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What is Machine/Deep Learning?

* Human Learning

Train using sample exams

- (e.g. E=

Report the exam score

* Machine Learning = Build an algorithm from data
* Deep learning is a special type of algorithms in machine learning

Learning perceptions

Train using sample (question, answer) pairs

/supervised learning”

> Answer a question
P (e.g. spam filtering)

e —
Report how good the answer is]

“reinforcement learning”

Big Data
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Definition of Deep Learning

* An algorithm that learns multiple levels of abstractions in data

Deep & Large Networks

llllllll - e"UNEEEEN,
L] L]

EHEV
Edge
Multi-layer Data Representations (feature hierarchy)
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Deep Learning = Feature Learning

 Why deep learning outperforms other machine learning (ML) approaches for
vision, speech, language?

Feature Extraction Output

SIFT

Input Output

Now

3rd layer A |
“Objects” more

Accuracy compute neural networks

2nd layer 1

CEweErn NS .
Object parts

\ [ | i1
mREEED =i
C=mb &l k]

_—— other approaches

1st layer
lIEdgeSII

Pixels

Scale (data size, model size)
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Table of Contents

1. Deep Neural Networks (DNN)
* Basics
* Training : Back propagation

2. Convolutional Neural Networks (CNN)
* Basics
e Convolution and pooling
* Some applications

3. Recurrent Neural Networks (RNN)

* Basics
* Character-level language model (example)

4. Question
* Why is it difficult to train a deep neural network?
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DNN: Neurons in the Brain

* Human brain is made up of 100 billion neurons
* Neurons receive electric signals at the dendrites and send them to the axon
* Dendrites can perform complex non-linear computations
* Synapses are not a single weight but a complex non-linear dynamical system

x1
w1
X2
w2
x3 3
> -0
wn

Xn

Algorithmic Intelligence Laboratory *source : https://pt.slideshare.net/hammawan/deep-neural-networks 7



DNN: Artificial Neural Networks

* Artificial neural networks
* A simplified version of biological neural network

Bias Nonlinear
0 activation
function

B |
— 0(0'x)
T2 Output / activation of the neuron
Summation
Inputs 4
Weights
L Tn
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DNN: The Brain vs. Artificial Neural Networks

* Similarities
* Consists of neurons & connections between neurons
e Learning process = Update of connections
e Massive parallel processing

* Differences
e Computation within neuron vastly simplified
* Discrete time steps
* Typically some of supervised learning with massive number of stimuli

Algorithmic Intelligence Laboratory *source : http://mt-class.org/jhu/slides/lecture-nn-intro.pdf 9



DNN: Basics

* Deep neural networks
* Neural network with more than 2 layers
* Can model more complex functions

Bias 1 Nonlinear Inputs Outputs
0o activation
function
~ X
—_—
L2
Summation
Inputs 4
©
Weights SF iy 2
idden
L Tn

“2-layer Neural Net”
“1-hidden-layer Neural Net”
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DNN: Notation

e Training dataset {(X1,%1),---, (Xn,¥n)}
¢ x;: it" input data
o y;: it" target data (or label for classification)

* Neural network f(x;©) € R parameterized by ©

Next, forward propagation
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DNN: Forward Propagation

« Forward propagation: calculate the output ¥ of the neural network

y=o0 (@kTJ (@Z_la(- . U(@lTX))))

where o(-) is activation function (e.g., sigmoid function) and % is number of layers

12



DNN: Forward Propagation (Example)

(10 o _( 12 21
%=\ _o5 1=\ 03 —07
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1.5
0.3) 2 =

—0.2
0.5
1.3
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DNN: Forward Propagation (Example)

(10 o _( 12 21
%=\ 05 1=\ 03 —07

* Input data X;

Algorithmic Intelligence Laboratory
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DNN: Forward Propagation (Example)

(10 o _( 12 21
%=\ _o5 1=\ 03 —07

e Compute hidden units h;

