
Algorithmic Intelligence Laboratory

Algorithmic Intelligence Laboratory

AI602: Recent Advances in Deep Learning
Lecture 1

Slide made by

Hyungwon Choi and Yunhun Jang
KAIST EE

Introduction to Neural Networks:
DNN / CNN / RNN

Algorithmic Intelligence Laboratory

What is Machine/Deep Learning?

• Human Learning

• Machine Learning = Build an algorithm from data
• Deep learning is a special type of algorithms in machine learning

2

Learning perceptions

Learning interactions

Algorithmic Intelligence Laboratory

Definition of Deep Learning

• An algorithm that learns multiple levels of abstractions in data

3

Lots of Data

Objects

Edge Parts

Deep & Large Networks

Multi-layer Data Representations (feature hierarchy)

Algorithmic Intelligence Laboratory

Deep Learning = Feature Learning

• Why deep learning outperforms other machine learning (ML) approaches for
vision, speech, language?

Feature Extraction Other MLInput Output

Deep NetworkInput Output

SIFT

4

Algorithmic Intelligence Laboratory

1. Deep Neural Networks (DNN)
• Basics
• Training : Back propagation

2. Convolutional Neural Networks (CNN)
• Basics
• Convolution and pooling
• Some applications

3. Recurrent Neural Networks (RNN)
• Basics
• Character-level language model (example)

4. Question
• Why is it difficult to train a deep neural network?

Table of Contents

5

Algorithmic Intelligence Laboratory

1. Deep Neural Networks (DNN)
• Basics
• Training : Back propagation

2. Convolutional Neural Networks (CNN)
• Basics
• Convolution and pooling
• Some applications

3. Recurrent Neural Networks (RNN)
• Basics
• Character-level language model (example)

4. Question
• Why is it difficult to train a deep neural network?

Table of Contents

6

Algorithmic Intelligence Laboratory

• Human brain is made up of 100 billion neurons
• Neurons receive electric signals at the dendrites and send them to the axon
• Dendrites can perform complex non-linear computations
• Synapses are not a single weight but a complex non-linear dynamical system

DNN: Neurons in the Brain

7*source : https://pt.slideshare.net/hammawan/deep-neural-networks

Algorithmic Intelligence Laboratory

• Artificial neural networks
• A simplified version of biological neural network

DNN: Artificial Neural Networks

8

Output / activation of the neuron

…

Bias

Inputs

Weights

Summation

Nonlinear
activation
function

Algorithmic Intelligence Laboratory

• Similarities
• Consists of neurons & connections between neurons
• Learning process = Update of connections
• Massive parallel processing

• Differences
• Computation within neuron vastly simplified
• Discrete time steps
• Typically some of supervised learning with massive number of stimuli

DNN: The Brain vs. Artificial Neural Networks

9*source : http://mt-class.org/jhu/slides/lecture-nn-intro.pdf

Algorithmic Intelligence Laboratory

• Deep neural networks
• Neural network with more than 2 layers
• Can model more complex functions

DNN: Basics

10

Hidden

Inputs Outputs

“2-layer Neural Net”
“1-hidden-layer Neural Net”

…

Bias

Inputs

Weights

Summation

Nonlinear
activation
function

Algorithmic Intelligence Laboratory

• Training dataset
• : input data
• : target data (or label for classification)

• Neural network parameterized by

DNN: Notation

11

Next, forward propagation

Algorithmic Intelligence Laboratory

• Forward propagation: calculate the output of the neural network

where is activation function (e.g., sigmoid function) and is number of layers

DNN: Forward Propagation

12

Algorithmic Intelligence Laboratory

DNN: Forward Propagation (Example)

13

Algorithmic Intelligence Laboratory

• Input data

DNN: Forward Propagation (Example)

14

1.0

-0.5

Algorithmic Intelligence Laboratory

• Compute hidden units

DNN: Forward Propagation (Example)

15

0.79

0.92

0.16

1.0

-0.5

where

Algorithmic Intelligence Laboratory

• Compute output

DNN: Forward Propagation (Example)

16

Next, training objective

0.79

0.92

0.16

1.0

-0.5

0.62

Algorithmic Intelligence Laboratory

• Objective: Find a parameter that minimizes the error (or empirical risk)

where is a loss function e.g., MSE(Mean square error) or cross entropy

DNN: Objective

17

Next, how to optimize ?

