Introduction to Neural Networks: DNN / CNN / RNN

AI602: Recent Advances in Deep Learning

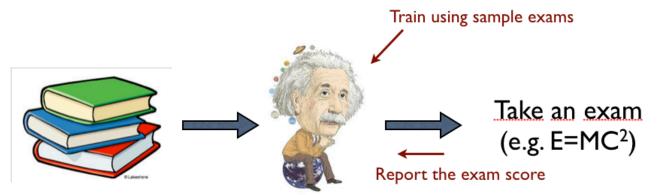
Lecture 1

Slide made by

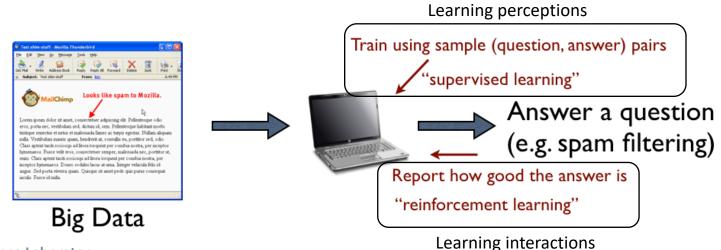
Hyungwon Choi and Yunhun Jang

KAIST EE

• Human Learning

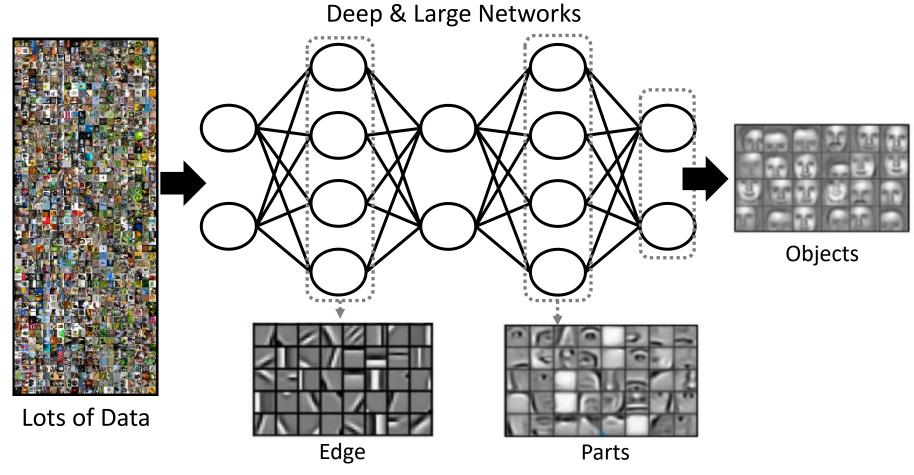


- Machine Learning = Build an algorithm from data
 - Deep learning is a special type of algorithms in machine learning



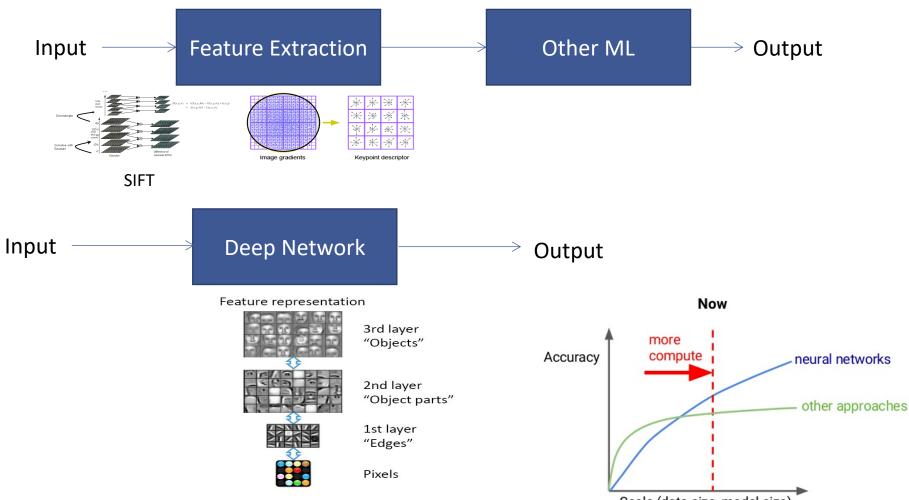
Definition of Deep Learning

• An algorithm that learns multiple levels of abstractions in data



Multi-layer Data Representations (feature hierarchy)

• Why deep learning outperforms other machine learning (ML) approaches for vision, speech, language?



Scale (data size, model size)

Algorithmic Intelligence Laboratory

1. Deep Neural Networks (DNN)

- Basics
- Training : Back propagation

2. Convolutional Neural Networks (CNN)

- Basics
- Convolution and pooling
- Some applications

3. Recurrent Neural Networks (RNN)

- Basics
- Character-level language model (example)

4. Question

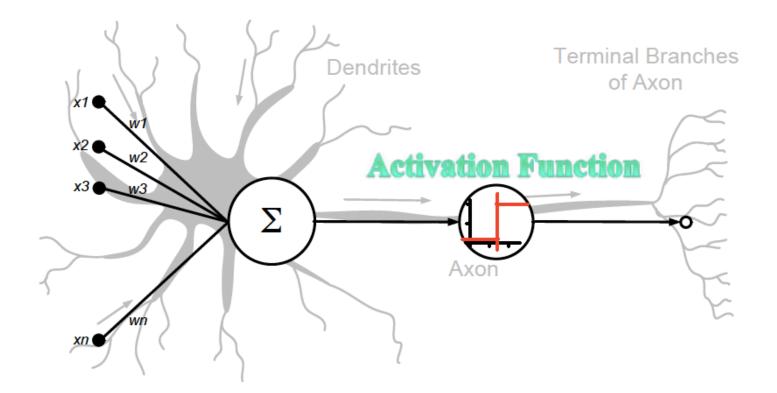
• Why is it difficult to train a deep neural network?

1. Deep Neural Networks (DNN)

- Basics
- Training : Back propagation
- 2. Convolutional Neural Networks (CNN)
 - Basics
 - Convolution and pooling
 - Some applications
- 3. Recurrent Neural Networks (RNN)
 - Basics
 - Character-level language model (example)
- 4. Question
 - Why is it difficult to train a deep neural network?

DNN: Neurons in the Brain

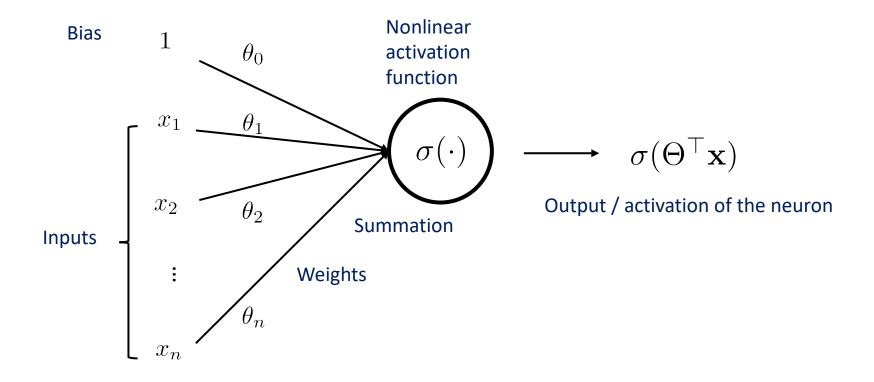
- Human brain is made up of 100 billion neurons
 - Neurons **receive** electric signals at the dendrites and **send** them to the axon
 - Dendrites can perform complex **non-linear** computations
 - Synapses are not a single weight but a **complex** non-linear dynamical system



DNN: Artificial Neural Networks

Artificial neural networks

• A **simplified** version of biological neural network



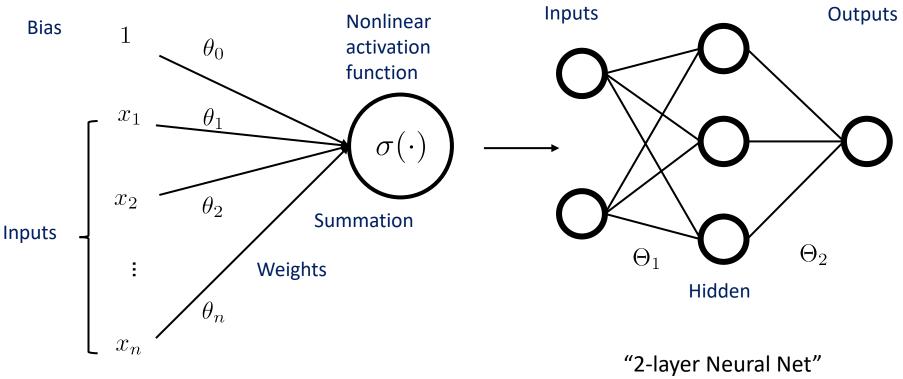
• Similarities

- Consists of neurons & connections between neurons
- Learning process = Update of **connections**
- Massive parallel processing
- Differences
 - Computation within neuron vastly simplified
 - Discrete time steps
 - Typically some of **supervised** learning with massive number of stimuli

DNN: Basics

Deep neural networks

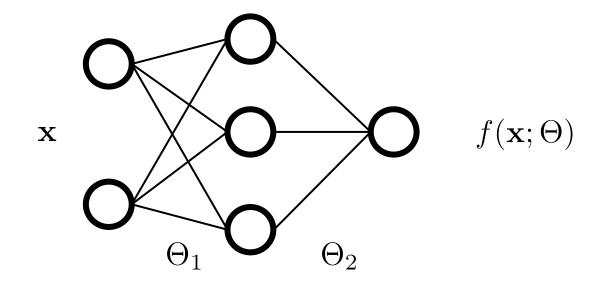
- Neural network with more than 2 layers
- Can model more **complex** functions



"1-hidden-layer Neural Net"

DNN: Notation

- Training dataset $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$
 - \mathbf{x}_i : i^{th} input data
 - y_i : i^{th} target data (or label for classification)
- Neural network $f(\mathbf{x}; \Theta) \in \mathbb{R}$ parameterized by Θ

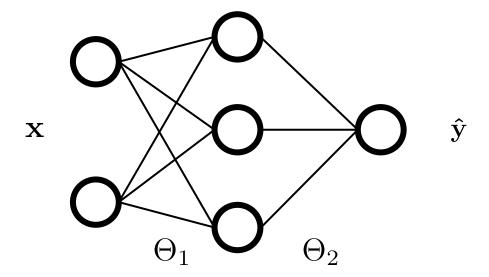


Next, forward propagation

• Forward propagation: calculate the output \hat{y} of the neural network

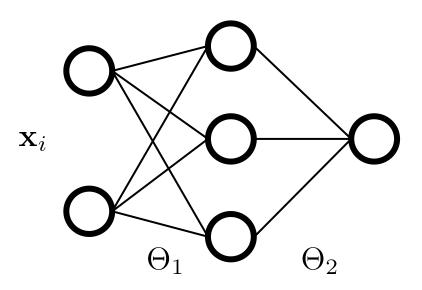
$$\mathbf{\hat{y}} = \sigma \left(\Theta_k^\top \sigma \left(\Theta_{k-1}^\top \sigma (\cdots \sigma (\Theta_1^\top \mathbf{x})) \right) \right)$$

where $\sigma(\cdot)$ is activation function (e.g., sigmoid function) and k is number of layers