12 —0.3 1.0 1.35
O/x;=| 21 -0.7 (_0'5)2 2.45
-15 0.3 ' ~1.65

o(1.35) 0.79
h; =0(0] x;) = ( 0(2.45) ) = (0.92)
o (—1.65) 0.16

where o(z) = 1+i_m

Algorithmic Intelligence Laboratory

|

1.5
0.3

) e:-

—0.2
0.5
1.3
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DNN: Forward Propagation (Example)

(10 o _( 12 21
%=\ _o5 1=\ 03 —07

 Compute output 7;

0.79
©sh; = (0.2 05 1.3)[0.92] =0.51
0.16

J; = 0(©J hy) = 0(0.51) = 0.62

Algorithmic Intelligence Laboratory

Next, training objective

16



DNN: Objective

* Objective: Find a parameter that minimizes the error (or empirical risk)

mm — ZZ f(x4;0),y;) := L(O)

where / (-, ) is a loss function e.g., MSE(Mean square error) or cross entropy

Next, how to optimize L(O)?

Algorithmic Intelligence Laboratory 17



DNN: Training

» Gradient descent (GD) updates parameters iteratively to the gradient direction.

parameters loss function

]

e+t = ) — AVL (@(ﬂ) :
1 n
learning rate = n Z VIU(xi, yi @(t))
i=1

* Backpropagation
* First adjust the last layer weights Oy
* Propagate error back to each previous layers
 Adjust previous layer weights Of_1,0%_2,...0

Next, backpropagation in details

Algorithmic Intelligence Laboratory
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DNN: Backpropagation

* Consider the input (X;, ¥;)
* Forward propagation to compute output ¥;

e it layer intermediate output s; = @;l—hi—l

Algorithmic Intelligence Laboratory

f(xi;0)

Ok

Or_1

Or_2

Sk
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DNN: Backpropagation

Consider the input (X;, ¥;)

Forward propagation to compute output 4; = f(x;;0)

i'" layer intermediate output s; = @;l—hi—l

Compute error /(3;,y;) (where £(-,-) is MSE loss)
1

f(@iayz‘) — 5(% — @i)Q = F;

Algorithmic Intelligence Laboratory

Ok

Or_1

Or_2

Sk
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DNN: Backpropagation

Consider the input (X;, ¥;)

Forward propagation to compute output ¥;

i'" layer intermediate output s; = @;l—hi—l

. 1 .
f%wdzyw—w%Z&

9B, 01, .,

Algorithmic Intelligence Laboratory

Compute derivative of F; with respect to y;

f(xi;0)

Compute error 4(y;,y;) (where £¢(-,-) is MSE loss)

Ok

Or_1

Or_2

Sk
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DNN: Backpropagation

&

SN

Consider the input (X, ;) j
oF;

<—»

Forward propagation to compute output 4; = f(x;;0) ’

o 4t Jayer intermediate output s; = O h; 4 CH
* Compute error 4(4;,y;) (where £(-,-) is MSE loss) . B
k—1
1 h
Gisyi) = =(yi — 9:)° == E; iz
(93, y1) = 5(¥i = 9i) o,

Compute derivative of FE; with respect to sk

OF; OE; 8y O0F; 0
(%k N 8;&1 aSk; N 8:&1 8Sk

o(sk) = (9 — yz‘)U/(Sk)
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DNN: Backpropagation

Consider the input (X;, ¥;)

Compute error 4(y;,y;) (where £ (-,

. 1 .
E(yiayi) — 5(%‘ — yq;)2 = F;

Forward propagation to compute output 4; = f(x;;0)

it layer intermediate output s; = 0, h;_; CH

@k:<_@k:

Algorithmic Intelligence Laboratory

+) is MSE loss )
Or_1

Or_2

Compute derivative of FE; with respectto O,

(©php_1) = (i — yi)o' (sk)hp_1

Parameter update rule learning rate

|

OF,;
190,
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DNN: Backpropagation

