR

) .
Attack Norm Parameter No Defense| With Defense
Carlini L2 0.0% 93.7%
Carlini L*® 0.0% 83.0%
Carlini L0 0.0% \ 77.5% )

* But, the results is broken [N. Carlini et al., 2017c]
* CW method by performing 10,000 iterations of gradient descent

)
Dataset Model Success | Distortion (Ls)
Unsecured 100% 1.64
MNIST MagNet 99% 2.25
Unsecured 100% 0.30
CIFAR MagNet 100% 0.45
—

Algorithmic Intelligence Lab *source: D. Meng et al., MagNet: a Two-Pronged Defense against Adversarial Examples, In CCS, 2017 50



Defense-Scenarios: Defense GAN [P. Samangouei et al., 2018]

* Motivation: Pre-process an input to make a clean data via WGAN [M. Arjovsky
et al., 2017]

 MagNet [D. Meng et al., 2017] is based on auto-encoders

* WGAN: For input data & and random vectors w, generator (G and discriminator D
minimize the following min-max loss V'

m(%n max V(D,G) =Epu) [D(z)] — Epw) [D (G(w))]

* Idea: The minimizer ¢y of reconstruction error would generate the clean data

Reconstruction error = ||z — G(z) \|§

* Method: Finding a minimizer @ of the reconstruction error for given generator GG
and input T

@ = argmin ||z — G(w)||;
w

* Choose initial w randomly
* Use Gradient Descent (GD) with some fixed step (e.g. 200-step)

*min-max loss of original GAN: mén max V(D,G) = Ey[log D(x)] — Ep ) [log(l — D(G(2)))]
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Defense-Scenarios: Defense GAN [P. Samangouei et al., 2018]

* Motivation: Pre-process an input to make a clean data via WGAN [M. Arjovsky
et al., 2017]

MagNet [D. Meng et al., 2017] is based on auto-encoders

WGAN: For input data & and random vectors w, generator (G and discriminator D
minimize the following min-max loss V'

m(%n max V(D,G) = Ep) [D(z)] = Epw) [D (G(w))]

Idea: The minimizer 1 of reconstruction error would generate the clean data

Reconstruction error = ||z — G(2) H;

Method:
* Classifier can be trained by using either original data or reconstructed data
* The flow of Defense-GAN is

4 (1) N
Z
0
,). L
z((]~1 Minimize z x = G(z")
Randor be > : ifi J
wdom mber ] 2 Generator » Classifier —» ¥y
nerator ||G(z) — xll
(R) : 2
Zg

A

A 4

Input image x

- /
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Defense-Scenarios: Defense GAN [P. Samangouei et al., 2018]

* Experimental Result
* The effect of Generator

* The reconstructed data are clean, but it often different from the original

Original Adv

L =50 L=100 L=200 L:anumberof GD iterations

%
i

Algorithmic Intelligence Lab

Different from the original

Reconstructed data with various L
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Defense-Scenarios: Defense GAN [P. Samangouei et al., 2018]

* Experimental Result
* White-box attack with FGSM and CW method

Algorithmic Intelligence Lab

)
Attack | No Attack | No Defense | FGSM Adyv. Training | Magnet ||Defense-GAN
5(_;8(% 0.997 0.217 0.651 0.191 0.988
MNIST " cw
I, norm 0.997 0.141 0.077 0.038 0.989
Attack | No Attack | No Defense | FGSM Adyv. Training | Magnet || Defense-GAN
:‘(:;S(g 0.934 0.102 0.797 0.089 0.879
F-MNIST o
I, norm 0.934 0.076 0.157 0.060 0.896
——
* Black-box attack with FGSM
)
€ MNIST || F-MNIST
0.10 || 0.9864 0.8844
0.15 || 0.9836 0.8267
0.20 || 0.9772 0.7492
0.25 || 0.9641 0.6384
0.30 || 0.9307 0.5126
—
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Defense-Scenarios: Large Margin Classifier [G. Elsayed et al., 2018]

* Motivation: Model robustness would be related to the margin of model
* Ildea: Construct a model to have a large margin

* Margin is the smallest distance from the training data to the decision
boundary

* Define a margin d as follow:
d = m(sin ||(5||p s.t. filx+90) = fi(z+9)
where f;(-) is i-th logit value of a classifier f(-)

(a) (b) cross entropy: test accuracy 98% large margin: test accuracy 99%

@ cO (test)
@cl (test)
©cO (train)
@cl (train)

N g(x,w)=0
N

To €2

S & 3 &
Probability of class label = 1

margin
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Defense-Scenarios: Large Margin Classifier [G. Elsayed et al., 2018]

* Motivation: Model robustness would be related to the margin of model
* ldea: Construct a model to have a large margin

e Margin is the smallest distance from the training data to the decision
boundary

* Define a margin d as follow:
d= m(sin 6], s.t. fi(x+9d) = fi(z +9)

where f;(-) is i-th logit value of a classifier f(-)
* Appling linear approximation to f;
* The approximated margin d can be written in closed form as follow:

T i@-s@)
VeFi@) Ve f @,

where |[|-[| is the dual norm of [|-||,, ¢ = -t5

p—1
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Defense-Scenarios: Large Margin Classifier [G. Elsayed et al., 2018]

* Goal: Solving a new loss function to maximize the margin 3(2 Y)

