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Why do we need interpretability?

* Recent deep learning models are too complex to understand

e Deep learning shows dramatically improved performance on various tasks
(e.g. image classification, object detection, visual question answering)

e Superior performance rer on deep and complex architecture
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When do we need interpretability?

 We don’t need interpretability for every single model
* No significant consequences for unacceptable results (e.g. recommendation system)
* The problem is sufficiently well-studied and validated (e.g. postal code sorting)

* We need interpretability for reliable model
» Safety critical domains requires reliability for decision making

e User should be understand the internal decision making process

* We need interpretability for scientific understanding
* Human want to understand super-human performance for various tasks
* e.g.image recognition, AlphaGo
* Not a main focus of this lecture
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What is interpretability?

Definition of interpretability

“The ability to explain or to present in understandable terms to a human”

What is NOT interpretability?

Interpretability is not about making all models interpretable
* There are many applications that don’t need interpretability
* e.g. advertisement, recommendation system

Interpretability is not about understand every single bit of the model
* We don’t need to understand internal mechanism of computer to use it
* We only need high-level description about how it works

Interpretability is not against developing highly complex models
* Most of the successful models are highly complex
 We don’t need to redevelop from the scratch
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Overview of Lecture: Interpretability Methods

* Feature attribution
* Which part of the input affected the prediction?

Prediction probabilities edible poisonous

edible
poisonous [ ] 1.00

Which features of the mushroom make it Which part of the image make it
model to predict that it is edible? model to predict the image as dog(cat)?

 Human-aligned concept
* Does the neural network reflect human knowledge?

human neural network
knowledge representation
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Occlusion Map [Zeiler et al., 2014]

* Idea: Mask part of the image with gray patch before feeding to CNN, and

check how much the prediction changes

P(elephant) = 0.95

P(elephant) = 0.75
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Prediction Difference Analysis [Zintgraf et al., 2017]

* Problem: Removing information with gray patch is too heuristic

* Idea: Simulate the absence of a feature by marginalizing the feature

* Goal: The attribution of i-th feature for given image and x and class ¢
p(clx) — plefxyi)

where X\; represents the absence of Z; in X

p(clxy\;) = Zp(xi\x\i)p(c\x\m ;)
T
* Note that p(z;|x\;) is computationally expensive
* Assume Z; is independent of the other features, i.e., p(:CZ-|X\Z-) ~ p(x;)

p(clxy;) Zp (zs)p(c|xy\;, 7)

* The prior probability p(x;) is usuaIIy approximated by the empirical distribution
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Prediction Difference Analysis [Zintgraf et al., 2017]

Idea: Simulate the absence of a feature by marginalizing the feature

plepey) = ) plxilx)plexy, i)

L4

Problem: p(z;|x\;) =~ p(z;) is a very crude approximation
e e.g.apixel’s value is highly dependent on other pixels

Observations
* A pixel depends most strongly on a small neighborhood around it
* The conditional of a pixel given its neighborhood does not depend on the position

For a pixel z;, one can find a patch %x; than contains ; and p(z;|x\;) =~ p(x;|X;)

input x
L -
B T
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Prediction Difference Analysis [Zintgraf et al., 2017]

* Results
* Marginal vs. conditional sampling
input marginal conditional marginal conditional
- 4‘/? pe s

N
X
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e Different window sizes
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Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]

« Remember that a sparse linear model is a good explanation model

Example £ of ¢ T Clas: (@) A CDEDo
Algorithm 1 Algorithm 2
Words that A1 considers important: Predicted: Words that A2 considers important: Predicted:
GOD) . Atheism Posting| . Atheism
mean| Prediction correct: Host| Prediction correct:
anyonef J Re| J
this by
Koresh) i
through| Nt
Document Document
From: pauld@verdix.com (Paul Durbin) From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD! Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge hq.verdix.com Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp Organization: Verdix Corp
Lines: 8 Lines: 8

* Idea: Local linear approximation

* Explain the entire model is hard, but
a single prediction is easier

* Approximate the model in a local region
around the single prediction by a linear classifier
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Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]
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e |llustration of the main idea

Perturbed Instances
i T
" 3

ol

o~
0.85

(/

i.‘

Tl

=

LS
A

Locally weighted
regression

! , ' . - (‘. ’1 . N - ’
Original Image Interpretable : 0.00001
Original Image

Components 5 f o
T c Rd ¢ € {07 1}d (tree frog) = 0.

Explanation

* Overall Procedure
1. Decompose original input to interpretable representation
2. Model local region around given input by sampling
3. Approximate original model as a linear classifier
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Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]

e |llustration of the main idea

Original Image

r € R?