E;
* Consider the input (X;,¥;) T
" Yi
* Forward propagation to compute output 4; = f(x;;O)
th . : T Sk
" layer intermediate output s; = 0, h; CH
* Compute error 4(4;,y;) (where £(-,-) is MSE loss) oF. B
1 a@k—l h
U Givys) = = (i — 6:)° == E; o
(93, y1) = 5(¥i = 9i) o,
 Compute derivative of FE; with respectto O, _;
8E@- 8E@ 8;&1 &Sk 8hk_1 8sk_1 8Ez 8@ aSk 8h;€_1 0 T
— - (@k—1hk—2)

001  09; Osp Ohy_1 Osy_1 001  OY; Osy, Ohg_1 Os_1 0Ok _1

* Parameter update rule learning rate

|

OF;
7(9(%—1

O_1 + Ok_1 —
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DNN: Backpropagation

E;
* Consider the input (X;,¥;) T
" Yi
* Forward propagation to compute output 4; = f(x;;O)
) ) T Sk
" layer intermediate output s; = 0, h; CH
* Compute error 4(4;,y;) (where £(-,-) is MSE loss) . B
k—1
. 1 . h
Uiy yi) = 5(%‘ — i) = B o o
k—2
OFE; OF
v 0®k_2 ..... 8@1
* Similarly, we can compute gradients with respectto ©,_,,...,0;

* And update using the same update rule

Algorithmic Intelligence Laboratory 25



DNN: Backpropagation (Example)

X; = (_é:?) yi = (1.0)  ©1= (

« Compute the error £(9;,y;)

) 1
e(yiayi) — §(yz — y¢)2 = 0.072

1

0Yi

* Compute

OF,
— (0 — ;) = —0.38
9% (9: — i)

Algorithmic Intelligence Laboratory

1.2
—0.3

2.1
—0.7

1.5
0.3

) e:-

—0.2
0.5
1.3
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DNN: Backpropagation (Example)

X; = (_é:?) yi = (1.0)  ©1= (

C t OF;
ompute 5o

0.02

OE; .

8@ == (yz — yi)O'/(Sg)hl = —0.05
2 —0.12

« Update O, with 7 =1

—0.2 0.02 —0.22
Oy = 05| —11-0.05| = 0.95
1.3 —0.12 1.42

Algorithmic Intelligence Laboratory

1.2
—0.3
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DNN: Backpropagation (Example)

X; = (_é:?) yi = (1.0)  ©1= (

c . OF;
ompute 90,

0.02

OE; .

8@ == (yz — yi)O'/(Sg)hl = —0.05
2 —0.12

« Update O, with 7 =1
—0.2 0.02 —0.22
Oy = 05] =11 —-0.05)] = 0.55
1.3 —0.12 1.42

 Similarly, we can update O,

Algorithmic Intelligence Laboratory
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Table of Contents

2. Convolutional Neural Networks (CNN)
* Basics
e Convolution and Pooling
* Some applications
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CNN: Drawbacks of Fully-Connected DNN

* Previous DNNs use fully-connected layers
* Connect all the neurons between the layers

* Drawbacks
* (-) Large number of parameters
* Easy to be over-fitted
* Large memory consumption

* (-) Does not enforce any structure, e.g., local information
* |In many applications, local features are important, e.g., images, language, etc.

30



CNN: Basics

» Weight sharing and local connectivity (convolution)
* Use multiple filters convolve over inputs
* (+) Reduce the number of parameters (less over-fitting)
* (+) Learn local features
* (+) Translation invariance

* Pooling (or subsampling)
* Make the representations smaller
* (+) Reduce number of parameters and computation

[ | [ |

Cnne e
=

subsampling

[

convolution 5x5

Algorithmic Intelligence Laboratory *source : http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1794&rep=rep1&type=pdf 30



CNN: Weight Sharing and Translation Invariance

* Weight sharing
* Apply same weights over the different spatial regions
* One can achieve translation invariance (not perfect though)

1)1/1)0]0
0x0| 1x;, 1xo- 1/0 4
Qd_.. 0x0l 1x1 1)1
olof[1]1]0
0O|1(1(0]|0
image Convolved
Feature