DNN: Forward Propagation (Example)

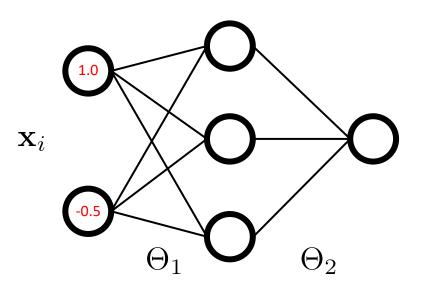
$$\mathbf{x}_{i} = \begin{pmatrix} 1.0 \\ -0.5 \end{pmatrix} \qquad \Theta_{1} = \begin{pmatrix} 1.2 & 2.1 & 1.5 \\ -0.3 & -0.7 & 0.3 \end{pmatrix} \quad \Theta_{2} = \begin{pmatrix} -0.2 \\ 0.5 \\ 1.3 \end{pmatrix}$$



DNN: Forward Propagation (Example)

$$\mathbf{x}_{i} = \begin{pmatrix} 1.0 \\ -0.5 \end{pmatrix} \qquad \Theta_{1} = \begin{pmatrix} 1.2 & 2.1 & 1.5 \\ -0.3 & -0.7 & 0.3 \end{pmatrix} \quad \Theta_{2} = \begin{pmatrix} -0.2 \\ 0.5 \\ 1.3 \end{pmatrix}$$

• Input data \mathbf{x}_i



$$\mathbf{x}_{i} = \begin{pmatrix} 1.0 \\ -0.5 \end{pmatrix} \qquad \Theta_{1} = \begin{pmatrix} 1.2 & 2.1 & 1.5 \\ -0.3 & -0.7 & 0.3 \end{pmatrix} \quad \Theta_{2} = \begin{pmatrix} -0.2 \\ 0.5 \\ 1.3 \end{pmatrix}$$

- Compute hidden units \mathbf{h}_1

$$\Theta_{1}^{\top} \mathbf{x}_{i} = \begin{pmatrix} 1.2 & -0.3 \\ 2.1 & -0.7 \\ -1.5 & 0.3 \end{pmatrix} \begin{pmatrix} 1.0 \\ -0.5 \end{pmatrix} = \begin{pmatrix} 1.35 \\ 2.45 \\ -1.65 \end{pmatrix}$$
$$\mathbf{h}_{1} = \sigma(\Theta_{1}^{\top} \mathbf{x}_{i}) = \begin{pmatrix} \sigma(1.35) \\ \sigma(2.45) \\ \sigma(-1.65) \end{pmatrix} = \begin{pmatrix} 0.79 \\ 0.92 \\ 0.16 \end{pmatrix}$$

where $\sigma(x) = \frac{1}{1+e^{-x}}$

 Θ_2

0.79

0.92

0.16

 Θ_1

1.0

-0.5

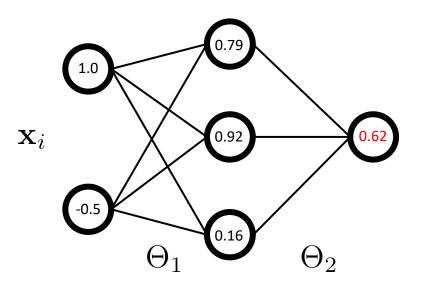
 \mathbf{x}_i

$$\mathbf{x}_{i} = \begin{pmatrix} 1.0 \\ -0.5 \end{pmatrix} \qquad \Theta_{1} = \begin{pmatrix} 1.2 & 2.1 & 1.5 \\ -0.3 & -0.7 & 0.3 \end{pmatrix} \quad \Theta_{2} = \begin{pmatrix} -0.2 \\ 0.5 \\ 1.3 \end{pmatrix}$$

• Compute output \hat{y}_i

$$\Theta_2^{\top} \mathbf{h}_1 = \begin{pmatrix} -0.2 & 0.5 & 1.3 \end{pmatrix} \begin{pmatrix} 0.79 \\ 0.92 \\ 0.16 \end{pmatrix} = 0.51$$

$$\hat{y}_i = \sigma(\Theta_2^\top \mathbf{h}_1) = \sigma(0.51) = \mathbf{0.62}$$

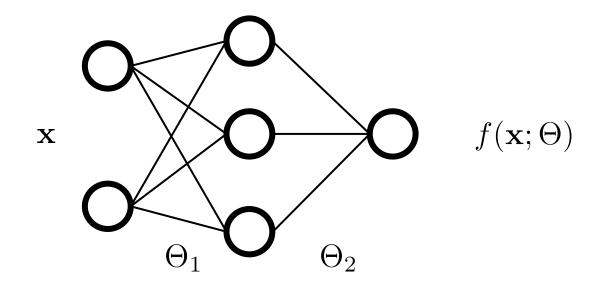


Next, training objective

• **Objective:** Find a parameter that minimizes the error (or empirical risk)

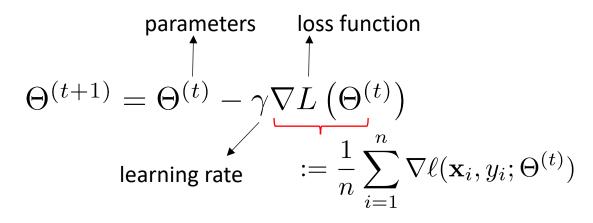
$$\min_{\Theta} \frac{1}{n} \sum_{i=1}^{n} \ell(f(\mathbf{x}_i; \Theta), y_i) := L(\Theta)$$

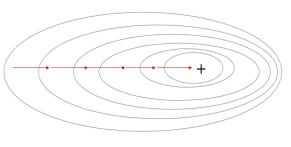
where $\ell\left(\cdot,\cdot
ight)$ is a loss function e.g., MSE(Mean square error) or cross entropy



Next, how to optimize $L(\Theta)$?

• Gradient descent (GD) updates parameters iteratively to the gradient direction.



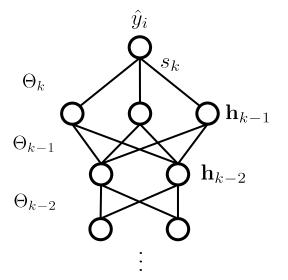


Backpropagation

- First adjust the **last layer** weights Θ_k
- Propagate error back to each previous layers
- Adjust **previous layer** weights $\Theta_{k-1}, \Theta_{k-2}, \dots \Theta_1$

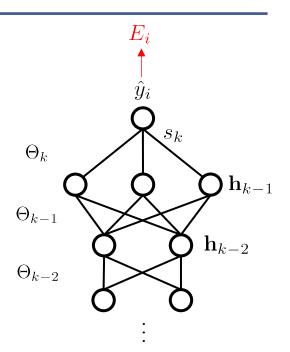
Next, backpropagation in details

- Consider the input (\mathbf{x}_i, y_i)
- Forward propagation to compute output $\hat{y}_i = f(\mathbf{x}_i; \Theta)$
- i^{th} layer intermediate output $s_i = \Theta_i^\top \mathbf{h}_{i-1}$



- Consider the input (\mathbf{x}_i, y_i)
- Forward propagation to compute output $\hat{y}_i = f(\mathbf{x}_i; \Theta)$
- i^{th} layer intermediate output $s_i = \Theta_i^{ op} \mathbf{h}_{i-1}$
- Compute error $\,\ell(\hat{y}_i,y_i)\,$ (where $\,\ell\left(\cdot,\cdot
 ight)\,$ is MSE loss)

$$\ell(\hat{y}_i, y_i) = \frac{1}{2} (y_i - \hat{y}_i)^2 := E_i$$

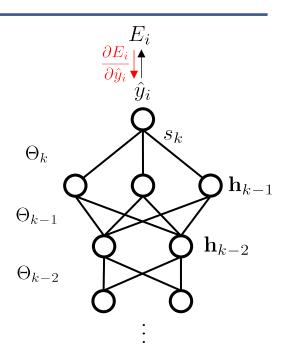


- Consider the input (\mathbf{x}_i, y_i)
- Forward propagation to compute output $\hat{y}_i = f(\mathbf{x}_i; \Theta)$
- i^{th} layer intermediate output $s_i = \Theta_i^{ op} \mathbf{h}_{i-1}$
- Compute error $\,\ell(\hat{y}_i,y_i)\,$ (where $\,\ell\left(\cdot,\cdot
 ight)$ is MSE loss)

$$\ell(\hat{y}_i, y_i) = \frac{1}{2} (y_i - \hat{y}_i)^2 := E_i$$

• Compute derivative of E_i with respect to \hat{y}_i

$$\frac{\partial E_i}{\partial \hat{y}_i} = \frac{\partial}{\partial \hat{y}_i} \frac{1}{2} (y_i - \hat{y}_i)^2 = -(y_i - \hat{y}_i)$$

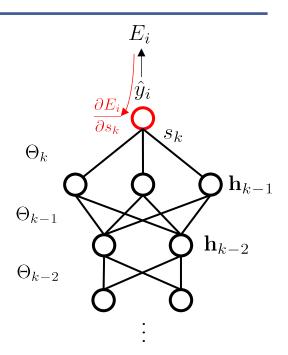


- Consider the input (\mathbf{x}_i, y_i)
- Forward propagation to compute output $\hat{y}_i = f(\mathbf{x}_i; \Theta)$
- i^{th} layer intermediate output $s_i = \Theta_i^{ op} \mathbf{h}_{i-1}$
- Compute error $\ \ell(\hat{y}_i,y_i)$ (where $\ \ell\left(\cdot,\cdot
 ight)$ is MSE loss)

$$\ell(\hat{y}_i, y_i) = \frac{1}{2} (y_i - \hat{y}_i)^2 := E_i$$

• Compute derivative of E_i with respect to s_k

$$\frac{\partial E_i}{\partial s_k} = \frac{\partial E_i}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_k} = \frac{\partial E_i}{\partial \hat{y}_i} \frac{\partial}{\partial s_k} \sigma(s_k) = (\hat{y}_i - y_i) \sigma'(s_k)$$



