

Freeze the Discriminator: a Simple Baseline for Fine-Tuning GANs

Sangwoo Mo¹ Minsu Cho² Jinwoo Shin¹

¹ Korea Advanced Institute of Science and Technology (KAIST) ² Pohang University of Science and Technology (POSTECH)

Motivation

• Modern GANs show remarkable success in image generation^[1,2,3]...

- ...but they require lots of training data and computational resources
 - BigGAN is trained on 1M of images for 120 GPU days

[1] Brock et al. Large Scale GAN Training for High Fidelity Natural Image Synthesis. ICLR 2019.

[2] Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019.

[3] Karras et al. Analyzing and Improving the Image Quality of StyleGAN. arXiv 2020.

Prior Work

- Several works propose a transfer learning approach...
- ...but they are often prone to overfitting (w/ limited data)
 - Fine-tuning^[4]
- ...or limited to learning small distribution shifts
 - Fine-tuning only BN/IN parameters^[5]
 - Fine-tuning with supervised loss^[5]
 - Modify the prior distribution $p(z)^{[6]}$

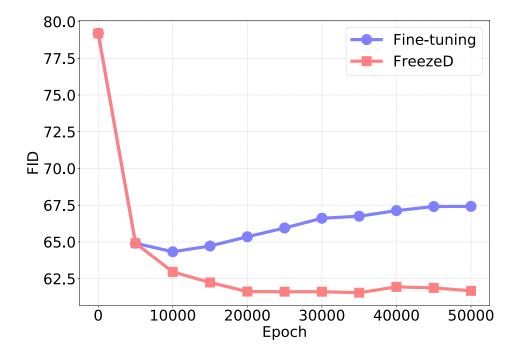
[4] Wang et al. Transferring GANs: generating images from limited data. ECCV 2018.

[5] Noguchi & Harada. Image Generation From Small Datasets via Batch Statistics Adaptation. ICCV 2019.

[6] Wang et al. MineGAN: effective knowledge transfer from GANs to target domains with few images. arXiv 2020.

FreezeD: a simple but strong baseline

- We find that simply freezing the lower layers of the discriminator while fine-tuning GANs surprisingly work well
- FreezeD stably converges to the better optima than fine-tuning



Experiments: unconditional image generation

• FreezeD outperforms fine-tuning on StyleGAN^[2] architecture

(a) Original (FFHQ)

(b) Cat

(c) Dog

Table 1: FID scores under Animal Face dataset. Left and right values indicate the best and final FID scores.										
	Bear	Cat	Chicken	Cow	Deer	Dog	Duck	Eagle	Elephant	Human
Fine-tuning FreezeD	82.82/84.38 78.77/78.77	71.76/73.47 69.64/69.97	88.10/88.83 86.20/86.53	87.07/87.46 84.32/84.39	82.11/84.04 78.67/79.73	64.28/67.42 61.46/61.67	92.54/92.54 88.82/89.14	85.52/86.88 82.15/82.62	84.10/84.33 80.00/80.24	76.62/76.72 73.51/73.89
	T 's s	1 1	м	D 1	D'	D'	D 111	01	TC ¹	
	Lion	Monkey	Mouse	Panda	Pigeon	Pig	Rabbit	Sheep	Tiger	Wolf

[2] Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019.

Experiments: conditional image generation

- FreezeD outperforms fine-tuning on SNGAN-projection^[7] architecture
 - FreezeD generates more class-consistent samples

(a) Flower (fine-tuning)

(b) Flower (FreezeD)

Table 4: FID scores under SNGAN-projection architecture.Left and right values indicate the best and final FID scores.

	Oxford Flower	CUB-200-2011	Caltech-256
Fine-tuning	27.05/ 32.51	32.29/32.60	62.20/63.37
FreezeD	24.80 /52.92	26.37/27.63	60.53/60.53

[7] Miyato & Koyama. cGANs with Projection Discriminator. ICLR 2018.

Experiments: comparison & ablation study

FreezeD outperforms various prior methods

Table 3: Comparison of various methods under 'Cat' and 'Dog' classes in the Animal Face dataset. Left and right values indicate the best and final FID scores. [†] indicates the model is trained by GLO loss, otherwise by GAN loss.

	Fine-tuning	Fine-tuning [†]	Scale/shift	$Scale/shift^{\dagger}$	MineGAN	$Mine GAN^{\dagger}$	L2-SP (G)	L2-SP (D)	L2-SP (G,D)	FreezeD
Cat	71.76/73.47	78.21/78.32	71.99/73.42	80.63/80.63	82.67/82.67	82.68/82.95	71.77/73.78	71.54/72.67	71.70/73.47	69.64/69.97
Dog	64.28/67.42	75.19/75.45	64.12/67.79	79.08/79.91	79.05/79.23	79.11/79.20	64.18/67.14	64.28/66.68	64.25/66.06	61.46/61.67

- Freezing until intermediate layers performs the best
 - The optimal layer depends on the gap of source and target distribution

Table 6: Ablation study on freezing layers of D on SNGAN-projection architecture under Oxford Flower, CUB-200-2011, Caltech-256 datasets. Layer i indicates that the first i layers of the discriminator are frozen.

	Fine-tuning	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5
Oxford Flower	27.05/ 32.51	27.65/42.14	25.85/42.31	24.80 /52.92	25.41/87.60	25.35/104.07
CUB-200-2011	32.29/32.60	28.80/31.80	26.37/27.63	28.48/28.48	26.87/29.29	29.92/34.08
Calteth-256	62.20/63.37	60.53/60.53	61.59/61.94	61.29/61.95	61.92/62.88	62.90/62.90

Conclusion

- A simple baseline FreezeD outperforms the prior methods
- Lower layers of the discriminator learn some general features
 - It could be applied the universal detector of generated images
- Investigating advanced methods would be an interesting direction
 - Feature distillation seems to be a promising direction