Algorithmic Intelligence Laboratory *source : https://www.cc.gatech.edu/~san37/post/dlhc-cnn/ 32



CNN: Weight Sharing and Translation Invariance

* Weight sharing 1J1]1]o]o0
* Apply same weights over the different spatial regions gxo 51 }o i <1J 4
* One can achieve translation invariance olol1l1l0
o[1|1]o0]o0
Image Convolved
* Translation invariance & Feature

* When input is changed spatially (translated or shifted), the corresponding output
to recognize the object should not be changed

* CNN can produce the same output even though the input image is shifted due to
weight sharing

& @

o

0 N
~q’§ : & y
V| o4 7,

Algorithmic Intelligence Laboratory *source : https://www.cc.gatech.edu/~san37/post/dlhc-cnn/ 33




CNN: Convolution

The result of taking a dot product

Fully-connected layer between a row of @ and the input
» 32x32x3image > stretch to 3072x1
Input X Activation
1 j — ©'x — 1
3072 10x3072 weights 10

Convolution layer

32x32x%3 image
5x5x3 filter
(equivalent to 1x75 weights for FC layer)

Convolve the filter with the image
i.e., “slide over the image spatially,
computing dot products”

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 34



CNN: Convolution

The result of taking a dot product

Fully-connected layer between a row of @ and the input
» 32x32x3image > stretch to 3072x1
Input X Activation
1 j — ©'x — 1
3072 10x3072 weights 10

Convolution layer

32x32x%3 image
5x5x3 filter
(equivalent to 1x75 weights for FC layer)

The result of taking a dot product between the filter
and a small 5x5x3 chunk of the image
(i.e., 5x5x3 = 75-dimensional dot product + bias)

O'x+b

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 35



CNN: Convolution

The result of taking a dot product

Fully-connected layer between a row of @ and the input
» 32x32x3image > stretch to 3072x1
Input X Activation
1 j — ©'x — 1
3072 10x3072 weights 10

Convolution layer

32x32x%3 image Activation map
5x5x3 filter
(equivalent to 1x75 weights for FC layer)

v

Convolve (slide) over all spatial locations

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 36



CNN: Convolution

The result of taking a dot product

Fully-connected layer between a row of @ and the input
» 32x32x3image > stretch to 3072x1
Input X Activation
1 j — ©'x — 1
3072 10x3072 weights 10

Convolution layer

32x32x3 image 4 separate activation maps

If there are four 5x5 x3 filters

v

Convolve (slide) over all spatial locations

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 37



CNN: An Example

* Closer look at spatial dimensions

7x7 input (spatially)
Assume 3 x3 filter
Applied with stride 1

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 38



CNN: An Example

* Closer look at spatial dimensions

7x7 input (spatially)
Assume 3 x3 filter
Applied with stride 1

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 39



CNN: An Example

* Closer look at spatial dimensions

7x7 input (spatially)
Assume 3 x3 filter
Applied with stride 1

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 40



CNN: An Example

* Closer look at spatial dimensions

7x7 input (spatially)
Assume 3 x3 filter
Applied with stride 1

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 41



CNN: An Example

* Closer look at spatial dimensions

7x7 input (spatially)
Assume 3 x3 filter
Applied with stride 1

- 5x5 output

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 42



CNN: An Example

* Closer look at spatial dimensions

7x7 input (spatially)
Assume 3 x3 filter
Applied with stride 2

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 43



CNN: An Example

* Closer look at spatial dimensions

7x7 input (spatially)
Assume 3 x3 filter
Applied with stride 2

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 44



CNN: An Example

* Closer look at spatial dimensions

7x7 input (spatially)
Assume 3 x3 filter
Applied with stride 2

- 3%x3 output

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 45



CNN: An Example

* Closer look at spatial dimensions

7x7 input (spatially)
Assume 3 x3 filter
Applied with stride 3 ?