- Consider the input (\mathbf{x}_i, y_i)
- Forward propagation to compute output $\hat{y}_i = f(\mathbf{x}_i; \Theta)$
- i^{th} layer intermediate output $s_i = \Theta_i^{ op} \mathbf{h}_{i-1}$
- Compute error $\ \ell(\hat{y}_i,y_i)$ (where $\ \ell\left(\cdot,\cdot
 ight)$ is MSE loss)

$$\ell(\hat{y}_i, y_i) = \frac{1}{2}(y_i - \hat{y}_i)^2 := E_i$$

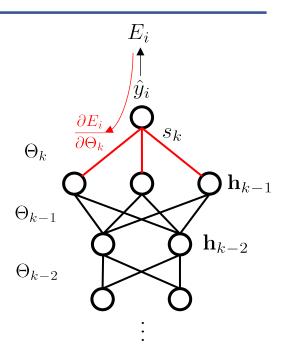
• Compute derivative of E_i with respect to Θ_k

 $\frac{\partial E_i}{\partial \Theta_k} = \frac{\partial E_i}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_k} \frac{\partial s_k}{\partial \Theta_k} = \frac{\partial E_i}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_k} \frac{\partial \hat{y}_i}{\partial \Theta_k} (\Theta_k^\top \mathbf{h}_{k-1}) = (\hat{y}_i - y_i) \sigma'(s_k) \mathbf{h}_{k-1}$

• Parameter update rule

$$\Theta_k \leftarrow \Theta_k - \gamma \frac{\partial E_i}{\partial \Theta_k}$$

learning rate



- Consider the input (\mathbf{x}_i, y_i)
- Forward propagation to compute output $\hat{y}_i = f(\mathbf{x}_i; \Theta)$
- i^{th} layer intermediate output $s_i = \Theta_i^{ op} \mathbf{h}_{i-1}$
- Compute error $\,\ell(\hat{y}_i,y_i)\,$ (where $\,\ell\left(\cdot,\cdot
 ight)$ is MSE loss)

$$\ell(\hat{y}_i, y_i) = \frac{1}{2}(y_i - \hat{y}_i)^2 := E_i$$

• Compute derivative of E_i with respect to Θ_{k-1}

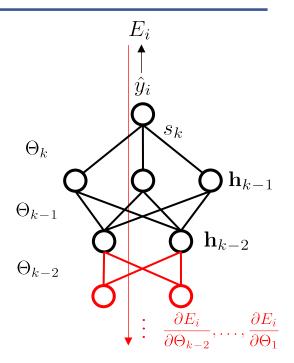
 E_{i} \hat{y}_{i} Θ_{k} $\frac{\partial E_{i}}{\partial \Theta_{k-1}}$ Θ_{k-2} h_{k-2}

 $\frac{\partial E_i}{\partial \Theta_{k-1}} = \frac{\partial E_i}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_k} \frac{\partial \mathbf{s}_k}{\partial \mathbf{h}_{k-1}} \frac{\partial \mathbf{h}_{k-1}}{\partial \mathbf{s}_{k-1}} \frac{\partial \mathbf{s}_{k-1}}{\partial \Theta_{k-1}} = \frac{\partial E_i}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_k} \frac{\partial \mathbf{s}_k}{\partial \mathbf{h}_{k-1}} \frac{\partial \mathbf{h}_{k-1}}{\partial \Theta_{k-1}} \frac{\partial (\Theta_{k-1}^\top \mathbf{h}_{k-2})}{\partial \Theta_{k-1}} = \frac{\partial E_i}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_k} \frac{\partial \mathbf{h}_{k-1}}{\partial \mathbf{h}_{k-1}} \frac{\partial (\Theta_{k-1}^\top \mathbf{h}_{k-2})}{\partial \Theta_{k-1}} = \frac{\partial E_i}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_k} \frac{\partial \mathbf{h}_{k-1}}{\partial \mathbf{h}_{k-1}} \frac{\partial (\Theta_{k-1}^\top \mathbf{h}_{k-2})}{\partial \Theta_{k-1}} = \frac{\partial E_i}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_k} \frac{\partial \mathbf{h}_{k-1}}{\partial \mathbf{h}_{k-1}} \frac{\partial (\Theta_{k-1}^\top \mathbf{h}_{k-2})}{\partial \Theta_{k-1}} \frac{\partial (\Theta_{k-1}^\top \mathbf{h}_{k-2})}{\partial \Theta_{k-1}} = \frac{\partial (\Theta_{k-1}^\top \mathbf{h}_{k-1})}{\partial \Theta_{k-1}} \frac{\partial (\Theta_{k-1}^\top \mathbf{h}_{k-1})}{\partial \Theta_{k-1$

• Parameter update rule learning rate $\downarrow \\ \Theta_{k-1} \leftarrow \Theta_{k-1} - \gamma \frac{\partial E_i}{\partial \Theta_{k-1}}$

- Consider the input (\mathbf{x}_i, y_i)
- Forward propagation to compute output $\hat{y}_i = f(\mathbf{x}_i; \Theta)$
- i^{th} layer intermediate output $s_i = \Theta_i^ op \mathbf{h}_{i-1}$
- Compute error $~\ell(\hat{y}_i,y_i)~$ (where $~\ell\left(\cdot,\cdot
 ight)$ is MSE loss)

$$\ell(\hat{y}_i, y_i) = \frac{1}{2} (y_i - \hat{y}_i)^2 := E_i$$



- Similarly, we can compute gradients with respect to $\Theta_{k-2}, \ldots, \Theta_1$
 - And update using the same update rule

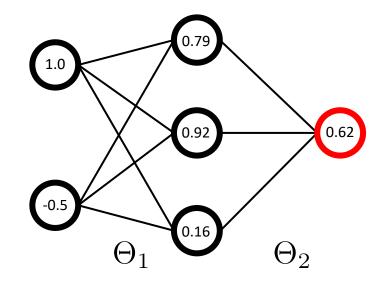
$$\mathbf{x}_{i} = \begin{pmatrix} 1.0 \\ -0.5 \end{pmatrix} \quad y_{i} = (1.0) \quad \Theta_{1} = \begin{pmatrix} 1.2 & 2.1 & 1.5 \\ -0.3 & -0.7 & 0.3 \end{pmatrix} \quad \Theta_{2} = \begin{pmatrix} -0.2 \\ 0.5 \\ 1.3 \end{pmatrix}$$

• Compute the error $\ell(\hat{y}_i, y_i)$

$$\ell(\hat{y}_i, y_i) = \frac{1}{2}(y_i - \hat{y}_i)^2 = 0.072$$

• Compute $\frac{\partial E_i}{\partial \hat{y}_i}$

$$\frac{\partial E_i}{\partial \hat{y}_i} = (\hat{y}_i - y_i) = -0.38$$



1

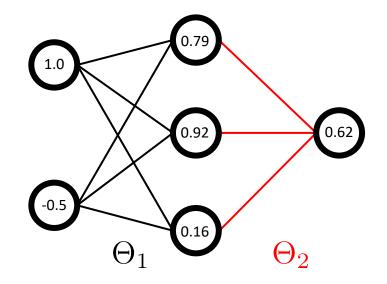
$$\mathbf{x}_{i} = \begin{pmatrix} 1.0 \\ -0.5 \end{pmatrix} \quad y_{i} = (1.0) \quad \Theta_{1} = \begin{pmatrix} 1.2 & 2.1 & 1.5 \\ -0.3 & -0.7 & 0.3 \end{pmatrix} \quad \Theta_{2} = \begin{pmatrix} -0.2 \\ 0.5 \\ 1.3 \end{pmatrix}$$

• Compute $\frac{\partial E_i}{\partial \Theta_2}$

$$\frac{\partial E_i}{\partial \Theta_2} = (\hat{y}_i - y_i)\sigma'(s_2)\mathbf{h}_1 = \begin{pmatrix} 0.02\\ -0.05\\ -0.12 \end{pmatrix}$$

• Update Θ_2 with $\gamma=1$

$$\Theta_2 = \begin{pmatrix} -0.2\\0.5\\1.3 \end{pmatrix} - 1 \begin{pmatrix} 0.02\\-0.05\\-0.12 \end{pmatrix} = \begin{pmatrix} -0.22\\0.55\\1.42 \end{pmatrix}$$



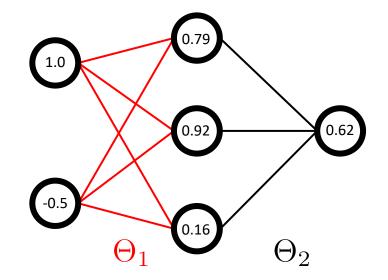
$$\mathbf{x}_{i} = \begin{pmatrix} 1.0 \\ -0.5 \end{pmatrix} \quad y_{i} = (1.0) \quad \Theta_{1} = \begin{pmatrix} 1.2 & 2.1 & 1.5 \\ -0.3 & -0.7 & 0.3 \end{pmatrix} \quad \Theta_{2} = \begin{pmatrix} -0.2 \\ 0.5 \\ 1.3 \end{pmatrix}$$

• Compute $\frac{\partial E_i}{\partial \Theta_2}$

$$\frac{\partial E_i}{\partial \Theta_2} = (\hat{y}_i - y_i)\sigma'(s_2)\mathbf{h}_1 = \begin{pmatrix} 0.02\\ -0.05\\ -0.12 \end{pmatrix}$$

• Update Θ_2 with $\gamma=1$

$$\Theta_2 = \begin{pmatrix} -0.2\\0.5\\1.3 \end{pmatrix} - 1 \begin{pmatrix} 0.02\\-0.05\\-0.12 \end{pmatrix} = \begin{pmatrix} -0.22\\0.55\\1.42 \end{pmatrix}$$



• Similarly, we can update Θ_1

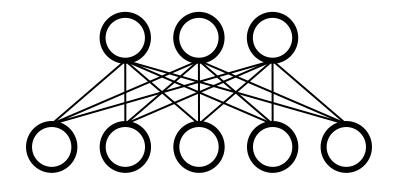
Table of Contents

- 1. Deep Neural Networks (DNN)
 - Basics
 - Training : Back propagation

2. Convolutional Neural Networks (CNN)

- Basics
- Convolution and Pooling
- Some applications
- 3. Recurrent Neural Networks (RNN)
 - Basics
 - Character-level language model (example)
- 4. Question
 - Why is it difficult to train a deep neural network?

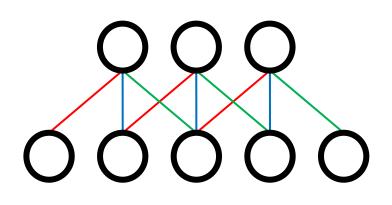
- Previous DNNs use fully-connected layers
 - Connect **all** the neurons between the layers



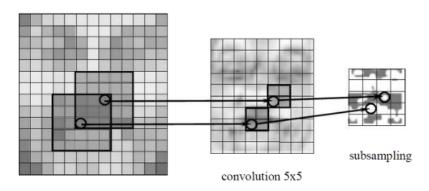
- Drawbacks
 - (-) Large number of parameters
 - Easy to be over-fitted
 - Large memory consumption
 - (-) Does not enforce any structure, e.g., *local* information
 - In many applications, local features are important, e.g., images, language, etc.