Y S

N
Y
C

Interpretable
Components

2 € {0,1}¢

Perturbed Instances | P(tree frog)

A,ﬁ
0.85

Original Image

P(tree frog) = 0.54

Locally weighted
regression

Explanation

* Step 1: Interpretable representation
* Understandable to humans

* For text classification, a binary vector indicating the presence or absence of a word

* For image classification, a binary vector indicating the presence or absence of a
contiguous patch of similar pixels

« 1 € R? :original representation / z’ € {0, l}d/ . its interpretable representation
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Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]

e |llustration of the main idea

Y S

o
I
b‘."‘ﬂg,‘

Original Image Interpretable
Components
z € RY 2 € {0,1}¢

Original Image
P(tree frog) = 0.54

Perturbed Instances | P(tree frog)

A,ﬁ
0.85

= N
. 0.00001

e Step 2: Model local region around given input
- Sample instances around by drawing nonzero elements of =’ € {0, 1}¢ uniformly

at random

/

Locally weighted
regression

Explanation

* Given a perturbed sample 2’ € {0, 1}d, recover the original representation z € R4

« Compute f(2): the prediction of model for each perturbed output

Algorithmic Intelligence Lab
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Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]

e |llustration of the main idea

N J;)E[

vl
|
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e

4

Original Image Interpretable
Components Original Image
! P(tree fi =0.54
v € RY o € {0,1)d Plreefrg)

Perturbed Instances | P(tree frog)

P

o~

: 085 Locally weighted
- ’ regression
0.00001

Explanation

* Step 3: Approximate original model as a linear classifier
* Fit a linear classifier g(z') = w, - 2’ and use it as an explanation model

[’(fagaHa:): Z H:c(z)

z,z2'eZ

(f(2) —g(=))"

« II,(2) defines locality (e.g. II,(2) = exp(—|z — z||3/0.1))

§(x) = argmin L(f, g, 11.) + Q(g)

* Final objective

geG

Algorithmic Intelligence Lab

local fidelity

measure of complexity (e.g. LO norm)
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Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]

* Results: Can be applied to any model
* Top 3 predictions of Inception-v3 for ImageNet dataset

¥

A

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

* Random forest prediction for the 20 newsgroups dataset

Prediction probabilities atheism christian

atheism
christian

Text with highlighted words

From: johnchad @triton.unm 8l (jchadwic)

Subject: Another request for Darwin Fish
Organization: University of New Mexico, Albuquerque
Lines: 11

ISR - BOSEE- BI6S: triton unm §

Hello Gang,

[BHBES HAYE been some notes recently asking where to obtain the
DARWIN fish.

This is the same question I [Jl§i§ and I i not seen an answer on
the

net. If anyone has a contact please post on the net or email me.
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Saliency Map [Simonyan et al., 2014]

* Problem: Perturbation-based methods are too slow

* Idea: Use gradient of output with respect to the input as the attribution

* Goal: Find the influence on the score S.(Iy) for given image I
e Consider the linear score model for class C

S.(I) =w, I+ b,

where [ :image, w,, b. : the weight vector and the bias of the model
» W, defines the importance of the corresponding pixels of I for the class ¢

* In case of non-linear/complex models, approximate S¢ (/)
by the first-order Taylor expansion

S.(D~w'I+b
dS.

where w =
ol =1,

Algorithmic Intelligence Lab 20



Saliency Map [Simonyan et al., 2014]

* Results: Without any additional annotation, gradient can localize the object

— T 3 e . Y . " = P,

u..::s..,\” .




Integrated Gradients [Sundararajan et al., 2017]

f
* Problem: Prediction score might saturate .
* For high confidence prediction, Point for

. .. ttribution,
small perturbation in input does not Zradi:n?#)
change the prediction value .

baseline at 0
X

10
Prediction score

08 Already saturated when o = 0.2

0.6

F': prediction score
F(z' + alz — 1)) Precictic
5 2 : original image
x': baseline image
02
0.0
0.0 02 04 0.6 08 10
>
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Integrated Gradients [Sundararajan et al., 2017]

f
* Problem: Prediction score might saturate .
* For high confidence prediction, Pgi_r;)tftc_)r
. .. attribution,
small perturbation in input does not gradient=0
change the prediction value R
baseline at 0
X

10

Average pixel gradient

(normalized) -
0.6 . .