C .. _ fi(z)—fy(x)
mlmgmlze Z(w,y)ND Aity max{0,y + E| fi(x)—f, (x) ||]}

A . aggregate operator; max or sum margin

~v: hyper-parameter

* Method: Adding cross-entropy loss with a small coefficient (less than 0.1%) to
keep the classification performance

e Various metrics can be used
° ll? l27 loo
* The above margin is about input z, but it can be extended to hidden features

Algorithmic Intelligence Lab
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Defense-Scenarios: Large Margin Classifier [G. Elsayed et al., 2018]

* Experimental Result
* Test accuracy of standard model: 99.5%

* Test accuracy of the margin classifier models: 99.3~99.5%
* White-box: BIM attack

» Xent: Cross-entropy loss

MNIST CIFAR 10
Ve teressststsssraresssfereserstsessntspmmdiomsssasaieiosa | 10
B \"\‘g,‘ i -=- Xent
‘\ \ \:";‘v, : -~ hinge L‘
o8l Lo\ \“;\_ . . input I, || 0a i)
‘\ \\\'v\.'-ﬁ RN all I ‘\"“:\
v N, - input, b “\\\
5 I\ \ \Q‘ all a vt ‘\
© 06} \ ; & ' 1 © 0.6 v *I \
3 \‘ .‘ \\\ o ‘ input [, 8 . Q“\
< IR O T T < N
0 oal ; , \ Tl M o4l LIS
& SRS I e § i ‘\\\‘
1 | YRR DO O S S st dL I W Y 2 \
1 \ \ ‘\
1 \ \
02 v . h 0.2 L SN Y
A N AT s
iyl booo Tmsal i JEemeadl] i} Bt Mt
0.0 0.1 0.2 0.3 0.4 0.5 0.00 0.05 0.10 0.15
Epsilon ! Epsilon
Large margin classifiers i applylzg (?[n multiple Ia}/er )
. . . . input, output, some conv layers
Input [,,: applying the margin loss on first layer (input) only ’ '

All 1,,: applying the margin loss on all hidden layer (hidden features)
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Defense-Scenarios: Large Margin Classifier [G. Elsayed et al., 2018]

* Experimental Result
* Test accuracy of standard model: 99.5%
* Test accuracy of the margin classifier models: 99.3~99.5%
* Black-box: BIM attack to Xent model
* Xent: Cross-entropy loss

L0 e ' ‘ 1‘0
\s:i‘ Xent
‘ hinge :
. \.
0.8 input I, || ik 3
all I “ \
\
- i ‘ »
> input /, o> |
| k)
E | all 11 g i ‘
: input I, S ‘
9 : |
4 )
: all 1, L<) B>
| M 04 :
] i
|_ [
o,
0-2 | . ! K »\4\
,,,,, 0.2 N ' \'k o
e ]
0.0 I | -
0.0 ) : I
0.0 - i . .4 0.5 0.00 0.05 e . |
Epsilon o

applying on multiple layer

Large margin classifiers .
(input, output, some conv layers)

Input [,,: applying the margin loss on first layer (input) only
All 1,,: applying the margin loss on all hidden layer (hidden features)
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Defense-Scenarios: Parseval Network [M. Cisse et al., 2017]

* Motivation: Model robustness would be related to the Lipchitz constant of
model

* ldea: The global Lipchitz constant of model is bounded by the function of Lipchitz
constants of all layers

* Goal: Controlling the Lipchitz constants (the spectral norm) of all linear and
convolutional layers to be smaller than 1

* Method: Perseval regularization with Ry (+)
* A weight matrix MV is called approximately a Parseval tight frame if )} satisfies
WITW ~ I where I is the identity matrix
 Consider layer-wise regularizer Ry (-) of a weight matrix as follow:

Re(W) = & |lWTW — 1|,

-2
* Optimizing the regularizer R, (-) is expensive
* The gradient of the regularizer Ry (-) is follow:

ViwReW) = kOWWT — W
* Performing the following update for regularizer to reduce the cost
W (1+ k)W — kWWTW
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Defense-Scenarios: Parseval Network [M. Cisse et al., 2017]

* Experimental Result
* The effect of the perseval regularization

e Singular values of the weight matrices at the first and last layers of fully
connected network in CIFAR10

First Layer Last Layer
1500 () 2000 (O

—_
S
S
(e}
frequency
)—l
S
)
)

frequency
(@
)
(e}

2 4
singular values singular values

The largest singular value (the spectral norm) is almost 1
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Defense-Scenarios: Parseval Network [M. Cisse et al., 2017]

* Experimental Result
* White-box: FGSM attack
* Signal to Noise Ratio (SNR)
SNR(z,d) = 20 log H?”Z

2

MNIST CIFAR10
100 60
w
§ -+sgd ? 40t =+=sgd
5 50 <+=sgd-wd = <+=sgd-wd
S sgd-wddal | & 9| sgd-wdfda)
== parseval == parseval
+parseval@ =+ parseval-da)
0 s L 1 ' O L 1 )
20 40 60 80 20 40 60 80
SNR SNR

Adversarial Training (Data Augmentation)
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Summary

In this lecture, we cover threat of adversarial examples and various methods of
adversarial attack and adversarial defense

* Adversary could control the prediction of neural network via adversarial examples

White-box attacks are mainly based on the gradient of model
* FGSM, BIM, CW method

Transferability of adversarial examples allow black-box attack
* [Y.Liuetal., 2017]
* [N. Papernot et al., 2017]

There are many adversarial defense methods, but there is no perfect one
* The most of defenses are heuristic
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