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What is Machine/Deep Learning?

• Human Learning

• Machine Learning = Build an algorithm from data
• Deep learning is a special type of algorithms in machine learning

2

Learning perceptions

Learning interactions



Algorithmic Intelligence Laboratory

Definition of Deep Learning

• An algorithm that learns multiple levels of abstractions in data
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Lots of Data

Objects

Edge Parts

Deep & Large Networks

Multi-layer Data Representations (feature hierarchy)
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Deep Learning = Feature Learning

• Why deep learning outperforms other machine learning (ML) approaches for 
vision, speech, language?

Feature Extraction Other MLInput Output

Deep NetworkInput Output

SIFT
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• Human brain is made up of 100 billion neurons
• Neurons receive electric signals at the dendrites and send them to the axon
• Dendrites can perform complex non-linear computations 
• Synapses are not a single weight but a complex non-linear dynamical system 

DNN: Neurons in the Brain

7*source : https://pt.slideshare.net/hammawan/deep-neural-networks
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• Artificial neural networks
• A simplified version of biological neural network 

DNN: Artificial Neural Networks
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• Similarities
• Consists of neurons & connections between neurons 
• Learning process = Update of connections
• Massive parallel processing 

• Differences
• Computation within neuron vastly simplified
• Discrete time steps 
• Typically some of supervised learning with massive number of stimuli 

DNN: The Brain vs. Artificial Neural Networks

9*source : http://mt-class.org/jhu/slides/lecture-nn-intro.pdf
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• Deep neural networks 
• Neural network with more than 2 layers
• Can model more complex functions 

DNN: Basics
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• Training dataset 
• :         input data 
• :         target data (or label for classification)

• Neural network                           parameterized by 

DNN: Notation

11

Next, forward propagation
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• Forward propagation: calculate the output        of the neural network

where            is activation function (e.g., sigmoid function) and       is number of layers

DNN: Forward Propagation 

12
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DNN: Forward Propagation (Example)

13
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• Input data 

DNN: Forward Propagation (Example)

14

1.0
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• Compute hidden units

DNN: Forward Propagation (Example)
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• Compute output 

DNN: Forward Propagation (Example)

16

Next, training objective

0.79

0.92

0.16

1.0

-0.5

0.62



Algorithmic Intelligence Laboratory

• Objective: Find a parameter that minimizes the error (or empirical risk)

where              is  a loss function e.g., MSE(Mean square error) or cross entropy

DNN: Objective

17

Next, how to optimize           ? 



Algorithmic Intelligence Laboratory

• Gradient descent (GD) updates parameters iteratively to the gradient direction.

• Backpropagation 
• First adjust the last layer weights
• Propagate error back to each previous layers
• Adjust previous layer weights

DNN: Training 

18

parameters

learning rate

loss function

Next, backpropagation in details 
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DNN: Backpropagation 

19

• Consider the input 

• Forward propagation to compute output 

• layer intermediate output 
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DNN: Backpropagation 
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• Forward propagation to compute output 

• layer intermediate output 
• Compute error (where               is MSE loss ) 
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DNN: Backpropagation 
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DNN: Backpropagation 
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• Consider the input 

• Forward propagation to compute output 

• layer intermediate output 
• Compute error                    (where               is MSE loss ) 

• Compute derivative of         with respect to 

• Parameter update rule learning rate
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DNN: Backpropagation 
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• Consider the input 

• Forward propagation to compute output 

• layer intermediate output 
• Compute error                    (where               is MSE loss ) 

• Compute derivative of         with respect to

• Parameter update rule learning rate
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DNN: Backpropagation 

25

• Consider the input 

• Forward propagation to compute output 

• layer intermediate output 
• Compute error                    (where               is MSE loss ) 

• Similarly, we can compute gradients with respect to 
• And update using the same update rule  
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• Compute the error

• Compute 

DNN: Backpropagation (Example)
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• Compute 

• Update with 

DNN: Backpropagation (Example)
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• Compute 

• Update         with 

• Similarly, we can update

DNN: Backpropagation (Example)

28
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• Previous DNNs use fully-connected layers
• Connect all the neurons between the layers

• Drawbacks
• (-) Large number of parameters

• Easy to be over-fitted
• Large memory consumption

• (-) Does not enforce any structure, e.g., local information
• In many applications, local features are important, e.g., images, language, etc.