Algorithmic Intelligence Laboratory

• Gradient descent (GD) updates parameters iteratively to the gradient direction.

• Backpropagation
• First adjust the last layer weights
• Propagate error back to each previous layers
• Adjust previous layer weights

DNN: Training

18

parameters

learning rate

loss function

Next, backpropagation in details

Algorithmic Intelligence Laboratory

DNN: Backpropagation

19

• Consider the input

• Forward propagation to compute output

• layer intermediate output

Algorithmic Intelligence Laboratory

DNN: Backpropagation

20

• Consider the input

• Forward propagation to compute output

• layer intermediate output
• Compute error (where is MSE loss)

Algorithmic Intelligence Laboratory

DNN: Backpropagation

21

• Consider the input

• Forward propagation to compute output

• layer intermediate output
• Compute error (where is MSE loss)

• Compute derivative of with respect to

Algorithmic Intelligence Laboratory

DNN: Backpropagation

22

• Consider the input

• Forward propagation to compute output

• layer intermediate output
• Compute error (where is MSE loss)

• Compute derivative of with respect to

Algorithmic Intelligence Laboratory

DNN: Backpropagation

23

• Consider the input

• Forward propagation to compute output

• layer intermediate output
• Compute error (where is MSE loss)

• Compute derivative of with respect to

• Parameter update rule learning rate

Algorithmic Intelligence Laboratory

DNN: Backpropagation

24

• Consider the input

• Forward propagation to compute output

• layer intermediate output
• Compute error (where is MSE loss)

• Compute derivative of with respect to

• Parameter update rule learning rate

Algorithmic Intelligence Laboratory

DNN: Backpropagation

25

• Consider the input

• Forward propagation to compute output

• layer intermediate output
• Compute error (where is MSE loss)

• Similarly, we can compute gradients with respect to
• And update using the same update rule

Algorithmic Intelligence Laboratory

• Compute the error

• Compute

DNN: Backpropagation (Example)

26

0.79

0.92

0.16

1.0

-0.5

0.62

Algorithmic Intelligence Laboratory

• Compute

• Update with

DNN: Backpropagation (Example)

27

0.79

0.92

0.16

1.0

-0.5

0.62

Algorithmic Intelligence Laboratory

• Compute

• Update with

• Similarly, we can update

DNN: Backpropagation (Example)

28

0.79

0.16

1.0

-0.5

0.620.92

Algorithmic Intelligence Laboratory

1. Deep Neural Networks (DNN)
• Basics
• Training : Back propagation

2. Convolutional Neural Networks (CNN)
• Basics
• Convolution and Pooling
• Some applications

3. Recurrent Neural Networks (RNN)
• Basics
• Character-level language model (example)

4. Question
• Why is it difficult to train a deep neural network?

Table of Contents

29

Algorithmic Intelligence Laboratory

• Previous DNNs use fully-connected layers
• Connect all the neurons between the layers

• Drawbacks
• (-) Large number of parameters

• Easy to be over-fitted
• Large memory consumption

• (-) Does not enforce any structure, e.g., local information
• In many applications, local features are important, e.g., images, language, etc.

CNN: Drawbacks of Fully-Connected DNN

30

Algorithmic Intelligence Laboratory

CNN: Basics

• Weight sharing and local connectivity (convolution)
• Use multiple filters convolve over inputs
• (+) Reduce the number of parameters (less over-fitting)
• (+) Learn local features
• (+) Translation invariance

• Pooling (or subsampling)
• Make the representations smaller
• (+) Reduce number of parameters and computation

30*source : http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1794&rep=rep1&type=pdf

Algorithmic Intelligence Laboratory

• Weight sharing
• Apply same weights over the different spatial regions
• One can achieve translation invariance (not perfect though)

CNN: Weight Sharing and Translation Invariance

32*source : https://www.cc.gatech.edu/~san37/post/dlhc-cnn/

Algorithmic Intelligence Laboratory

• Weight sharing
• Apply same weights over the different spatial regions
• One can achieve translation invariance

