Algorithmic Intelligence Lab

Meta Learning

Recent Advances in Deep Learning (A1602)
Lecture 15

Slide made by

Jongjin Park and Sangwoo Mo
KAIST Graduate School of Al

Table of Contents

1. Introduction
* What is meta-learning?
* Applications of meta-learning
* QOverview of common approaches

2. Approaches to Meta-learning
* Metric-based meta-learning
* Model-based meta-learning
* Optimization-based meta-learning

Algorithmic Intelligence Lab

Table of Contents

1. Introduction
* What is meta-learning?
* Applications of meta-learning
* QOverview of common approaches

Algorithmic Intelligence Lab

What is Meta-Learning?

* Learning: The model learns to solve a problem

09@0@96@0

New
Boardgame?

1
i

o
a
=

2

[ImE po

é
e 6 S b

Algorithmic Intelligence Lab

Multi-task learning vs Meta-learning

* Multi-task learning:

 Given a pre-defined set of tasks {73, ..., Ty} (and corresponding loss functions {£;}),
learn a single model f that solves all tasks simultaneously

* Formally, the objective is given by

IR
‘

K
argmin z Li(Te;)
I =

LY L)

S

e
5=

&
—

EEEs
e
o —

%)7

\
3) 3

* Meta-learning:

* For each task J; from a task distribution p(7), learn a meta-model f that (quickly)
learns a task-specific model f; :== f (- |T;) that solves the given task T; o

* Formally, the objective is given by

argmin Ez. L;(T;; f;)
f
/

Key difference: adaptation

Algorithmic Intelligence Lab

Multi-task learning vs Meta-learning

* Multi-task learning:

* Given a pre-defined set of tasks {73, ..., Ty} (and corresponding loss functions {£;}),
learn a single model f that solves all tasks simultaneously

* Formally, the objective is given by

K
argmin Z Li(Te;)
I =

* Meta-learning:

* For each task J; from a task distribution p(7), learn a meta-model f that (quickly)
learns a task-specific model f; :== f (- |T;) that solves the given task T;

* Formally, the objective is given by

argmin Ez. L;(T;; f;)
f

* Since we mostly use parametric models (or deep neural network), we will denote
the parameter of meta-model and task-specific models as 8 and ¢;, respectively

Algorithmic Intelligence Lab

Applications of meta-learning

* Few-shot classification
* Human can classify novel objects even though they see only a few samples

* Example: Classify the breed of dogs (3-way 1-shot problem)

Pomeranian Welsh Corgi Siba Inu

Algorithmic Intelligence Lab

Applications of meta-learning

* Few-shot classification

* Human can classify novel objects even though they see only a few samples

* Few-shot learning can be formulated as a meta-learning problem

e Task: Given N classes of K samples each (i.e., N-way K-shot), predict the class
of test samples (Each combination of N classes defines a task)

* In this case, the meta model f learns a dog breed classifier fq,4 from the given
training images (and evaluated by test images)

Pomeranian

y

Training images

Test
images

Task: Classify dogs

Algorithmic Intelligence Lab

Applications of meta-learning

* Few-shot classification
e Classify novel instances with a few-shot of samples

* Few-shot generation
e Generate novel instances of given samples

* Example: Generate new emotions and angles of Mona Lisa (unigue in the world!)

Living portraits

Algorithmic Intelligence Lab

Applications of meta-learning

* Few-shot classification
* Classify novel instances with a few-shot of samples

* Few-shot generation
* Generate novel instances of given samples

* Generalization of RL
* Generalize to novel environments

$3338388338388

L
®

<
!
§
%
$
$
§

>~
~~

Algorithmic Intelligence Lab 10

Applications of meta-learning

Few-shot classification
e Classify novel instances with a few-shot of samples

Few-shot generation
* Generate novel instances of given samples

Generalization of RL
* Generalize to novel environments

and LOTS of other applications
* Neural architecture search
* Hyperparameter optimization
* Loss function design
e ..andsoon

Algorithmic Intelligence Lab

11

Overview of common approaches

* Problem formulation

* To meta-learn a model, we need a meta-train dataset {(D"", DY)} consist of

training and test datasets for each task J;

* The performance of meta model is evaluated by a meta-test dataset

Meta-train dataset

Train dataset #1: Dogs

Siberian husky

Akita inu

Utonagan dog

Siamese cat

Persian cat

Russian blue

Algorithmic Intelligence Lab

American
goldfinch

European
goldfinch

Hooded
Oriole

Meta-test dataset

Target test dataset : Birds |-~ -----~ -

12

Overview of common approaches

* General recipe for meta-learning
* The core of meta-learning is how to learn a task-specific models for a given task

* There are two common ways to learn the model from the dataset Dl-trai“

* Model-based meta-learning
* The meta-parameter 0 is fixed, and the task is encoded to a context variable ¢;
* Namely, the task-specific function is given by f(- |8, ¢;)

* Optimization-based meta-learning

* Learn a parameter ¢; = g(D"; 9) for each task 7;
Namely, the task-specific function is given by f(- |¢;)

Note that deep learning procedure can be decomposed into two steps:
* How to set the initial parameter ¢i(0)

* How to update the parameter cl)l.(t) to the better parameter qbl.(tﬂ)

The meta-learner 6 will learn the initialization and/or update schemes

13

Overview of common approaches

* Metric-based meta-learning
* For a special type of meta-learning, few-shot classification, another common
approach is to learn an embedding function and the corresponding metric

* The embedding function maps similar samples to the similar embedding, and one

can classify a novel sample by finding the nearest cluster

Query Support Embedding

'a a |

--

Algorithmic Intelligence Lab

Table of Contents

2. Approaches to Meta-learning
* Metric-based meta-learning

Algorithmic Intelligence Lab

15

Matching Networks

* Matching Networks [Vinyals et al. 16] propose to learn a shared embedding
space over multiple subclassification problems.