OF (¢’ + a(x — ') F': prediction score
n o1 x : original image
x': baseline image
02
0.0
0.0 0.2 04 0.6 08 10
e =
intensity «
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Integrated Gradients [Sundararajan et al., 2017]

* Idea: Compute all the gradients for images from baseline to actual image

* Construct a sequence of images interpolating
from a baseline (black) to the actual image

Uniformly scale
from baseline to
input image

» Average the gradients across these images

1
aF / . /
1G;(z) = (zi — ) X / @+alz=2)),,
a=0 Ox;
« I is the prediction function for the label Baseline

(all zeros)

» x; is the intensity of ith pixel

(e =0.3)

 IG;(7) is the integrated gradient w.r.t.
the ith pixel

(a=0)

* Properties
* Sensitivity: A variable changes output, then the variable should get an attribution
* Insensitivity: A variable has no effect on the output gets no attribution

« Completeness: > ., IG;(z) = F(z) — F(z')

Algorithmic Intelligence Lab
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Integrated Gradients [Sundararajan et al., 2017]

* Results: For high confidence predictions, |G provide discriminative region

Original image Top label and score Integrated gradients Gradients at image

Top label: reflex camera

Score: 0.993755

Top label: fireboat
Score: 0.999961

Top label: school bus

Score: 0.997033
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SmoothGrad [Smilkov et al., 2017]

* Problem: Gradients strongly fluctuate!

* Givenimage x, and an image pixel x;, plots values of max
for a short line segment = + te

C

(x + te)

v 8:61

010
0.08
0.06
004
0.02
0.00

0S,. /ozxi(x + te)

-0.02

-0.04

-0.06

-0.08
00 02 04 06 08 10

t

* Evenx and x + € are indistinguishable, the partial derivative rapidly fluctuate

* Idea: Use a local average of gradient values

N
1 0S.
SG(z) = N — ox ( + i)

1=

where noise vectors g; ~ N (0, 02) are drawn i.i.d. from a normal distribution

Algorithmic Intelligence Lab
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SmoothGrad [Smilkov et al., 2017]

* Results: Simple noise-adding method can
dramatically improve the quality of saliency map

Gradient Gradient x Image

Vanilla Integrated Guided BackProp | SmoothGrad

Vanilla Integrated Guided BackProp |SmoothGrad

drilling platform

High Impact
hognose snake great white shark

night snake

lorikeet

Low Impact

Algorithmic Intelligence Lab
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Grad-CAM [Selvararaju et al., 2017]

* Problem: Many pixel-level attribution methods insensitive to model parameter
[Adebayo et al., 2018]

Cascading randomization

—_ [
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Q2
= e N e g 3 b3 8 © 3 3 8 a 5 b | = h(
T o | | | | | | - | | | | T T T T T
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Grad-CAM [Selvararaju et al., 2017]

Idea: Activation-level attribution instead of pixel-level attribution
Gradient-based extension of CAM [Zhou et al., 2015]

Can be applied to any CNN based model
* Image classification, image captioning or visual question answering

Use GAP of gradients instead of weights after GAP layer
« y°: the score for class ¢, A : feature map of the last convolutional layer

0= W ¢ —ReLU [ Y aga*
k — OAF Grad—CAM — 1\€ .
1,7 J k
>: ]
T Tiger Cat
Grad-CAM
y
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Grad-CAM [Selvararaju et al., 2017]

Idea: Activation-level attribution instead of pixel-level attribution
Gradient-based extension of CAM [Zhou et al., 2015]

Can be applied to any CNN based model
* Image classification, image captioning or visual question answering

Use GAP of gradients instead of weights after GAP layer
« y°: the score for class ¢, A : feature map of the last convolutional layer

¢ 8yc c c
A = Z A Grad—cam — ReLU <Z O%Ak>
1) k

(2]

Typically, the conv activation has low-resolution = low resolution explanation

Less affected by CNN architecture prior - more sensitive to model parameter

Algorithmic Intelligence Lab
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Class Activation Map (CAM) [Zhou et al., 2015]

* Results
 CAM vs. Saliency map

French horn French horn ; French horn French horn
0.934 A 0.966 ‘ 0.326 0.966

D (&Y | §J

Backpro AlexNet Backpro GoogLeNet

GoogLeNet-GAP  VGG-GAP AlexNet-GAP GoogLeNet

* Examples of localization (green: ground truth / red: predicted)

bt
e IaPShul": ee grasshopperaasmnmames

L J
A

Algorithmic Intelligence Lab 31



Grad-CAM [Selvararaju et al., 2017]

* Results: focus on right place without any attention module
* Visual explanations for captioning

Guided Backprop Grad-CAM Guided Grad-CAM

A bathroom with a toilet and a sink

0
i

A horse is standing in a field with a fence in the background

Algorithmic Intelligence Lab
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Grad-CAM [Selvararaju et al., 2017]

* Results: can discriminate different objects
* Visual explanations for VQA

What animal is in this picture? (left) Answer: dog / (right

) \

Algorithmic Intelligence Lab

) Answer: cat
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Network Dissection [Bau et al., 2017]

* Question: Are hidden units of the trained network align with human concept?