• Translation invariance
• When input is changed spatially (translated or shifted), the corresponding output

to recognize the object should not be changed
• CNN can produce the same output even though the input image is shifted due to

weight sharing

CNN: Weight Sharing and Translation Invariance

33*source : https://www.cc.gatech.edu/~san37/post/dlhc-cnn/

Algorithmic Intelligence Laboratory

Fully-connected layer
• 32×32×3 image à stretch to 3072×1

Convolution layer

CNN: Convolution

34

Input

1

3072 10×3072 weights

Activation

1
10

The result of taking a dot product
between a row of and the input

3

32

32

32×32×3 image
5×5×3 filter
(equivalent to 1×75 weights for FC layer)

Convolve the filter with the image
i.e., “slide over the image spatially,
computing dot products”

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

Fully-connected layer
• 32×32×3 image à stretch to 3072×1

Convolution layer

CNN: Convolution

35

1

3072 10×3072 weights

Activation

1
10

3

32

32

32×32×3 image

The result of taking a dot product between the filter
and a small 5×5×3 chunk of the image
(i.e., 5×5×3 = 75-dimensional dot product + bias)

5×5×3 filter
(equivalent to 1×75 weights for FC layer)

Input

The result of taking a dot product
between a row of and the input

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

Fully-connected layer
• 32×32×3 image à stretch to 3072×1

Convolution layer

CNN: Convolution

36

1

3072 10×3072 weights

Activation

1
10

3

32
Convolve (slide) over all spatial locations

32

32×32×3 image Activation map

1

28

28

5×5×3 filter
(equivalent to 1×75 weights for FC layer)

Input

The result of taking a dot product
between a row of and the input

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

Fully-connected layer
• 32×32×3 image à stretch to 3072×1

Convolution layer

CNN: Convolution

37

1

3072 10×3072 weights

Activation

1
10

3

32

If there are four 5×5×3 filters

Convolve (slide) over all spatial locations

32

32×32×3 image 4 separate activation maps

4

28

28

Input

The result of taking a dot product
between a row of and the input

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Closer look at spatial dimensions

CNN: An Example

38

7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 1

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Closer look at spatial dimensions

CNN: An Example

39

7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 1

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Closer look at spatial dimensions

CNN: An Example

40

7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 1

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Closer look at spatial dimensions

CNN: An Example

41

7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 1

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Closer look at spatial dimensions

CNN: An Example

42

7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 1

à 5×5 output

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Closer look at spatial dimensions

CNN: An Example

43

7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 2

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Closer look at spatial dimensions

CNN: An Example

44

7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 2

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Closer look at spatial dimensions

CNN: An Example

45

7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 2

à 3×3 output

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Closer look at spatial dimensions

CNN: An Example

46

7

7

7×7 input (spatially)
Assume 3×3 filter
Applied with stride 3 ?

Doesn’t fit!
Cannot apply 3×3 filter on
7×7 input with stride 3

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• In practice: Common to zero pad the border
• Used to control the output filter size

CNN: An Example

47

9

7×7 input (spatially)
Zero pad 1 pixel border
Assume 3×3 filter
Applied with stride 3

à 3×3 output

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

9

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

CNN: An Example (Animation)

48*source : https://github.com/vdumoulin/conv_arithmetic

No padding, stride 1

No padding, stride 2

Padding 1, stride 1

Padding 1, stride 2

Padding 1, stride 2 (odd)

Algorithmic Intelligence Laboratory

• Input volume : 32×32×3
• 10 5×5 filters with stride 1, pad 2

Output volume size = ?

CNN: An Example

49

3

32

32

32×32×3

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Input volume : 32×32×3
•

Output volume size = ?

• (32 + 2×2 - 5)/1 + 1 = 32 spatially

• = > 32×32×10

CNN: An Example

50

3

32

32

32×32×3

10

32

32

*reference : http://cs231n.stanford.edu/2017/

10 5×5 filters with stride 1, pad 2

Algorithmic Intelligence Laboratory

• Input volume : 32×32×3
• 10 5×5 filters with stride 1, pad 2

Number of parameters in this layer?

CNN: An Example

51

3

32

32

32×32×3

10

32

32

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Input volume : 32×32×3
•

Number of parameters in this layer?