CNN: Drawbacks of Fully-Connected DNN

30
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CNN: Basics

• Weight sharing and local connectivity (convolution)
• Use multiple filters convolve over inputs 
• (+) Reduce the number of parameters (less over-fitting)
• (+) Learn local features
• (+) Translation invariance

• Pooling (or subsampling)
• Make the representations smaller
• (+) Reduce number of parameters and computation

30*source : http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1794&rep=rep1&type=pdf
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• Weight sharing
• Apply same weights over the different spatial regions
• One can achieve translation invariance (not perfect though)

CNN: Weight Sharing and Translation Invariance 

32*source : https://www.cc.gatech.edu/~san37/post/dlhc-cnn/
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• Weight sharing
• Apply same weights over the different spatial regions
• One can achieve translation invariance

• Translation invariance 
• When input is changed spatially (translated or shifted), the corresponding output 

to recognize the object should not be changed 
• CNN can produce the same output even though the input image is shifted due to 

weight sharing

CNN: Weight Sharing and Translation Invariance 

33*source : https://www.cc.gatech.edu/~san37/post/dlhc-cnn/
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Fully-connected layer
• 32×32×3 image à stretch to 3072×1 

Convolution layer

CNN: Convolution

34

Input

1

3072 10×3072 weights

Activation 

1
10

The result of taking a dot product 
between a row of          and the input

3

32

32

32×32×3 image 
5×5×3 filter
(equivalent to 1×75 weights for FC layer)

Convolve the filter with the image
i.e., “slide over the image spatially, 
computing dot products”

*reference : http://cs231n.stanford.edu/2017/
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Fully-connected layer
• 32×32×3 image à stretch to 3072×1 

Convolution layer

CNN: Convolution

35

1

3072 10×3072 weights

Activation 

1
10

3

32

32

32×32×3 image 

The result of taking a dot product between the filter 
and a small 5×5×3 chunk of the image
(i.e., 5×5×3 = 75-dimensional dot product + bias)

5×5×3 filter
(equivalent to 1×75 weights for FC layer)

Input

The result of taking a dot product 
between a row of          and the input

*reference : http://cs231n.stanford.edu/2017/
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Fully-connected layer
• 32×32×3 image à stretch to 3072×1 

Convolution layer

CNN: Convolution

36

1

3072 10×3072 weights

Activation 

1
10

3

32
Convolve (slide) over all spatial locations 

32

32×32×3 image Activation map 

1

28

28

5×5×3 filter
(equivalent to 1×75 weights for FC layer)

Input

The result of taking a dot product 
between a row of          and the input

*reference : http://cs231n.stanford.edu/2017/
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Fully-connected layer
• 32×32×3 image à stretch to 3072×1 

Convolution layer

CNN: Convolution

37

1

3072 10×3072 weights

Activation 

1
10

3

32

If there are four 5×5×3 filters

Convolve (slide) over all spatial locations 

32

32×32×3 image 4 separate activation maps 

4

28

28

Input

The result of taking a dot product 
between a row of          and the input

*reference : http://cs231n.stanford.edu/2017/
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• Closer look at spatial dimensions 

CNN: An Example 

38

7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 1

*reference : http://cs231n.stanford.edu/2017/
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• Closer look at spatial dimensions 

CNN: An Example 
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7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 1

*reference : http://cs231n.stanford.edu/2017/
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• Closer look at spatial dimensions 

CNN: An Example 
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7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 1

*reference : http://cs231n.stanford.edu/2017/
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• Closer look at spatial dimensions 

CNN: An Example 
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7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 1

*reference : http://cs231n.stanford.edu/2017/



Algorithmic Intelligence Laboratory

• Closer look at spatial dimensions 

CNN: An Example 

42

7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 1

à 5×5 output 

*reference : http://cs231n.stanford.edu/2017/
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• Closer look at spatial dimensions 

CNN: An Example 

43

7

7

7×7 input (spatially)
Assume 3×3 filter 
Applied with stride 2

*reference : http://cs231n.stanford.edu/2017/
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• Closer look at spatial dimensions 

CNN: An Example 

44

7

7

7×7 input (spatially)
Assume 3×3 filter 
Applied with stride 2

*reference : http://cs231n.stanford.edu/2017/
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• Closer look at spatial dimensions 

CNN: An Example 

45

7

7

7×7 input (spatially)
Assume 3×3 filter 
Applied with stride 2

à 3×3 output 

*reference : http://cs231n.stanford.edu/2017/
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• Closer look at spatial dimensions 

CNN: An Example 

46

7

7

7×7 input (spatially)
Assume 3×3 filter 
Applied with stride 3 ? 