CNN: Basics

- Weight sharing and local connectivity (convolution)
 - Use multiple filters convolve over inputs
 - (+) Reduce the number of parameters (less over-fitting)
 - (+) Learn **local** features
 - (+) Translation invariance

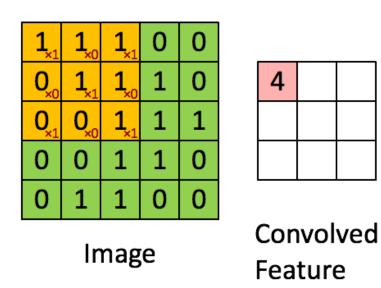


- Pooling (or subsampling)
 - Make the representations smaller
 - (+) Reduce number of parameters and computation

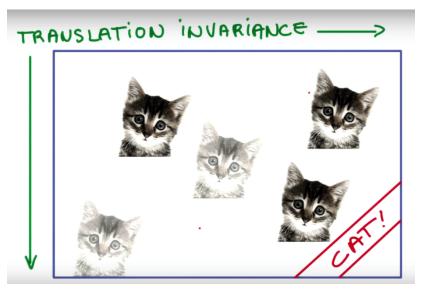


• Weight sharing

- Apply same weights over the different spatial regions
- One can achieve translation invariance (not perfect though)



- Weight sharing
 - Apply same weights over the different spatial regions
 - One can achieve translation invariance
- Translation invariance
 - When input is changed spatially (translated or shifted), the corresponding output to recognize the object should not be changed
 - CNN can produce the same output even though the input image is shifted due to weight sharing



4

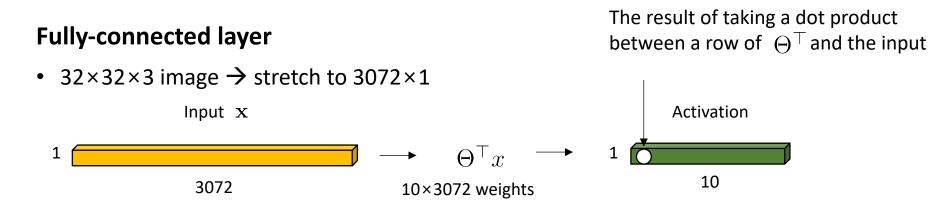
Convolved

Feature

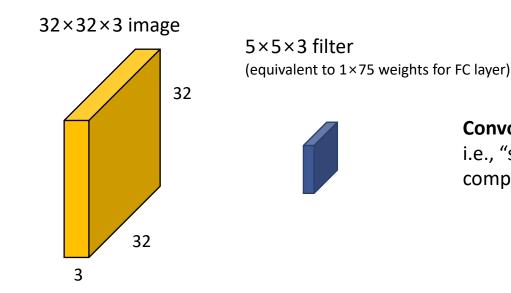
0

Image

CNN: Convolution

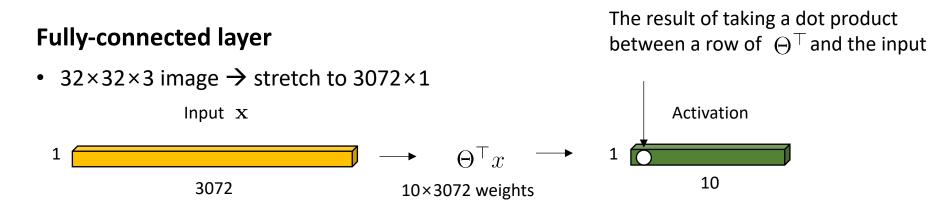


Convolution layer

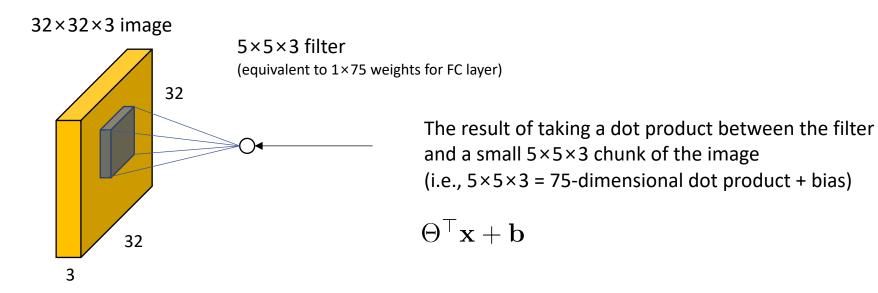


Convolve the filter with the image i.e., "slide over the image spatially, computing dot products"

CNN: Convolution



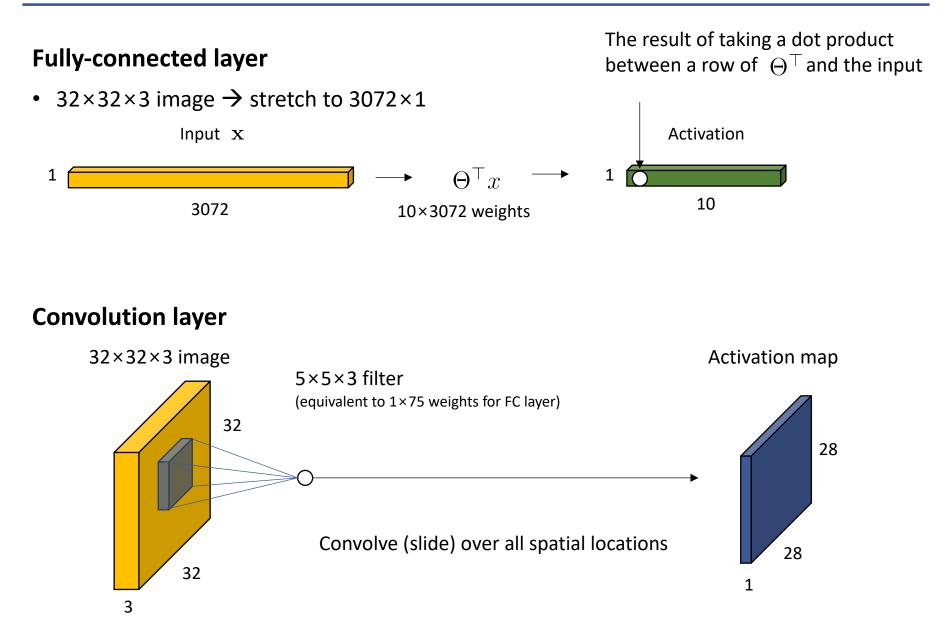
Convolution layer



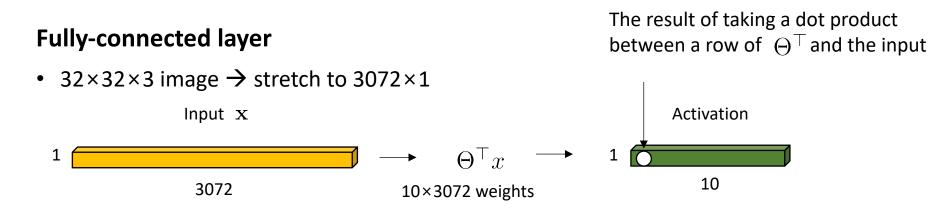
Algorithmic Intelligence Laboratory

*reference : http://cs231n.stanford.edu/2017/ 35

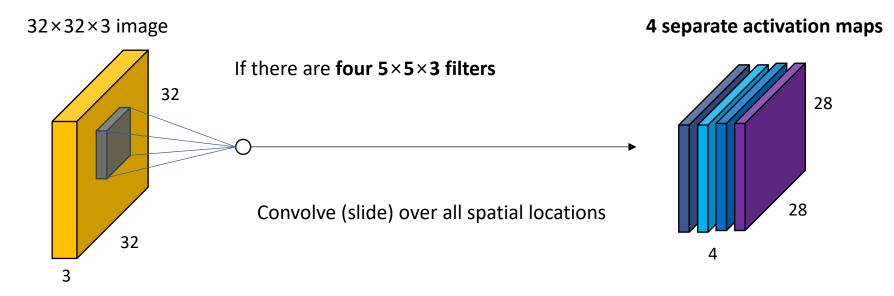
CNN: Convolution



CNN: Convolution



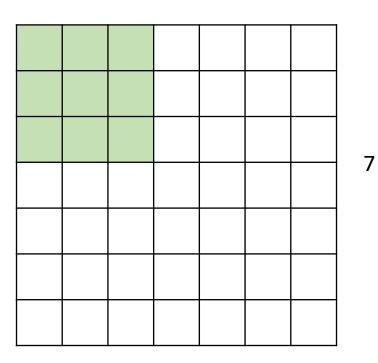
Convolution layer



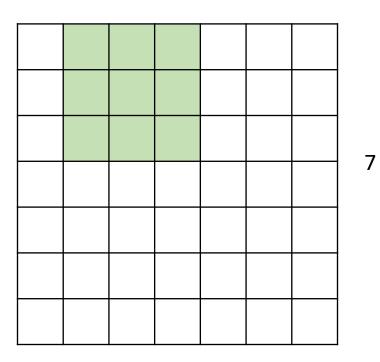
Algorithmic Intelligence Laboratory

*reference : http://cs231n.stanford.edu/2017/ 37

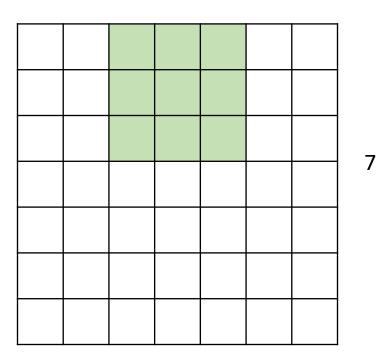
7



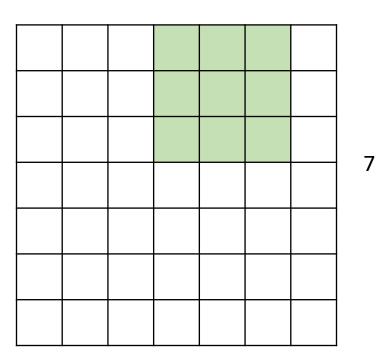
7



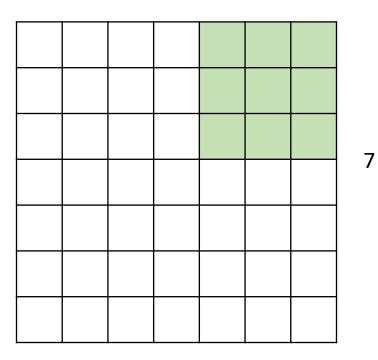
7



7



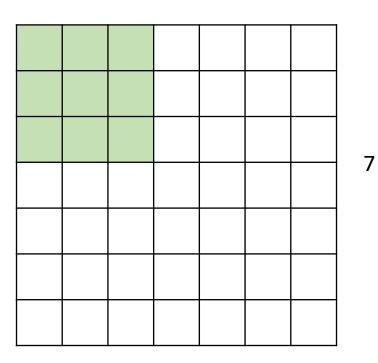
7



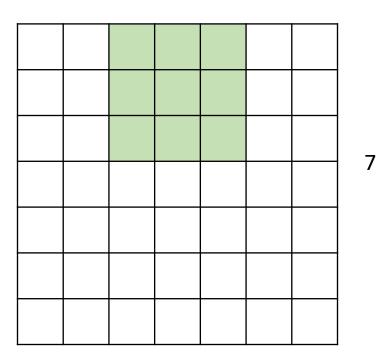
7×7 input (spatially) Assume 3×3 filter Applied with **stride 1**