Doesn’t fit!
Cannot apply 3x3 filter on
7x7 input with stride 3

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 46



CNN: An Example

* In practice: Common to zero pad the border
* Used to control the output filter size

9

o(olo|O|O|O]|O 7x7 input (spatially)
Zero pad 1 pixel border
Assume 3 x 3 filter

Applied with stride 3

- 3%x3 output

oO|lo|lo| oo |oOo0o|oO| o | o
oO|lo|lo|lo|lo|oOo0o|oOo| o | o
O

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 47



CNN: An Example (Animation)

No padding, stride 1

Padding 1, stride 2 (odd)

No padding, stride 2 Padding 1, stride 2

Algorithmic Intelligence Laboratory *source : https://github.com/vdumoulin/conv_arithmetic 48



CNN: An Example

32x32x3

* Input volume:32x32x3
e 10 5x5 filters with stride 1, pad 2

v

Output volume size = ?

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 49



CNN: An Example

32x32x3

* Input volume:32x32x3
e 10 filters with stride 1, pad 2

Output volume size = ?
e (32+2x2-5)/1+1 =32 spatially
e =>32x32x10

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 50



CNN: An Example

32x32x3

* Input volume:32x32x3
e 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 51



CNN: An Example

32x32x3

* Input volume:32x32x3

« 10 filters with stride 1, pad 2 39

v

32

Number of parameters in this layer?

3
e Each filter has x3 +1 =76 params ( +1 for bias )
* =>76%x10=760

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 52



CNN: Convolution

* ConvNet is a sequence of Convolutional layers, followed by non-linearity

32x32x%3 image

32
20
> —_— —
Cony, Cony, Cony,
RelU RelU RelU 20
e.g., 4 e.g., 6 e.g., 10 10
5x5x3 4 5x5x4 5x5x6
filters filters filters
» Choices of other non-linearity RelU LeakyRelU
* Tanh/Sigmoid ot ot
* RelU [Nair et al., 2010] f0)=y f0)=y
* Leaky RelLU [Maas et. al., 2013] 70)=0 s — 3

*reference: http://cs231n.stanford.edu/2017/
Algorithmic Intelligence Laboratory *Image source: https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6 53



CNN: Pooling

* Pooling layer
* Makes the representations smaller and more manageable
* Operates over each activation map independently
* Enhance translation invariance (invariance to small transformation)
* Larger receptive fields (see more of input)
* Regularization effect

224%x224x64

112x112%64

v

Pooling

112

224 :
Downsampling.

224

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 54



CNN: Pooling

* Max pooling and average pooling
e With 2x2 filters and stride 2

max pooling
20|30
112| 37
12120 30| O
8 1121 2|0
34|70 ;T average pooling
112[100| 25| 12 13| 8 '
79| 20

input

0.86 0.88
E

ROI pooling

* Another kind of pooling layers are also used
* e.g. stochastic pooling, ROI pooling

Algorithmic Intelligence Laboratory

*source:

https://deepsense.ai/region-of-interest-pooling-explained/
http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf
https://vaaaaaanquish.hatenablog.com/entry/2015/01/26/060622 55



CNN: Visualization

* Visualization of CNN feature representations [Zeiler et al., 2014]

* VGG-16 [Simonyan et al., 2015]

Low-level
features

Mid-level
features

: Linearly
Hf'ggt'llﬁgsl " separable —
classifier

el BTN
> S 4
o

ok

£

4 :
! DN BN SR BN v R
VGG-16 Conv1_1 VGG-16 Conv3_2

Algorithmic Intelligence Laboratory
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CNN in Computer Vision: Everywhere

A B
container snip

Classification and retrieval [Krizhevsky et al., 2012]

motor scooter

container ship

motor scooter

lifeboat
amphibian
fireboat

beach wagon
fire engine

v :
rille

vertible

grille

pickup

mushroom

jelly fungus

gill fungus
dead-man's-fingers

rdshire bullterrier
currant

spider monkey
titi

indri

howler monkey

Algorithmic Intelligence Laboratory
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CNN in Computer Vision: Everywhere

Detection [Ren et al., 2015] Segmentation [Farabet et al., 2013]