Doesn’t fit!
Cannot apply 3×3 filter on 
7×7 input with stride 3

*reference : http://cs231n.stanford.edu/2017/
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• In practice: Common to zero pad the border 
• Used to control the output filter size 

CNN: An Example 

47

9

7×7 input (spatially)
Zero pad 1 pixel border
Assume 3×3 filter 
Applied with stride 3 

à 3×3 output 

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

9

*reference : http://cs231n.stanford.edu/2017/
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CNN: An Example (Animation) 

48*source : https://github.com/vdumoulin/conv_arithmetic

No padding, stride 1

No padding, stride 2

Padding 1, stride 1

Padding 1, stride 2

Padding 1, stride 2 (odd)
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• Input volume : 32×32×3
• 10 5×5 filters with stride 1, pad 2 

Output volume size =  ? 

CNN: An Example 

49

3

32

32

32×32×3

*reference : http://cs231n.stanford.edu/2017/
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• Input volume : 32×32×3
•

Output volume size =  ?

• (32 + 2×2 - 5)/1 + 1 = 32 spatially 

• = > 32×32×10

CNN: An Example 

50

3

32

32

32×32×3

10

32

32

*reference : http://cs231n.stanford.edu/2017/

10 5×5 filters with stride 1, pad 2
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• Input volume : 32×32×3
• 10 5×5 filters with stride 1, pad 2 

Number of parameters in this layer?

CNN: An Example 

51

3

32

32

32×32×3

10

32

32

*reference : http://cs231n.stanford.edu/2017/
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• Input volume : 32×32×3
•

Number of parameters in this layer?

• Each filter has 5×5×3 + 1 = 76 params ( +1 for bias ) 

• = > 76×10 = 760

CNN: An Example 

52

3

32

32

32×32×3

10

32

32

*reference : http://cs231n.stanford.edu/2017/

10 5×5 filters with stride 1, pad 2



Algorithmic Intelligence Laboratory

• ConvNet is a sequence of Convolutional layers, followed by non-linearity

• Choices of other non-linearity 
• Tanh/Sigmoid
• ReLU [Nair et al., 2010]
• Leaky ReLU [Maas et. al., 2013]

CNN: Convolution

53

3

32

32

32×32×3 image 

4

28

28

Conv,
ReLU
e.g., 4
5×5×3
filters

Conv,
ReLU
e.g., 6
5×5×4
filters

6

24

24

Conv,
ReLU
e.g., 10
5×5×6
filters

10

20

20

*reference: http://cs231n.stanford.edu/2017/
*Image source: https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

ReLU LeakyReLU



Algorithmic Intelligence Laboratory

• Pooling layer
• Makes the representations smaller and more manageable
• Operates over each activation map independently 
• Enhance translation invariance (invariance to small transformation) 
• Larger receptive fields (see more of input)
• Regularization effect 

CNN: Pooling 

54

224×224×64

224
112

112
Downsampling

Pooling

112×112×64

224
*reference : http://cs231n.stanford.edu/2017/
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• Max pooling and average pooling 
• With 2×2 filters and stride 2

• Another kind of pooling layers are also used
• e.g. stochastic pooling, ROI pooling 

CNN: Pooling 

55

ROI pooling 

*source: 
https://deepsense.ai/region-of-interest-pooling-explained/
http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf
https://vaaaaaanquish.hatenablog.com/entry/2015/01/26/060622
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• Visualization of CNN feature representations [Zeiler et al., 2014]
• VGG-16 [Simonyan et al., 2015]

CNN: Visualization

56*reference : http://cs231n.stanford.edu/2017/
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CNN in Computer Vision: Everywhere