 \rightarrow 5×5 output

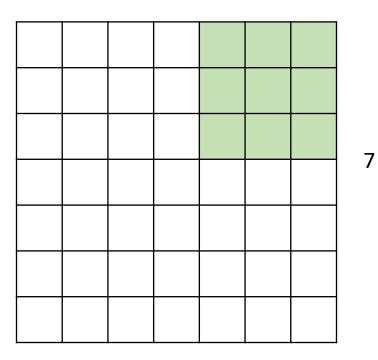
7



7



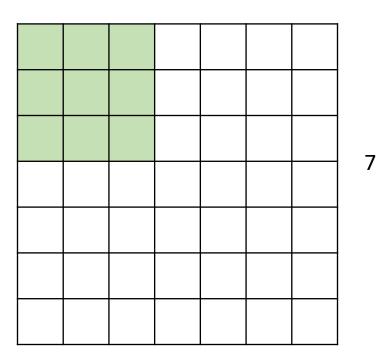
7



7×7 input (spatially) Assume 3×3 filter Applied with **stride 2**

\rightarrow 3×3 output

7



7×7 input (spatially) Assume 3×3 filter Applied with **stride 3**?

Doesn't fit! Cannot apply 3×3 filter on 7×7 input with stride 3

- In practice: Common to zero pad the border
 - Used to control the output filter size

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

9

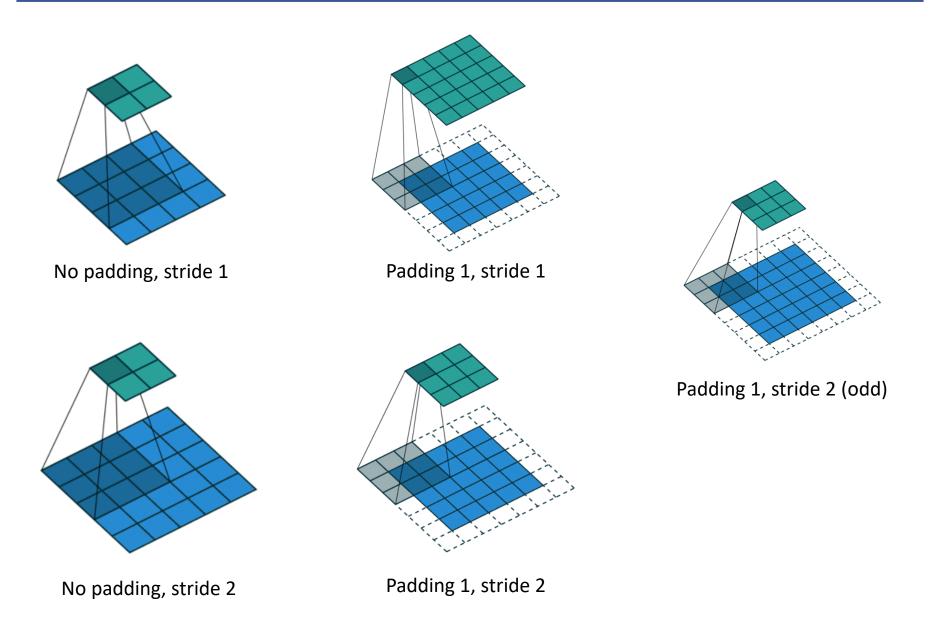
7×7 input (spatially) Zero pad 1 pixel border Assume 3×3 filter Applied with **stride 3**

 \rightarrow 3×3 output

9

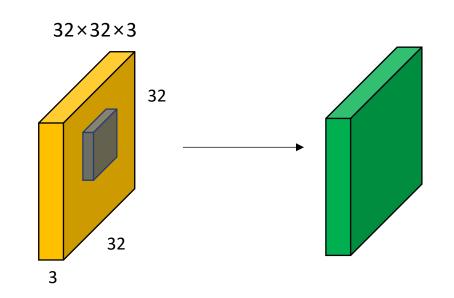
Algorithmic Intelligence Laboratory

CNN: An Example (Animation)



CNN: An Example

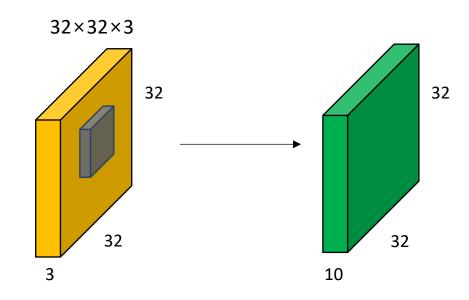
- Input volume : 32×32×3
- 10 5×5 filters with stride 1, pad 2



Output volume size = ?

CNN: An Example

- Input volume : 32×32×3
- 10 5×5 filters with stride 1, pad 2

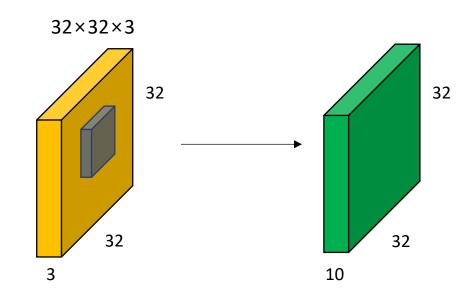


Output volume size = ?

- $(32 + 2 \times 2 5)/1 + 1 = 32$ spatially
- = > 32×32×10

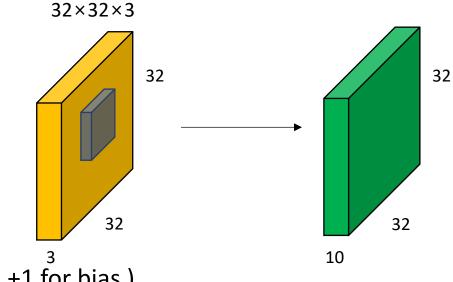
CNN: An Example

- Input volume : 32×32×3
- 10 5×5 filters with stride 1, pad 2



Number of parameters in this layer?

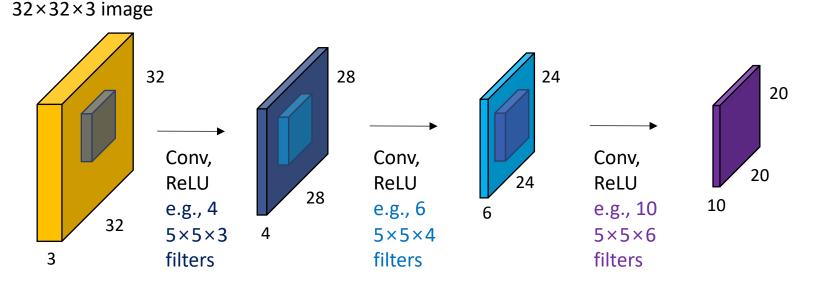
- Input volume : 32×32×3
- 10 5×5 filters with stride 1, pad 2



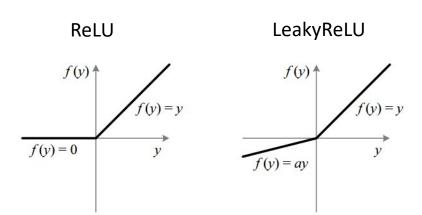
Number of parameters in this layer?

- Each filter has $5 \times 5 \times 3 + 1 = 76$ params (+1 for bias)
- = > 76 × 10 = 760

• **ConvNet** is a sequence of Convolutional layers, followed by non-linearity



- Choices of other non-linearity
 - Tanh/Sigmoid
 - ReLU [Nair et al., 2010]
 - Leaky ReLU [Maas et. al., 2013]



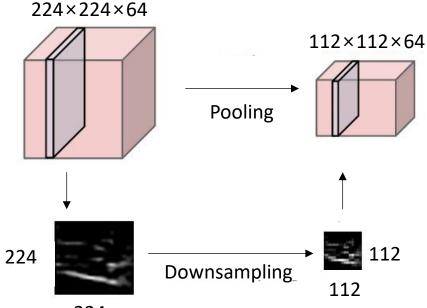
*reference: http://cs231n.stanford.edu/2017/

*Image source: https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6 53

CNN: Pooling

• Pooling layer

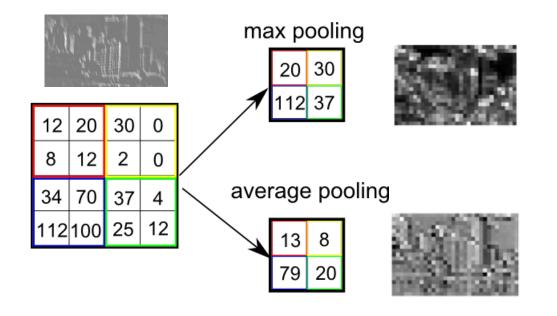
- Makes the representations smaller and more manageable
- Operates over each activation map independently
- Enhance translation invariance (invariance to small transformation)
- Larger receptive fields (see more of input)
- Regularization effect



Algorithmic Intelligence Laboratory

CNN: Pooling

- Max pooling and average pooling
 - With 2×2 filters and stride 2



	Astrobara		in	out	al de la transmita ella est		are-sard))
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

ROI pooling

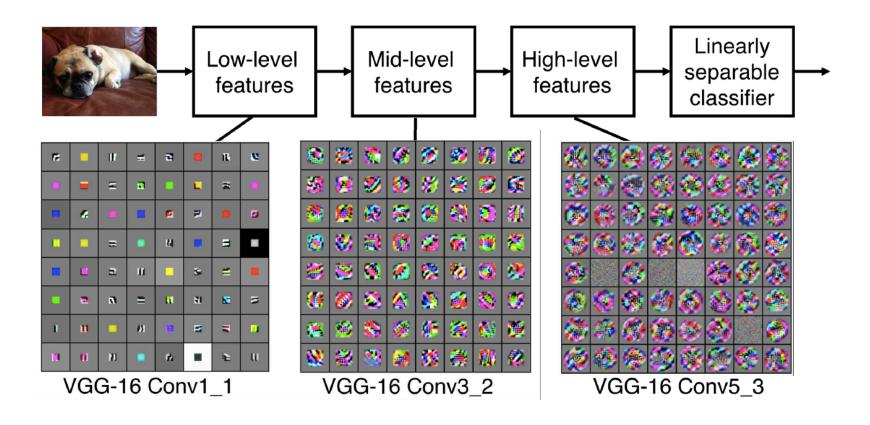
- Another kind of pooling layers are also used
 - e.g. stochastic pooling, ROI pooling