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 58



CNN in Computer Vision: Everywhere

Self-driving cars Human pose estimation [Cae et al., 2017]
2 1 'S‘ . o 7,
A e B
S 7 s S\ i \
WAL L \ o
| | N

Image captioning [Vinyals et al., 2015][Karpathy et al., 2015]
No errors

A white teddy bear sitting in A man in a baseball A woman is holding a
the grass uniform throwing a ball cat in her hand

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 59



Table of Contents

3. Recurrent Neural Networks (RNN)
* Basics
e Character-level language model (example)
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RNN: Basics

* CNN models spatial invariance information

* Recurrent Neural Network (RNN)

h
* Models temporal information v
* Hidden states as a function of inputs and previous time step 1
information O.h
ht = f(ht—l X¢, @) @hh
9 ) > f@

* Temporal information is important in many applications

* Language

* Speech "|| |' " ‘ .

* Video H*M | ’H' i%‘%
{ Fip bR E

P ‘ & S ‘_ﬁ‘ |
i ' . 19
f- & §

Algorithmic Intelligence Laboratory 61



RNN: Basics

* Process a sequence of vectors by applying
recurrence formula at every time step :

h,
@xh
—_ ° @hh
ht — f(ht—lyxta@) {  fo
New state Old state Input
vector at
time step t

Function parameterized by @ e.g, DNN, CNN

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 62



RNN: Basics

* Process a sequence of vectors by applying
recurrence formula at every time step :

ht — f(ht—la Xt @) fo O

\ 4

* Same function and the same set of parameters foe
are used at every time step

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 63



RNN: Vanilla RNN

e Simple RNN
* The state consists of a single “hidden” vector h;

* Vanilla RNN (or sometimes called ElIman RNN)
h; = f(ht—laxt§ @) Ony
| h;
@:ph

h;, = tanh(@hhht_l -+ @xhxt)

fe
Yt — @hyht ‘

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 64
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RNN: Computation Graph

Re-use the same weight matrix © at every time step

/I\
~

\
=——===—-
/

fe @—» fo _.@_. i @@

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 65



RNN: Computation Graph (Many to Many)

OO -6

Input sentence: Translation (PBMT): Translation (GNMT):

e-g-, MaChine TranSIation F R BT | LiKegiang premier Li Kegiang will start the

SRFENTEZENRY), | | added this line to stan annual dinlogue

(Sequence of words = Sequence of words)  FEasEifas” memeie e

ministers held ns first
annual session

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 66



RNN: Computation Graph (Many to One)

:

-

e.g., Sentiment Classification

fe

SOs

fe

@

(Sequence of words = sentiment)

Algorithmic Intelligence Laboratory

B

—> Good paper or not?

*reference : http://cs231n.stanford.edu/2017/ 67



RNN: Computation Graph (One to Many)

@@ TE-O%

No errors - ewhat relate

e.g., Image Captioning
(Image = sequence of words) et

A white teddy bear sitting in A man in a baseball A woman is holding a
the grass uniform throwing a ball cat in her hand

Algorithmic Intelligence Laboratory *reference : http://cs231n.stanford.edu/2017/ 68



RNN: An Example

* Character-level
language model

* Vocabulary: [h,e,l,0]

* Example training
sequence : “hello”

Algorithmic Intelligence Laboratory

ht = tanh<@hhht_1+@xhxt)

Hidden layer

Input layer

Input chars:

0.3 1.0
-0.1 » 0.3
0.9 0.1
A A
1 0
0 1
0 0
0 0
(Ihll lle”
*reference :

0.1 |o,,| -0.3
o 0.5 —{ 0.9

0.3 0.7

S A @Th

0 0

0 0

1 1

0 0

IIIII

IIIII

http://cs231n.stanford.edu/2017/ 69



RNN: An Example

* Character-level
language model

* Vocabulary: [h,e,l,0]

* Example training
sequence : “hello”

Algorithmic Intelligence Laboratory

Target chars:

Output layer

Hidden layer

Input layer

Input chars:

a_”n

o\n»

ao\n»

a_ 7

e
1.0 0.5
2.2 0.3
-3.0 -1.0
4.1 1.2
0.3 1.0
-0.1 » 0.3
0.9 0.1
A A
1 0
0 1
0 0
0 0
(Ih” llell

\ 4

0
0.1 0.2
0.5 -1.5
1.9 -0.1
-1.1 2.2
0.1 |©,,| -0.3
-0.5 - 0.9
-0.3 0.7
A A @Th
0 0
0 0
1 1
0 0

IIIII

IIIII
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RNN: An Example

* Character-level
language model

* Vocabulary: [h,e,l,0]

* At test time, sample
character one at a
time and feedback to

model

Algorithmic Intelligence Laboratory

Samples:

Softmax

Output layer

Hidden layer

Input layer

Input chars:

a_n

o_n

e “1”
.03 .25
13 .20
.00 .05
.84 .50
f f
1.0 0.5
2.2 0.3
-3.0 -1.0
4.1 1.2
0.3 1.0
-0.1 » 0.3
O‘.9 O‘.l
1 0
0 1
0 0
0 0
o o

*reference :

\ 4

“1” 0
11 A1
17 .02
.68 .08
.03 .79
t f
0.1 0.2
0.5 -1.5
1.9 -0.1
-1.1 2.2
0.1 -0.3
-0.5 » 0.9
-0.3 O.‘7
0 0
0 0
1 1
0 0

IIIII

(IIII
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RNN: Backpropagation Through Time (BPTT)

* Backpropagation through time (BPTT)

* Forward through entire sequence to compute loss, then backward through
entire sequence to compute gradient

TN

>
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Contents

4. Question
* Why is it difficult to train a deep neural network?
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Question

 Why is it difficult to train a deep neural network?

e Can we just simply stack multiple layers and train them all?
* Unfortunately, it does not work well
* Even if we have infinite amount of computational resource

Vanishing gradient problem :

* The magnitude of the gradients shrink exponentially as we backpropagate through
many layers

* Since typical activation functions such as sigmoid or tanh are bounded
* The phenomenon is called vanishing gradient problem
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Vanishing Gradient Problem

* Why do gradients vanish?

* Think of a simplified 3-layer neural network

Y =

o (030 (020(017))))

O
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Vanishing Gradient Problem

* Why do gradients vanish?

* Think of a simplified 3-layer neural network

y =0 (030 (020(617))))

BSOSO

* First, let’s update 05
e Calculate the gradient of the loss with respect to 65

OL _ 0L 9j Os3 _ OL
8(93 B 83) 683 893 - 8@
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Vanishing Gradient Problem

* Why do gradients vanish?

* Think of a simplified 3-layer neural network

y =0 (030 (020(617))))

S1 52 53
0, . (N 6 ([
L hq '\?2/ Yy L(0)
 How about 04 ? Gradients < 1

* Calculate the gradient of the loss with respect to 6,

oL oL Sigmoid
90, = agO'/(S3)h20'/(82)h10'/(81)1' o(z) = 1

1+e—=

Keep multiplying values < 1 will
decrease the amount exponentially
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Vanishing Gradient Over Time

* This is more problematic in vanilla RNN (with tanh/sigmoid activation)
* When trying to handle long temporal dependency
* Similar to previous example, the gradient vanishes over time

Outputs ’ ’
J

Hidden
Layer

Inputs

Time 1 2 3 4 5 6 7

Algorithmic Intelligence Laboratory *source :https://mediatum.ub.tum.de/doc/673554/file.pdf 78



Quiz

* Vanishing gradient problem is critical in training neural network

* Q: Can we just use activation function that has gradients > 17

Algorithmic Intelligence Laboratory
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Answer for Quiz

* Not really. It will cause another problem so called exploding gradients.