57

Classification and retrieval [Krizhevsky et al., 2012]
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CNN in Computer Vision: Everywhere

58

Detection [Ren et al., 2015] Segmentation [Farabet et al., 2013]

*reference : http://cs231n.stanford.edu/2017/
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CNN in Computer Vision: Everywhere

59

Self-driving cars Human pose estimation [Cae et al., 2017]

Image captioning [Vinyals et al., 2015][Karpathy et al., 2015]

*reference : http://cs231n.stanford.edu/2017/
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• CNN models spatial invariance information

• Recurrent Neural Network (RNN)
• Models temporal information
• Hidden states as a function of inputs and previous time step 

information

• Temporal information is important in many applications
• Language
• Speech
• Video

RNN: Basics 

61
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• Process a sequence of vectors by applying  
recurrence formula at every time step :

RNN: Basics 

62

New state Old state Input 
vector at 
time step t 

Function parameterized by        e.g, DNN, CNN 

*reference : http://cs231n.stanford.edu/2017/
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• Process a sequence of vectors by applying  
recurrence formula at every time step :

• Same function and the same set of parameters 
are used at every time step 

RNN: Basics 

63*reference : http://cs231n.stanford.edu/2017/
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• Simple RNN 
• The state consists of a single “hidden” vector 
• Vanilla RNN (or sometimes called Elman RNN)

RNN: Vanilla RNN

64*reference : http://cs231n.stanford.edu/2017/
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RNN: Computation Graph 

65

Re-use the same weight matrix      at every time step

*reference : http://cs231n.stanford.edu/2017/
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RNN: Computation Graph (Many to Many) 

66

e.g., Machine Translation
(Sequence of words à Sequence of words) 

*reference : http://cs231n.stanford.edu/2017/
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RNN: Computation Graph (Many to One)

67

e.g., Sentiment Classification
(Sequence of words à sentiment) 

*reference : http://cs231n.stanford.edu/2017/

Good paper or not?
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RNN: Computation Graph (One to Many)

68

e.g., Image Captioning
(Image à sequence of words) 

*reference : http://cs231n.stanford.edu/2017/
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• Character-level 
language model 

• Vocabulary : [h,e,l,o]

• Example training 
sequence : “hello”

RNN: An Example

69

1
0
0
0

0
1
0
0

0
0
1
0

0
0
1
0

Input chars:

Input layer

“h” “e” “l” “l”

0.3
-0.1
0.9

1.0
0.3
0.1

0.1
-0.5
-0.3

-0.3
0.9
0.7

Hidden layer

*reference : http://cs231n.stanford.edu/2017/
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• Character-level 
language model 

• Vocabulary : [h,e,l,o]

• Example training 
sequence : “hello”

RNN: An Example

70

1.0
2.2
-3.0
4.1

0.5
0.3
-1.0
1.2

0.1
0.5
1.9
-1.1

0.2
-1.5
-0.1
2.2

Output layer

Target chars: “e” “l” “l” “o”

1
0
0
0

0
1
0
0

0
0
1
0

0
0
1
0

Input chars:

Input layer

“h” “e” “l” “l”

0.3
-0.1
0.9

1.0
0.3
0.1

0.1
-0.5
-0.3

-0.3
0.9
0.7

Hidden layer

*reference : http://cs231n.stanford.edu/2017/
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• Character-level 
language model 

• Vocabulary : [h,e,l,o]

• At test time, sample 
character one at a 
time and feedback to 
model

RNN: An Example

71

1.0
2.2
-3.0
4.1

Output layer

Samples: “e”

1
0
0
0

Input chars:

Input layer

“h”

0.3
-0.1
0.9

Hidden layer

.03

.13

.00

.84

Softmax

0.5
0.3
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0
1
0
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.05
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0.1
0.5
1.9
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0
0
1
0
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-0.5
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.11

.17

.68

.03

0.2
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0
0
1
0

“l”

-0.3
0.9
0.7

.11

.02

.08

.79

*reference : http://cs231n.stanford.edu/2017/
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• Backpropagation through time (BPTT)

• Forward through entire sequence to compute loss, then backward through 
entire sequence to compute gradient 

RNN: Backpropagation Through Time (BPTT) 

72*reference : http://cs231n.stanford.edu/2017/
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• Why is it difficult to train a deep neural network?