* Idea: Make a dataset with human concepts as labels (Broden)
e Gather images from various dataset

Contain examples of a broad range of objects, scenes, object parts, textures, and
materials in a variety of contexts

* Most examples are segmented down to the pixel level
* Total 63,305 pixel-level annotated images, 1,197 visual concepts

street (scene) flower (object) headboard (part)

Algorithmic Intelligence Lab
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Network Dissection [Bau et al., 2017]

* Quantifying interpretability of hidden units

* For every input image X in the Broden dataset,
collect the activation map A, (x) of every convolutional unit k&

Define the binary segmentation My (x) = 1{Sk(x) > T} }
Sk(x) : scaled up activation map of A (x)(same size as the image)

T} : some threshold value

The score of unit k for concept c is reported as a dataset-wide loU score
D s | M (x) N Le(x)]
D [ M (x) U Le(x)|

* L.(x): ground truth mask of image x for concept ¢

IoUy . =

Algorithmic Intelligence Lab 36



Network Dissection [Bau et al., 2017]

* Results: Object detector emerges even when the model trained on scene dataset
* High-scored (interpretable) convolutional units

conv5 unit 79 car (object) loU=0.13

conv5 unit 144 mountain (object) loU=0.13

- ¢
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Network Dissection [Bau et al., 2017]

* Results: Interpretability across different architectures and datasets

* Deeper architectures appear to allow greater interpretability
* Scene is composed of multiple objects,

so it may be beneficial for more object detectors to emerge in CNN

350

w
o
o

N
(o)
o

[)®)
o
o

150

100

Number of unique detectors

(&)
o
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Network Dissection [Bau et al., 2017]

* Results: Interpretability across different supervision
* Self-supervision creates many texture detectors, but relatively few object detectors
* Colorization trained on colorless images, so that no color detectors

100 I 1 I I I I ] T I I I I 1 T
I object
» I part
S 80 [ scene |
§ [ Imaterial
K [ ltexture
o 60 [ Icolor -
g
c
-]
= 40 - |
o)
I
&
S 20 -
=
0
O D ) N ) o O . & N o & 2
FFTF L EE P&
FF LSS TS
9 > $ CaR e & 3 &
N @& T E : \O $ S
M N R N @ ) ) & @
A\ AR o C =
\Q;+ ¥ \®+ \Q’+ ?\
v v ¥
Supervised Self-supervised
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Concept Activation Vector [Kim et al., 2018]

* Question: How much certain human concept affected the prediction?

* Idea: Define human concept as a vector in the representation space
* First, define some concept as a set of examples

g ‘.;:::-71_; “ . ”
. ”M ”“”” ‘ \\\ — ;; striped” concept examples

\e" {% é @9 @ random examples

* Train a linear classifier to separate concept features and random features

» Concept activation vector (CAV) is the vector orthogonal to the deC|5|on boundary
f[ R” —> R™ hir:R*"—=R

- ~

- “M M """" = | o M K class
t@@é@@* .

Algorithmic Intelligence Lab
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Concept Activation Vector [Kim et al., 2018]

» Quantifying conceptual sensitivity

* Conceptual sensitivity of class k to concept C T A ke
Sc ki (x) = lim huk (fi(x) + eve) — ik (fi(x)
e—0 € | y |
= Vh (fi(x)) -vlc - S —
* hi(x): logit for a data point x for class k Ohy (x) « zebra-ness
° Vlc: unit concept activation vector for a concept C' SC,k,l(X) — 8VZC « striped-CAV

* Testing with CAV
* Measure how much specific concept is related to certain class
* Fraction of class k£ inputs whose [ layer activation vector is positively influenced

by concept C' _ Soux, l(’%{(’(@)
S
|{XEAX;c 3SC,k,l(X> >O}‘ _ L
TCAVQC,k,l — X &7
| Xk | Sc,k,i (8%