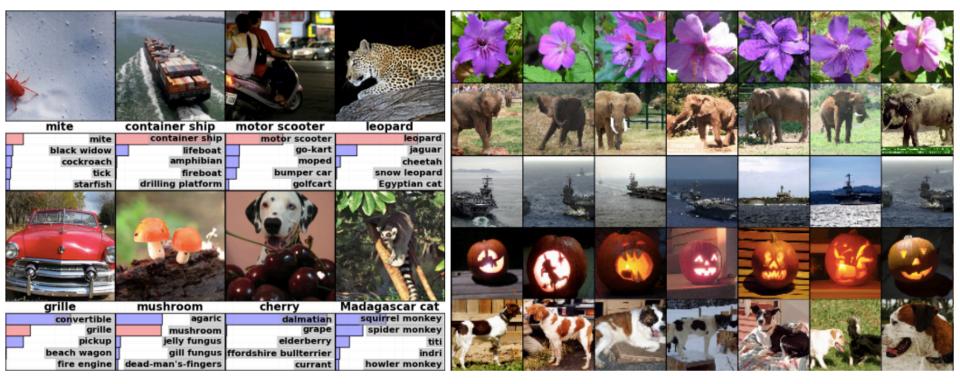
*source:

https://deepsense.ai/region-of-interest-pooling-explained/ http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf https://vaaaaaanquish.hatenablog.com/entry/2015/01/26/060622 55

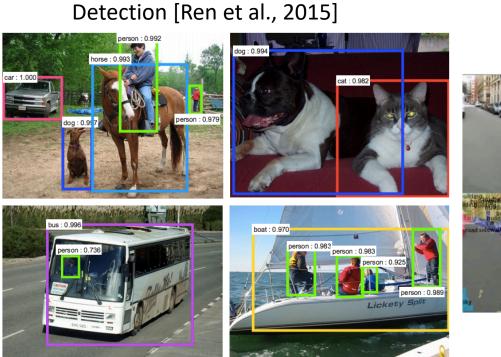
Algorithmic Intelligence Laboratory

- Visualization of CNN feature representations [Zeiler et al., 2014]
 - VGG-16 [Simonyan et al., 2015]





Classification and retrieval [Krizhevsky et al., 2012]



Segmentation [Farabet et al., 2013]

CNN in Computer Vision: Everywhere

Self-driving cars

Human pose estimation [Cae et al., 2017]

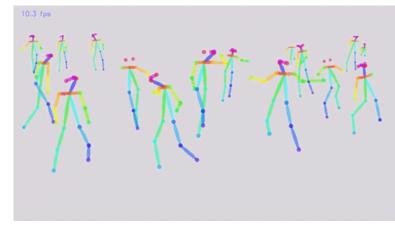


Image captioning [Vinyals et al., 2015] [Karpathy et al., 2015]No errorsMinor errorsSomewhat related

A white teddy bear sitting in the grass

A man in a baseball uniform throwing a ball

A woman is holding a cat in her hand

Algorithmic Intelligence Laboratory

Table of Contents

- 1. Deep Neural Networks (DNN)
 - Basics
 - Training : Back propagation
- 2. Convolutional Neural Networks (CNN)
 - Basics
 - Convolution and Pooling
 - Some applications

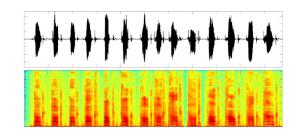
3. Recurrent Neural Networks (RNN)

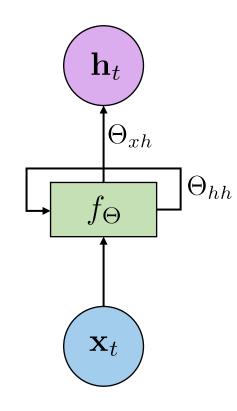
- Basics
- Character-level language model (example)
- 4. Question
 - Why is it difficult to train a deep neural network ?

- CNN models spatial invariance information
- Recurrent Neural Network (RNN)
 - Models temporal information
 - Hidden states as a function of inputs and previous time step information

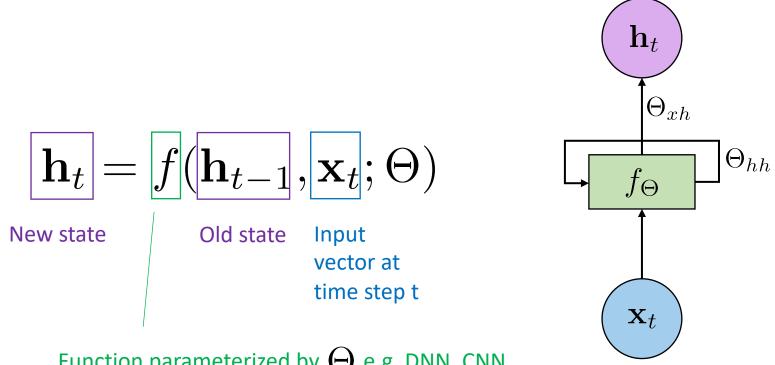
$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t; \Theta)$$

- Temporal information is important in many applications
 - Language
 - Speech
 - Video





Process a sequence of vectors by applying ٠ recurrence formula at every time step :

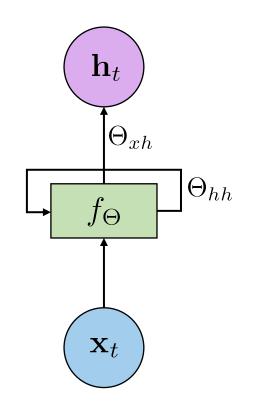


Function parameterized by Θ e.g, DNN, CNN

 Process a sequence of vectors by applying recurrence formula at every time step :

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t; \Theta)$$

• Same function and the same set of parameters f_{Θ} are used at every time step



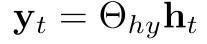
RNN: Vanilla RNN

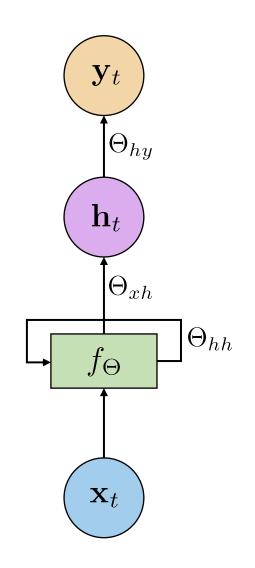
- Simple RNN
 - The state consists of a single "hidden" vector \mathbf{h}_t
 - Vanilla RNN (or sometimes called Elman RNN)

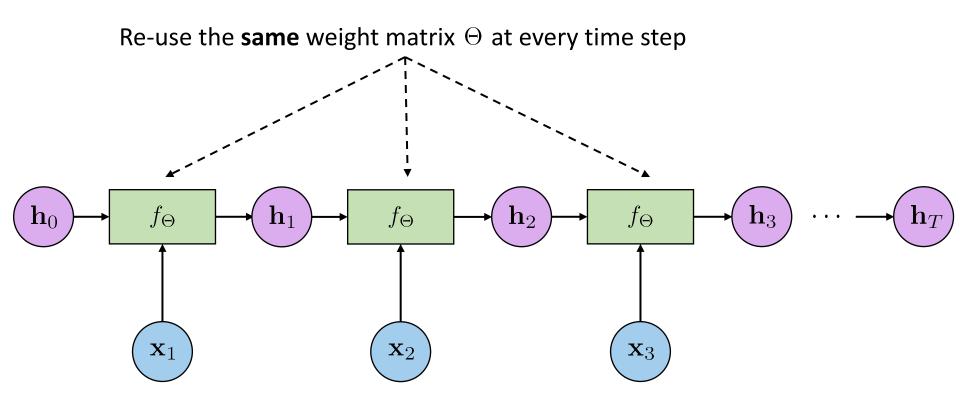
$$\mathbf{h}_{t} = f(\mathbf{h}_{t-1}, \mathbf{x}_{t}; \Theta)$$

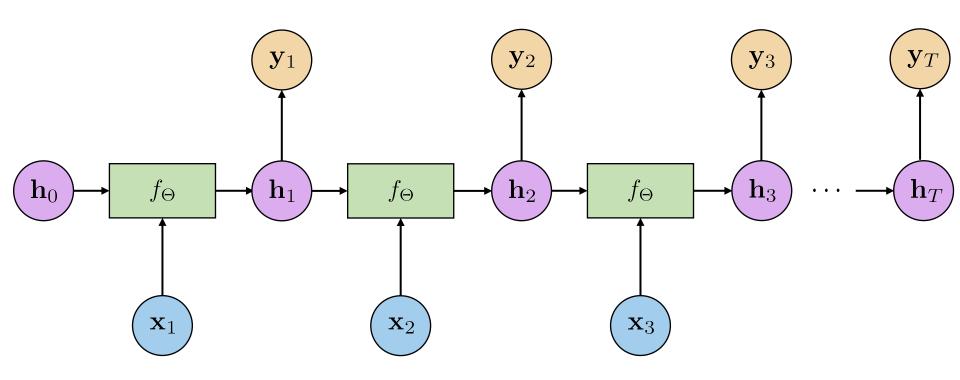
$$\downarrow$$

$$\mathbf{h}_{t} = \tanh(\Theta_{hh}\mathbf{h}_{t-1} + \Theta_{xh}\mathbf{x}_{t})$$







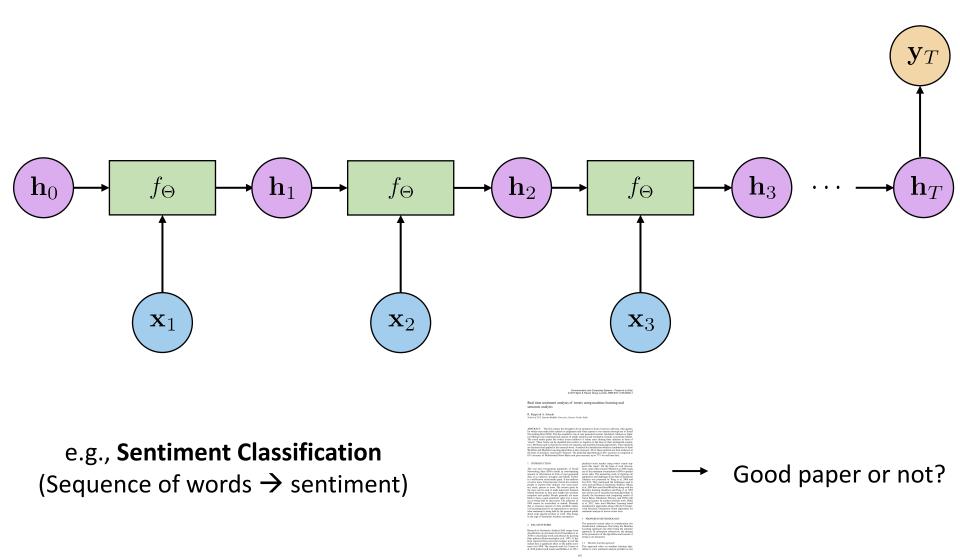


e.g., **Machine Translation** (Sequence of words → Sequence of words)

Input sentence:	Translation (PBMT):	Translation (GNMT):	Translation (human):
李克強此行將啟動中加 總理年度對話機制,與 加拿大總理社會多舉行 兩國總理首次年度對 話。	Li Keglang premier added this line to start the annual dialogue mechanism with the Canadian Prime Minister Trudeau two prime ministers held its first annual session.	Li Keqiang will start the annual dialogue mechanism with Prime Minister Trudeau of Canada and hold the first annual dialogue between the two premiers.	Li Keqiang will initiate the annual dialogue mechaniani between premiers of China and Canada during this visit, and hold the first annual dialogue with Premier Trudeau of Canada.