• Can we just simply stack multiple layers and train them all?  
• Unfortunately, it does not work well 
• Even if we have infinite amount of computational resource

Vanishing gradient problem :
• The magnitude of the gradients shrink exponentially as we backpropagate through 

many layers
• Since typical activation functions such as sigmoid or tanh are bounded
• The phenomenon is called vanishing gradient problem

Question 

74
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• Why do gradients vanish? 

• Think of a simplified 3-layer neural network

Vanishing Gradient Problem 

75
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• Why do gradients vanish? 

• Think of a simplified 3-layer neural network

• First, let’s update
• Calculate the gradient of the loss  with respect to

Vanishing Gradient Problem 

76
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Vanishing Gradient Problem 

77

Keep multiplying values < 1 will 
decrease the amount exponentially

Gradients < 1

• Why do gradients vanish? 

• Think of a simplified 3-layer neural network

• How about      ?
• Calculate the gradient of the loss  with respect to
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• This is more problematic in vanilla RNN (with tanh/sigmoid activation)
• When trying to handle long temporal dependency 
• Similar to previous example, the gradient vanishes over time

Vanishing Gradient Over Time 

78*source :https://mediatum.ub.tum.de/doc/673554/file.pdf
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• Vanishing gradient problem is critical in training neural network

• Q: Can we just use activation function that has gradients > 1? 

Quiz

79
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• Not really. It will cause another problem so called exploding gradients.

• Let’s consider if we use exponential activation function:
• The magnitude of gradient is always larger than 1  when input > 0 
• If output of the networks are positive, then the gradients to update        will explode 

• This will cause the training very unstable 
• The weights will be updated in very large amount, resulting in NaN values 
• Very critical problem in training neural networks

Answer for Quiz 

80

Gradients > 1
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• Possible solutions 
• Activation functions 
• CNN: Residual networks [He et al., 2016] 
• RNN: LSTM (Long Short-Term Memory) 

How Can We Overcome Vanishing Gradient Problems? 

81

LSTM (Long Short-Term Memory)

*source
https://mediatum.ub.tum.de/doc/673554/file.pdf
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
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• Use different activation functions that are not bounded: 
• Recent works largely use ReLU or their variants 
• No saturation, easy to optimize

Solving Vanishing Gradient: Activation Functions

82

*source: https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
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Solving Vanishing Gradient: Activation Functions

83

• Several generalizations of ReLU
• Leaky ReLU [Maas et. al., 2013]: Introducing non-zero gradient for ‘dying ReLUs’ 
• Parameteric ReLU (PReLU) [He et al., 2015]: Additional learnable parameter 𝑎 on 

leaky ReLUs.
• Randomized ReLU (RReLU) [Xu et al., 2015]: Samples parameter 𝑎 from uniform 

distribution.

• Concatenated ReLU (CReLU) [Shang et al., 2016]
• ‘Opposite pairs’ of filters found in CNN

- Needs to learn twice the information
• Two-sided ReLU

input

output

PReLU, RReLU
𝑓 𝑥 = max(𝑥/𝑎, 𝑥)

leaky ReLU
𝑓 𝑥 = max(0.01𝑥, 𝑥)

CReLU

input

output

𝑓 𝑥 = max(−𝑥, 𝑥)
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• Residual networks (ResNet [He et al., 2016])
• Feed-forward NN with “shortcut connections”
• Can preserve gradient flow throughout the entire depth of the network 
• Possible to train more than 100 layers by simply stacking residual blocks

Solving Vanishing Gradient: Residual Networks 

84

Plain network Residual network
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• LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units)
• Specially designed RNN which can remember information for much longer period

Solving Vanishing Gradient: LSTM and GRU 
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Preservation of gradient information in LSTM

3 main steps:
• Forget irrelevant parts of previous state
• Selectively update the cell state based on the 

new input 
• Selectively decide what part of the cell state to 

output as the new hidden state 

*source : 
http://harinisuresh.com/2016/10/09/lstms/
https://mediatum.ub.tum.de/doc/673554/file.pdf
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