• Each filter has 5×5×3 + 1 = 76 params (+1 for bias)

• = > 76×10 = 760

CNN: An Example

52

3

32

32

32×32×3

10

32

32

*reference : http://cs231n.stanford.edu/2017/

10 5×5 filters with stride 1, pad 2

Algorithmic Intelligence Laboratory

• ConvNet is a sequence of Convolutional layers, followed by non-linearity

• Choices of other non-linearity
• Tanh/Sigmoid
• ReLU [Nair et al., 2010]
• Leaky ReLU [Maas et. al., 2013]

CNN: Convolution

53

3

32

32

32×32×3 image

4

28

28

Conv,
ReLU
e.g., 4
5×5×3
filters

Conv,
ReLU
e.g., 6
5×5×4
filters

6

24

24

Conv,
ReLU
e.g., 10
5×5×6
filters

10

20

20

*reference: http://cs231n.stanford.edu/2017/
*Image source: https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

ReLU LeakyReLU

Algorithmic Intelligence Laboratory

• Pooling layer
• Makes the representations smaller and more manageable
• Operates over each activation map independently
• Enhance translation invariance (invariance to small transformation)
• Larger receptive fields (see more of input)
• Regularization effect

CNN: Pooling

54

224×224×64

224
112

112
Downsampling

Pooling

112×112×64

224
*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Max pooling and average pooling
• With 2×2 filters and stride 2

• Another kind of pooling layers are also used
• e.g. stochastic pooling, ROI pooling

CNN: Pooling

55

ROI pooling

*source:
https://deepsense.ai/region-of-interest-pooling-explained/
http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf
https://vaaaaaanquish.hatenablog.com/entry/2015/01/26/060622

Algorithmic Intelligence Laboratory

• Visualization of CNN feature representations [Zeiler et al., 2014]
• VGG-16 [Simonyan et al., 2015]

CNN: Visualization

56*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

CNN in Computer Vision: Everywhere

57

Classification and retrieval [Krizhevsky et al., 2012]

Algorithmic Intelligence Laboratory

CNN in Computer Vision: Everywhere

58

Detection [Ren et al., 2015] Segmentation [Farabet et al., 2013]

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

CNN in Computer Vision: Everywhere

59

Self-driving cars Human pose estimation [Cae et al., 2017]

Image captioning [Vinyals et al., 2015][Karpathy et al., 2015]

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

1. Deep Neural Networks (DNN)
• Basics
• Training : Back propagation

2. Convolutional Neural Networks (CNN)
• Basics
• Convolution and Pooling
• Some applications

3. Recurrent Neural Networks (RNN)
• Basics
• Character-level language model (example)

4. Question
• Why is it difficult to train a deep neural network ?

Table of Contents

60

Algorithmic Intelligence Laboratory

• CNN models spatial invariance information

• Recurrent Neural Network (RNN)
• Models temporal information
• Hidden states as a function of inputs and previous time step

information

• Temporal information is important in many applications
• Language
• Speech
• Video

RNN: Basics

61

Algorithmic Intelligence Laboratory

• Process a sequence of vectors by applying
recurrence formula at every time step :

RNN: Basics

62

New state Old state Input
vector at
time step t

Function parameterized by e.g, DNN, CNN

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Process a sequence of vectors by applying
recurrence formula at every time step :

• Same function and the same set of parameters
are used at every time step

RNN: Basics

63*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Simple RNN
• The state consists of a single “hidden” vector
• Vanilla RNN (or sometimes called Elman RNN)

RNN: Vanilla RNN

64*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

RNN: Computation Graph

65

Re-use the same weight matrix at every time step

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

RNN: Computation Graph (Many to Many)

66

e.g., Machine Translation
(Sequence of words à Sequence of words)

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

RNN: Computation Graph (Many to One)

67

e.g., Sentiment Classification
(Sequence of words à sentiment)

*reference : http://cs231n.stanford.edu/2017/

Good paper or not?

Algorithmic Intelligence Laboratory

RNN: Computation Graph (One to Many)

68

e.g., Image Captioning
(Image à sequence of words)

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Character-level
language model

• Vocabulary : [h,e,l,o]

• Example training
sequence : “hello”

RNN: An Example

69

1
0
0
0

0
1
0
0

0
0
1
0

0
0
1
0

Input chars:

Input layer

“h” “e” “l” “l”

0.3
-0.1
0.9

1.0
0.3
0.1

0.1
-0.5
-0.3

-0.3
0.9
0.7

Hidden layer

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Character-level
language model

• Vocabulary : [h,e,l,o]

• Example training
sequence : “hello”

RNN: An Example

70

1.0
2.2
-3.0
4.1

0.5
0.3
-1.0
1.2

0.1
0.5
1.9
-1.1

0.2
-1.5
-0.1
2.2

Output layer

Target chars: “e” “l” “l” “o”