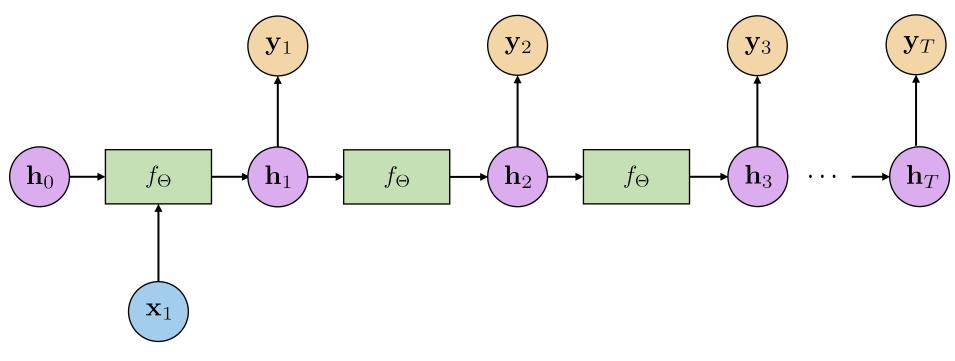
Algorithmic Intelligence Laboratory

*reference : http://cs231n.stanford.edu/2017/ 66



Algorithmic Intelligence Laboratory

*reference : http://cs231n.stanford.edu/2017/ 67



e.g., **Image Captioning** (Image → sequence of words)

No errors

A white teddy bear sitting in the grass

Minor errors

A man in a baseball

uniform throwing a ball

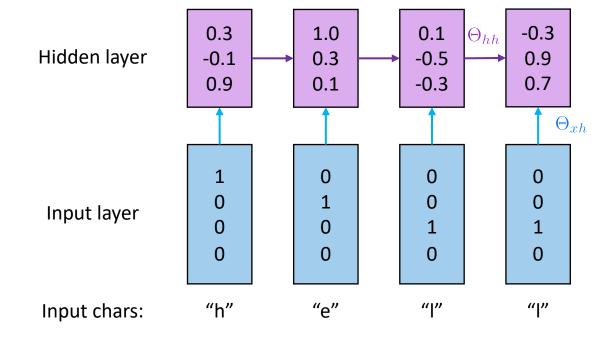
Somewhat related

A woman is holding a cat in her hand

- Character-level language model
- Vocabulary : [h,e,l,o]

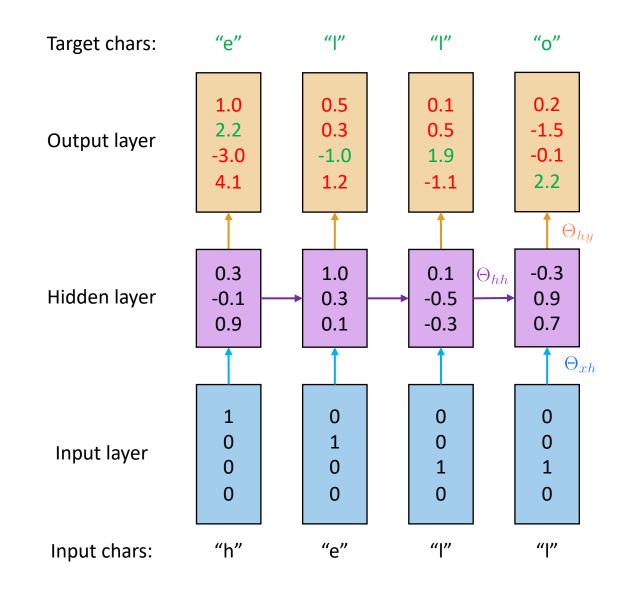
$$\mathbf{h}_t = \tanh(\Theta_{hh}\mathbf{h}_{t-1} + \Theta_{xh}\mathbf{x}_t)$$

• Example training sequence : "hello"



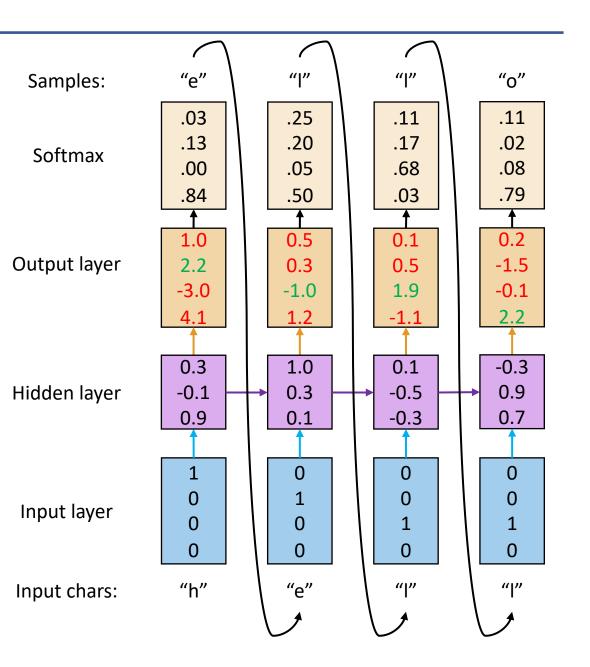
RNN: An Example

- Character-level language model
- Vocabulary : [h,e,l,o]
- Example training sequence : "hello"



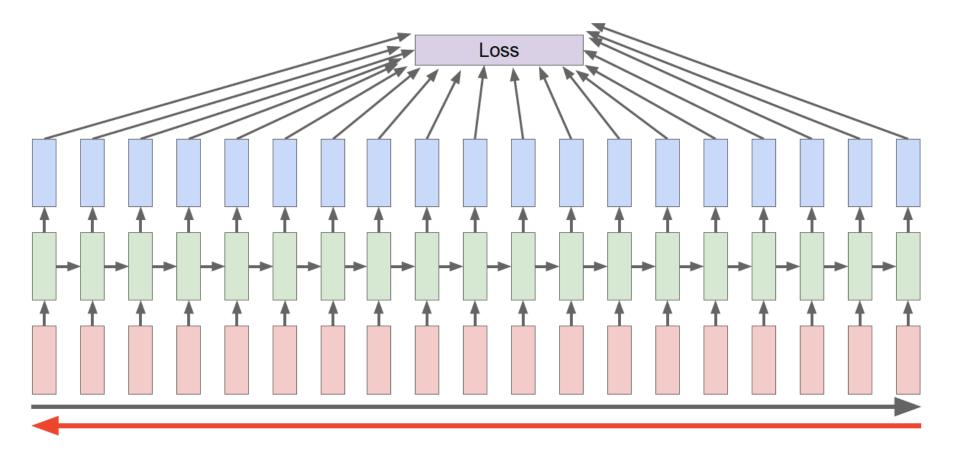
RNN: An Example

- Character-level
 language model
- Vocabulary : [h,e,l,o]
- At test time, sample character one at a time and feedback to model



RNN: Backpropagation Through Time (BPTT)

- Backpropagation through time (BPTT)
- Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient



Contents

- 1. Deep Neural Networks (DNN)
 - Basics
 - Training : Back propagation
- 2. Convolutional Neural Networks (CNN)
 - Basics
 - Convolution and Pooling
 - Some applications
- 3. Recurrent Neural Networks (RNN)
 - Basics
 - Character-level language model (example)

4. Question

• Why is it difficult to train a deep neural network?

Question

- Why is it difficult to train a deep neural network?
- Can we just simply stack multiple layers and train them all?
 - Unfortunately, it does not work well
 - Even if we have infinite amount of computational resource

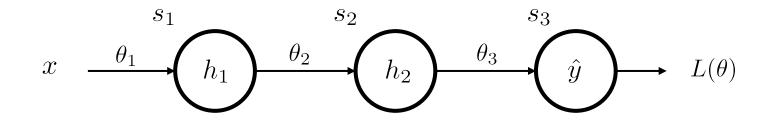
Vanishing gradient problem :

- The magnitude of the gradients **shrink exponentially** as we backpropagate through **many layers**
- Since typical activation functions such as sigmoid or tanh are **bounded**
- The phenomenon is called *vanishing gradient* problem

Vanishing Gradient Problem

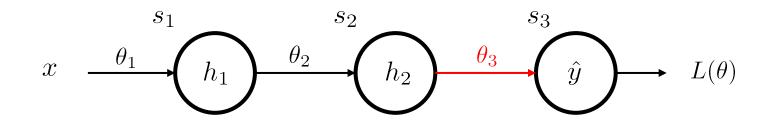
- Why do gradients vanish?
- Think of a simplified 3-layer neural network

 $\hat{y} = \sigma \left(\theta_3 \sigma \left(\theta_2 \sigma(\theta_1 x) \right) \right)$



- Why do gradients vanish?
- Think of a simplified 3-layer neural network

$$\hat{y} = \sigma \left(\theta_3 \sigma \left(\theta_2 \sigma(\theta_1 x) \right) \right)$$



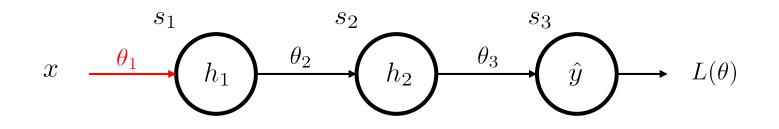
- First, let's update θ_3
 - Calculate the gradient of the loss with respect to θ_3

$$\frac{\partial L}{\partial \theta_3} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial s_3} \frac{\partial s_3}{\partial \theta_3} = \frac{\partial L}{\partial \hat{y}} \sigma'(s_3) h_2$$

Algorithmic Intelligence Laboratory

- Why do gradients vanish?
- Think of a simplified 3-layer neural network

 $\hat{y} = \sigma \left(\theta_3 \sigma \left(\theta_2 \sigma(\theta_1 x) \right) \right)$