* Quantifying global behavior of the model e
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Concept Activation Vector [Kim et al., 2018]

e Sorting images with CAVs

CEO concept: most similar striped images

CEO concept: least similar striped images

Model Women concept: most similar necktie images

. h—“d \ —
— e ——
g“

= - d -

e TCAVs for image classification networks

10 Fire engine TCAV in googlenet Zebra TCAV in googlenet , Ping-pong ball TCAV in inceptionv3 Dumbbell TCAV in inceptionv3
= s
e : o8 -
0.6 ‘ 08
04 ‘ 04
02 0.2
1 . s o . owne .

e d llow blue reen zigzagged  striped dotted 0.0 armepmy -

e ye g 92209 P latino  eastasian african caucasian arms bolo_tie lampshade
1o Rugby ball TCAV in googlenet School bus TCAV in googlenet 1.0 Apron TCAV in inceptionv3 DogsledTCAV in inceptionv3
0.8 0.8
0.6 0.6
0.4 04
0.2 0.2
00 I e . S | LIGE - 0o 2+ +mm- NN . _ x

latino  eastasian african caucasian male_lfw female_lfw baby female whiteman baby corgis zebra siberian_husky
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Concept Activation Vector [Kim et al., 2018]

» Simple sanity check experiment

image
+
potentially noisy caption

cab image cab image with caption cucumber image cucumber with caption

Models pay attention to either image or caption concept for classification
4 models trained with different caption noise levels

Test models with no caption image (test accuracy = importance of image concept)

cab

?* 10 10

08

10 cucumber

08 08

—_— Acc‘{racy w— Accuracy
g = e g — fcavemion “%  TCAV score matches with
B § §. § the ground truth well
00 I — 2 4 % 00
0% noisy 30% noisy 100% noisy  no captions 0% noisy 30% noisy 100% noisy  no captions
image concept is important caption concept is important

Algorithmic Intelligence Lab
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Concept Activation Vector [Kim et al., 2018]

» Simple sanity check experiment
 What about saliency map?

Vanilla Guided Integrated
gradient backprop gradient

Model trained on Smoothgrad

Input Image

Images without
captions
(no captions)

Images with
captions
(0% noise)

Images with
captions
(30% noise)

Images with
captions
(100% noise)

* None of these model looked at the caption, but saliency map highlights the caption
* Interpreting using saliency map alone could be misleading

Algorithmic Intelligence Lab



Interpretable Representation via Adversarial Robustness [Engstrom et al., 2019]

* Question: How can we obtain human-aligned representation?

* Problem: Representation space is not human-aligned
* Easy to find two different images with similar representations

» Idea: Adversarial robustness as a feature prior
* Imperceptible changes should not cause large change in prediction

|l —2'|2<e = [[f(z) = f(@)| <C-e
* Note that this is a necessary condition, not a sufficient condition
e Can enforce this property with adversarial training

min K )~ [gleag Lo(z 0, y>]

Algorithmic Intelligence Lab
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Interpretable Representation via Adversarial Robustness [Engstrom et al., 2019]

* Results: Visualizing loss gradient with respect to input pixels
* Gradients are significantly interpretable for adversarially trained networks

6 2 7 bird airplane frog insect dog primate

Original
Original

Standard
Standard

{.-trained

L.-trained
L.-trained

£>-trained
3
%)
i
.- '
£,-trained

£>-trained

(a) MNIST (b) CIFAR-10 (c) Restricted ImageNet

Algorithmic Intelligence Lab
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Interpretable Representation via Adversarial Robustness [Engstrom et al., 2019]

* Results: Visualizing large-€ adversarial examples

* Adversarial examples for robust models can often be perceived as samples from
that class

Original Standard {.-trained

{,-trained Original Standard ! .-trained _fr-trained

€ €| € €

(a) MNIST (b) CIFAR-10

Standard .-trained

Original » {,-trained

(c) Restricted ImageNet
Algorithmic Intelligence Lab



Interpretable Representation via Adversarial Robustness [Engstrom et al., 2019]

* Results: Visualizing the most predictive features
* Manipulate input to increase the value of component having the highest weight
* Provide insight to model’s incorrect decision

original most predictive features

label:“primate”;
prediction: “dog”

label: “insect”;
prediction:“dog”

label: “fish”;
prediction: “frog”
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Summary

Interpretability is important concept, but there are some obstacles
* Hard to define what exactly interpretability is
* Hard to evaluate interpretability of certain model

Previous literatures mainly focused on the feature attribution problem
* To find which part of the input is related to the prediction
 Visual explanation (saliency map / class activation map)

Recent literatures focus on discover human-aligned concept
* Hidden unit in trained network (network dissection)
* Vector in the representation space (concept activation vector)
* Perceptually-aligned representation (L2 adversarial training)

We are still far from our ultimate goal
e To understand what’s going on inside neural network
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