* Let’s consider if we use exponential activation function:
* The magnitude of gradient is always larger than 1 when input >0
* If output of the networks are positive, then the gradients to update 6 will explode

. slope=10
/

Gradients > 1

s oL oI

e This will cause the training very unstable

* The weights will be updated in very large amount, resulting in NaN values
* Very critical problem in training neural networks
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How Can We Overcome Vanishing Gradient Problems?

e Possible solutions

e Activation functions

* CNN: Residual networks [He et al., 2016] @) = =
* RNN: LSTM (Long Short-Term Memory) tanh

X

Y

Activation Functions
Sigmoid 1

Leaky ReLU ’
max(0.1z, x)

Maxout

NS

tanh(x) max(w] z + by, wd T + by)
ReLU ELU

0 T x>0
max( ,.17) {a(ez -1) z<0 - 10

weight layer

TTTTYTYY

F(x) Jrelu

weight layer

- - — o) — o) -
Hidden
X (@) - - - - - (@)
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Inputs
Time 1 2 3 4 5 6 7

LSTM (Long Short-Term Memory)

*source
https://mediatum.ub.tum.de/doc/673554/file.pdf
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Solving Vanishing Gradient: Activation Functions

» Use different activation functions that are not bounded:
e Recent works largely use ReLU or their variants
* No saturation, easy to optimize

Sigmoid ' Leaky ReLU )
o (z) = 1+i—w max(0.1x, x) i A d;,gx;—-—g

-10 10 - -1 10

tanh Maxout ¥

tanh(x) 5 i max(w! z + by, wlz + by) s

ReLU ELU | V _
max (0, x) {x z20 : , ||
. ale®—=1) z<0 - - 3 3 2 1 0 1 2 ;
\ /

*source: https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
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Solving Vanishing Gradient: Activation Functions

* Several generalizations of RelLU
* Leaky RelLU [Maas et. al., 2013]: Introducing non-zero gradient for ‘dying ReLUs’

* Parameteric ReLU (PReLU) [He et al., 2015]: Additional learnable parameter a on
leaky ReLUs.

* Randomized ReLU (RReLU) [Xu et al., 2015]: Samples parameter a from uniform
distribution.

* output

Activation Training Error  Test Error

ReLU 0.00318 0.1245

leaky RelLU

f(x) = max(0.01x, x)

Leaky ReLU, a = 100 0.0031 0.1266
Leaky ReLU, a = 5.5 0.00362 0.1120 — -
PReLU 0.00178 0.1179 =TT input
L i =z Y ! 0.1119 Rl
RReLU (y;i = zji/~5") 0.00550 - PReLU, RReLU

f(x) = max(x/a, x)

1111

* Concatenated RelLU (CRelLU) [Shang et al., 2016] $ output
* ‘Opposite pairs’ of filters found in CNN CReLU
- Needs to learn twice the information £(x) = max(—x, x)
* Two-sided RelLU input

Table 3. Error rate of CIFAR-10 Network in Network with
different activation function
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Solving Vanishing Gradient: Residual Networks

* Residual networks (ResNet [He et al., 2016])
* Feed-forward NN with “shortcut connections”
* Can preserve gradient flow throughout the entire depth of the network
* Possible to train more than 100 layers by simply stacking residual blocks

y

X X
| ,

weight layer weight layer
l relu F(x) Jrelu identity
i X
weight layer weight layer
relu
H(x) . H(x) = F(x) +x
Plain network Residual network
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Solving Vanishing Gradient: LSTM and GRU

* LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units)
* Specially designed RNN which can remember information for much longer period

3 ma|n StepSZ LSTM Memory Cell
* Forget irrelevant parts of previous state . s
* Selectively update the cell state based on the
. Forget . .
new input rgevpas | upiaiocal  pansotenl
. . tate valu
 Selectively decide what part of the cell state to state ok g

output as the new hidden state

Outputs LSTM Memory Cell
Ct X @ = Ct

900000 N B

] ] 2
_/
FORGET GATE INPUT GATE OUTPUT GATE
Inputs o
1 2 3 4 5 6 7
ht-1 ht-1 ht
Xt Xt

Time

Preservation of gradient information in LSTM
*source :

http://harinisuresh.com/2016/10/09/Istms/
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