1
0
0
0

0
1
0
0

0
0
1
0

0
0
1
0

Input chars:

Input layer

“h” “e” “l” “l”

0.3
-0.1
0.9

1.0
0.3
0.1

0.1
-0.5
-0.3

-0.3
0.9
0.7

Hidden layer

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Character-level
language model

• Vocabulary : [h,e,l,o]

• At test time, sample
character one at a
time and feedback to
model

RNN: An Example

71

1.0
2.2
-3.0
4.1

Output layer

Samples: “e”

1
0
0
0

Input chars:

Input layer

“h”

0.3
-0.1
0.9

Hidden layer

.03

.13

.00

.84

Softmax

0.5
0.3
-1.0
1.2

“l”

0
1
0
0

“e”

1.0
0.3
0.1

.25

.20

.05

.50

0.1
0.5
1.9
-1.1

“l”

0
0
1
0

“l”

0.1
-0.5
-0.3

.11

.17

.68

.03

0.2
-1.5
-0.1
2.2

“o”

0
0
1
0

“l”

-0.3
0.9
0.7

.11

.02

.08

.79

*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

• Backpropagation through time (BPTT)

• Forward through entire sequence to compute loss, then backward through
entire sequence to compute gradient

RNN: Backpropagation Through Time (BPTT)

72*reference : http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Laboratory

1. Deep Neural Networks (DNN)
• Basics
• Training : Back propagation

2. Convolutional Neural Networks (CNN)
• Basics
• Convolution and Pooling
• Some applications

3. Recurrent Neural Networks (RNN)
• Basics
• Character-level language model (example)

4. Question
• Why is it difficult to train a deep neural network?

Contents

73

Algorithmic Intelligence Laboratory

• Why is it difficult to train a deep neural network?

• Can we just simply stack multiple layers and train them all?
• Unfortunately, it does not work well
• Even if we have infinite amount of computational resource

Vanishing gradient problem :
• The magnitude of the gradients shrink exponentially as we backpropagate through

many layers
• Since typical activation functions such as sigmoid or tanh are bounded
• The phenomenon is called vanishing gradient problem

Question

74

Algorithmic Intelligence Laboratory

• Why do gradients vanish?

• Think of a simplified 3-layer neural network

Vanishing Gradient Problem

75

Algorithmic Intelligence Laboratory

• Why do gradients vanish?

• Think of a simplified 3-layer neural network

• First, let’s update
• Calculate the gradient of the loss with respect to

Vanishing Gradient Problem

76

Algorithmic Intelligence Laboratory

Vanishing Gradient Problem

77

Keep multiplying values < 1 will
decrease the amount exponentially

Gradients < 1

• Why do gradients vanish?

• Think of a simplified 3-layer neural network

• How about ?
• Calculate the gradient of the loss with respect to

Algorithmic Intelligence Laboratory

• This is more problematic in vanilla RNN (with tanh/sigmoid activation)
• When trying to handle long temporal dependency
• Similar to previous example, the gradient vanishes over time

Vanishing Gradient Over Time

78*source :https://mediatum.ub.tum.de/doc/673554/file.pdf

Algorithmic Intelligence Laboratory

• Vanishing gradient problem is critical in training neural network

• Q: Can we just use activation function that has gradients > 1?

Quiz

79

Algorithmic Intelligence Laboratory

• Not really. It will cause another problem so called exploding gradients.

• Let’s consider if we use exponential activation function:
• The magnitude of gradient is always larger than 1 when input > 0
• If output of the networks are positive, then the gradients to update will explode

• This will cause the training very unstable
• The weights will be updated in very large amount, resulting in NaN values
• Very critical problem in training neural networks

Answer for Quiz

80

Gradients > 1

Algorithmic Intelligence Laboratory

• Possible solutions
• Activation functions
• CNN: Residual networks [He et al., 2016]
• RNN: LSTM (Long Short-Term Memory)

How Can We Overcome Vanishing Gradient Problems?