- How about θ_1 ?
 - Calculate the gradient of the loss with respect to θ_1

$$\frac{\partial L}{\partial \theta_1} = \frac{\partial L}{\partial \hat{y}} \sigma'(s_3) h_2 \sigma'(s_2) h_1 \sigma'(s_1) x$$

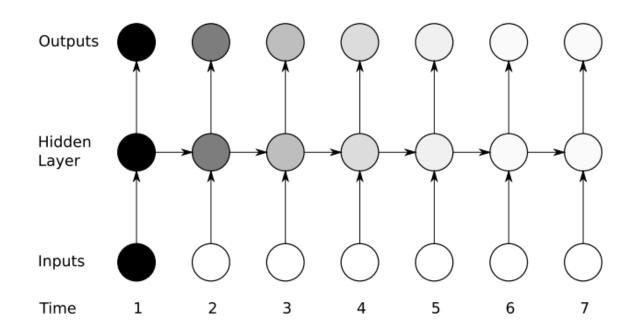
Sigmoid $\sigma(x) = \frac{1}{1+e^{-x}}$

Gradients < 1

Keep multiplying values < 1 will decrease the amount exponentially

Vanishing Gradient Over Time

- This is more problematic in vanilla RNN (with tanh/sigmoid activation)
 - When trying to handle long temporal dependency
 - Similar to previous example, the gradient vanishes over time

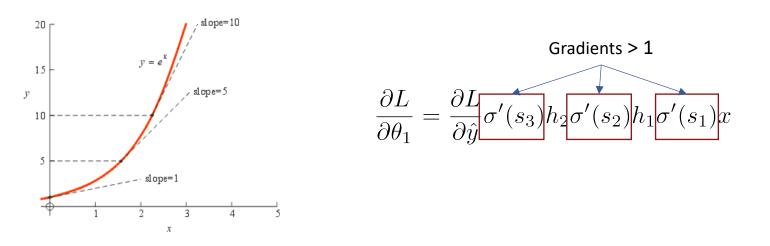


Quiz

- Vanishing gradient problem is critical in training neural network
- Q: Can we just use activation function that has gradients > 1?

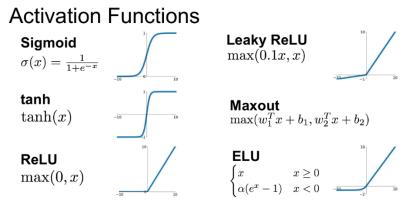
Answer for Quiz

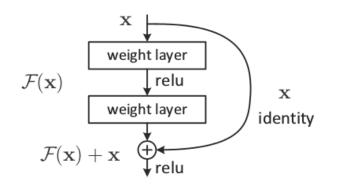
- Not really. It will cause another problem so called exploding gradients.
- Let's consider if we use exponential activation function:
 - The magnitude of gradient is always larger than 1 when input > 0
 - If output of the networks are positive, then the gradients to update θ_1 will explode

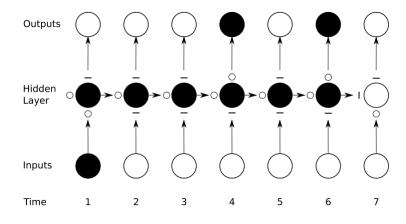


- This will cause the training very unstable
 - The weights will be updated in very large amount, resulting in NaN values
 - Very critical problem in training neural networks

- Possible solutions
 - Activation functions
 - CNN: Residual networks [He et al., 2016]
 - RNN: LSTM (Long Short-Term Memory)







LSTM (Long Short-Term Memory)

*source

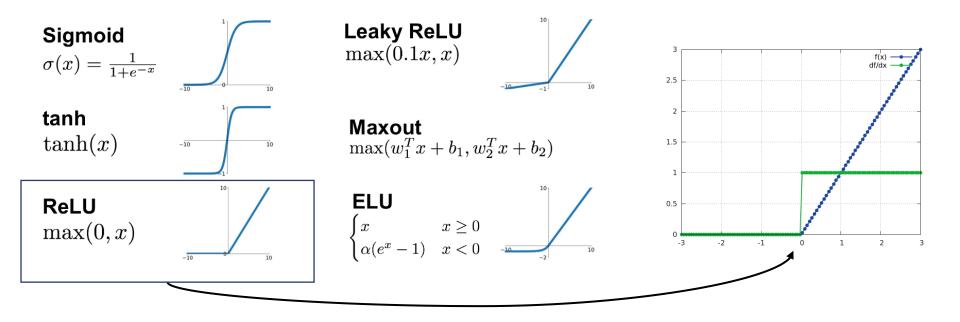
https://mediatum.ub.tum.de/doc/673554/file.pdf

Algorithmic Intelligence Laboratory

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092 81

Solving Vanishing Gradient: Activation Functions

- Use different activation functions that are not bounded:
 - Recent works largely use **ReLU** or their variants
 - No saturation, easy to optimize

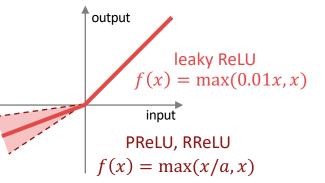


*source: https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092

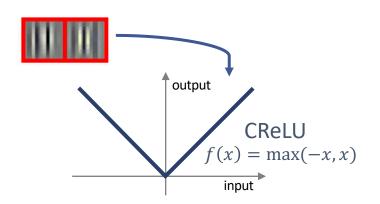
- Several generalizations of ReLU
 - Leaky ReLU [Maas et. al., 2013]: Introducing non-zero gradient for 'dying ReLUs'
 - Parameteric ReLU (PReLU) [He et al., 2015]: Additional learnable parameter a on leaky ReLUs.
 - Randomized ReLU (RReLU) [Xu et al., 2015]: Samples parameter a from uniform distribution.

Activation	Training Error	Test Error
ReLU	0.00318	0.1245
Leaky ReLU, $a = 100$	0.0031	0.1266
Leaky ReLU, $a = 5.5$	0.00362	0.1120
PReLU	0.00178	0.1179
RReLU $(y_{ji} = x_{ji}/\frac{l+u}{2})$	0.00550	0.1119

Table 3. Error rate of CIFAR-10 Network in Network with different activation function $\$

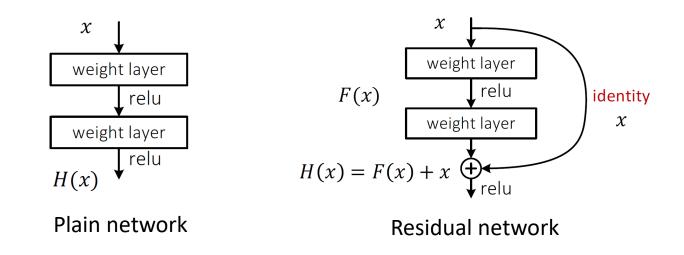


- Concatenated ReLU (CReLU) [Shang et al., 2016]
 - 'Opposite pairs' of filters found in CNN
 - Needs to learn twice the information
 - Two-sided ReLU



Solving Vanishing Gradient: Residual Networks

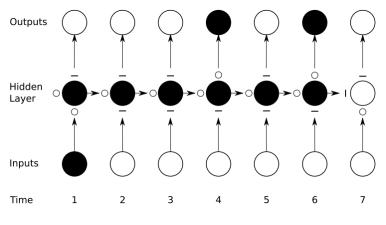
- Residual networks (ResNet [He et al., 2016])
 - Feed-forward NN with "shortcut connections"
 - Can preserve gradient flow throughout the entire depth of the network
 - Possible to train more than 100 layers by simply stacking residual blocks



- LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units)
 - Specially designed RNN which can remember information for much longer period

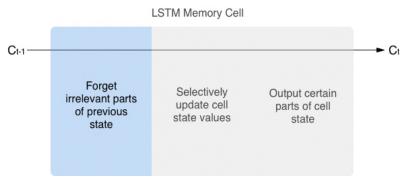
3 main steps:

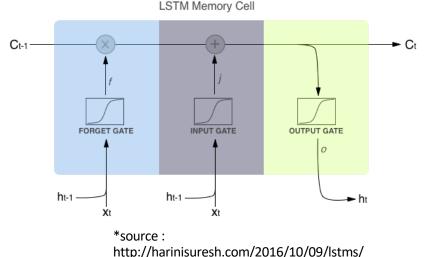
- Forget irrelevant parts of previous state
- Selectively update the cell state based on the new input
- Selectively decide what part of the cell state to output as the new hidden state



Preservation of gradient information in LSTM

Algorithmic Intelligence Laboratory





https://mediatum.ub.tum.de/doc/673554/file.pdf 85

References

- [Nair et al., 2010] "Rectified linear units improve restricted boltzmann machines." ICML 2010. link : https://dl.acm.org/citation.cfm?id=3104425
- [Krizhevsky et al., 2012] "Imagenet classification with deep convolutional neural networks." NIPS 2012 link : https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
- [Maas et al., 2013] "Rectifier nonlinearities improve neural network acoustic models." ICML 2013. link : https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
- [Farabet et al., 2013] "Learning hierarchical features for scene labeling." IEEE transactions on PAMI 2013 link : https://www.ncbi.nlm.nih.gov/pubmed/23787344
- [Zeiler et al., 2014] "Visualizing and understanding convolutional networks." ECCV 2014. link : https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
- [Simonyan et al., 2015] "Very deep convolutional networks for large-scale image recognition." ICLR 2015 link : <u>https://arxiv.org/abs/1409.1556</u>
- [Ren et al., 2015] "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015 link : https://arxiv.org/abs/1506.01497
- [Vinyals et al., 2015] "Show and tell: A neural image caption generator." CVPR 2015. link : https://arxiv.org/abs/1411.4555
- [Karpathy et al., 2015] "Deep visual-semantic alignments for generating image descriptions." CVPR 2015 link : https://cs.stanford.edu/people/karpathy/cvpr2015.pdf
- [He et al., 2015] "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." ICCV 2015. link : https://arxiv.org/abs/1502.01852

References

- [Xu et al., 2015] "Empirical evaluation of rectified activations in convolutional network." *arXiv preprint*, 2015. link : https://arxiv.org/abs/1505.00853
- [Shang et al., 2016] "Understanding and improving convolutional neural networks via concatenated rectified linear units." ICML 2016.
 link : <u>https://arxiv.org/abs/1603.05201</u>
- [He et al., 2016] "Deep residual learning for image recognition." CVPR 2016 link : https://arxiv.org/abs/1512.03385
- [Cae et al., 2017] "Realtime multi-person 2d pose estimation using part affinity fields.", CVPR 2017 link : https://arxiv.org/abs/1611.08050
- [Fei-Fei and Karpathy, 2017] "CS231n: Convolutional Neural Networks for Visual Recognition", 2017. (Stanford University)
 link : http://cs231n.stanford.edu/2017/