81

LSTM (Long Short-Term Memory)

*source
https://mediatum.ub.tum.de/doc/673554/file.pdf
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092

Algorithmic Intelligence Laboratory

• Use different activation functions that are not bounded:
• Recent works largely use ReLU or their variants
• No saturation, easy to optimize

Solving Vanishing Gradient: Activation Functions

82

*source: https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092

Algorithmic Intelligence Laboratory

Solving Vanishing Gradient: Activation Functions

83

• Several generalizations of ReLU
• Leaky ReLU [Maas et. al., 2013]: Introducing non-zero gradient for ‘dying ReLUs’
• Parameteric ReLU (PReLU) [He et al., 2015]: Additional learnable parameter 𝑎 on

leaky ReLUs.
• Randomized ReLU (RReLU) [Xu et al., 2015]: Samples parameter 𝑎 from uniform

distribution.

• Concatenated ReLU (CReLU) [Shang et al., 2016]
• ‘Opposite pairs’ of filters found in CNN

- Needs to learn twice the information
• Two-sided ReLU

input

output

PReLU, RReLU
𝑓 𝑥 = max(𝑥/𝑎, 𝑥)

leaky ReLU
𝑓 𝑥 = max(0.01𝑥, 𝑥)

CReLU

input

output

𝑓 𝑥 = max(−𝑥, 𝑥)

Algorithmic Intelligence Laboratory

• Residual networks (ResNet [He et al., 2016])
• Feed-forward NN with “shortcut connections”
• Can preserve gradient flow throughout the entire depth of the network
• Possible to train more than 100 layers by simply stacking residual blocks

Solving Vanishing Gradient: Residual Networks

84

Plain network Residual network

Algorithmic Intelligence Laboratory

• LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units)
• Specially designed RNN which can remember information for much longer period

Solving Vanishing Gradient: LSTM and GRU

85

Preservation of gradient information in LSTM

3 main steps:
• Forget irrelevant parts of previous state
• Selectively update the cell state based on the

new input
• Selectively decide what part of the cell state to

output as the new hidden state

*source :
http://harinisuresh.com/2016/10/09/lstms/
https://mediatum.ub.tum.de/doc/673554/file.pdf

Algorithmic Intelligence Laboratory

• [Nair et al., 2010] "Rectified linear units improve restricted boltzmann machines." ICML 2010.
link : https://dl.acm.org/citation.cfm?id=3104425

• [Krizhevsky et al., 2012] "Imagenet classification with deep convolutional neural networks." NIPS 2012
link : https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

• [Maas et al., 2013] "Rectifier nonlinearities improve neural network acoustic models." ICML 2013.
link : https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf

• [Farabet et al., 2013] "Learning hierarchical features for scene labeling." IEEE transactions on PAMI 2013
link : https://www.ncbi.nlm.nih.gov/pubmed/23787344

• [Zeiler et al., 2014] "Visualizing and understanding convolutional networks." ECCV 2014.
link : https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

• [Simonyan et al., 2015] "Very deep convolutional networks for large-scale image recognition.” ICLR 2015
link : https://arxiv.org/abs/1409.1556

• [Ren et al., 2015] "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015
link : https://arxiv.org/abs/1506.01497

• [Vinyals et al., 2015] "Show and tell: A neural image caption generator." CVPR 2015.
link : https://arxiv.org/abs/1411.4555

• [Karpathy et al., 2015] "Deep visual-semantic alignments for generating image descriptions." CVPR 2015
link : https://cs.stanford.edu/people/karpathy/cvpr2015.pdf

• [He et al., 2015] "Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification." ICCV 2015.
link : https://arxiv.org/abs/1502.01852

References

86

https://arxiv.org/abs/1409.1556

Algorithmic Intelligence Laboratory

• [Xu et al., 2015] "Empirical evaluation of rectified activations in convolutional network." arXiv preprint, 2015.
link : https://arxiv.org/abs/1505.00853

• [Shang et al., 2016] "Understanding and improving convolutional neural networks via concatenated rectified
linear units." ICML 2016.
link : https://arxiv.org/abs/1603.05201

• [He et al., 2016] "Deep residual learning for image recognition." CVPR 2016
link : https://arxiv.org/abs/1512.03385

• [Cae et al., 2017] "Realtime multi-person 2d pose estimation using part affinity fields.", CVPR 2017
link : https://arxiv.org/abs/1611.08050

• [Fei-Fei and Karpathy, 2017] “CS231n: Convolutional Neural Networks for Visual Recognition”, 2017. (Stanford
University)
link : http://cs231n.stanford.edu/2017/

References

87

https://arxiv.org/abs/1603.05201