Algorithmic Intelligence Lab [Vinyals et al. 16] Matching Networks for One Shot Learning, NIPS 2016 16

Matching Networks

Matching network training objective:

9:argm9axELNT Es r.5~L Z log Py (y|x, S)

Obtaining the optimal 8 can be done via episodic training.

* First sample L (label set) from T, and use L to sample the support set S and a
batch B.

* Then minimize the error predicting the labels in the batch B conditioned on the
support set S.

Algorithmic Intelligence Lab

17

Matching Networks

* Matching Networks generalize well and thus outperforms baseline classifiers
and meta-learning models (MANN) on few-shot learning tasks.

5-way Acc 20-way Acc

Model Matching Fn Fine Tune l-shot 5-shot l-shot 5-shot
PIXELS Cosine N 41.7% 632% 26.7% 42.6%
BASELINE CLASSIFIER Cosine N 80.0% 95.0% @ 69.5% 89.1%
BASELINE CLASSIFIER Cosine Y 823% 98.4% T70.6% 92.0%
BASELINE CLASSIFIER Softmax Y 86.0% 97.6% 72.9% 92.3%
MANN (No Conv) [21] Cosine N 82.8% 94.9% - -
CONVOLUTIONAL SIAMESE NET [11] Cosine N 96.7% 98.4% 88.0% 96.5%
CONVOLUTIONAL SIAMESE NET [11] Cosine Y 973% 98.4% 88.1% 97.0%
MATCHING NETS (OURS) Cosine N 98.1% 989% 93.8% 98.5%
MATCHING NETS (OURS) Cosine Y 97.9% 98.7% @ 93.5% 98.7%

Table 1: Results on the Omniglot dataset.

* Fine-tuning helped with baseline classifiers, but not in the case of Matching
Networks.

Algorithmic Intelligence Lab [Vinyals et al. 16] Matching Networks for One Shot Learning, NIPS 2016 18

Prototypical Networks

* Prototypical Networks [Snell et al. 17] use meta-learning to learn a metric

space that minimizes the Euclidean distance between the prototypes and each
training instance.

Class
prototype

Embedded
instance

Target class

exp(—d(fy(x),cr))

p¢(y =k ‘ X) — Zk’ exp(—d(f¢(x)7ck’))

Algorithmic Intelligence Lab [Snell et al. 17] Prototypical Networks for Few-shot Learning, NIPS 2017 19

Prototypical Networks

Algorithmic Intelligence Lab

* Prototypical Networks are trained by minimizing the negative log-probability

J(¢) = —logps(y = k| x) via episodic training.

Input: Training set D = {(x1,91),...,(Xn,yn)}, where each y; € {1,..., K}. Dy denotes the
subset of D containing all elements (x;, y;) such that y; = k.
Output: The loss J for a randomly generated training episode.

V < RANDOMSAMPLE({1,..., K}, N¢) > Select class indices for episode
for kin {1,...,N¢} do
Sk < RANDOMSAMPLE(Dy,_, Ng) > Select support examples
Q1 < RANDOMSAMPLE(Dy, \ Sk, Ng) > Select query examples
1
Ck & N Z fo(xi) > Compute prototype from support examples
(x'ivyi)esk
end for
J 0 > Initialize loss

for kin {1,...,N¢c} do
for (x,y) in Q. do

[d(f¢(x), cik)) + log Z exp(—d(fe(x),cr)) > Update loss

end for
end for

[Snell et al. 17] Prototypical Networks for Few-shot Learning, NIPS 2017 20

Prototypical Networks

* Prototypical Networks outperform Matching Networks and MAML on few-shot
classification tasks.

5-way Acc. 20-way Acc.
Model Dist. Fine Tune 1-shot 5-shot 1-shot 5-shot
MATCHING NETWORKS [32] Cosine N 98.1% 989% 93.8% 98.5%
Omniglot MATCHING NETWORKS [32] Cosine Y 97.9% 98.7% 93.5% 98.7%
NEURAL STATISTICIAN [7] - N 98.1% 99.5% 932% 98.1%
MAML [9]* - N 98.7% 999% 95.8% 98.9%
PROTOTYPICAL NETWORKS (OURS) Euclid. N 988% 99.7% 96.0% 98.9%
5-way Acc.
Model Dist. Fine Tune 1-shot 5-shot
mlnllmageNet BASELINE NEAREST NEIGHBORS” Cosine N 28.86 £ 0.54% 49.79 £ 0.79%
MATCHING NETWORKS [32]* Cosine N 4340 £0.78% 51.09 £ 0.71%
MATCHING NETWORKS FCE [32]" Cosine N 43.56 +0.84% 55.31 £ 0.73%
META-LEARNER LSTM [24]* - N 4344+ 0.77% 60.60 + 0.71%
MAML [9] - N 48.70 - 1.84% 63.15+091%
PROTOTYPICAL NETWORKS (OURS) Euclid. N 4942 + 0.78% 68.20 £ 0.66 %

Algorithmic Intelligence Lab

[Snell et al. 17] Prototypical Networks for Few-shot Learning, NIPS 2017 21

Relation Networks

* Relation Networks [Sung et al. 18] learns to learn a deep metric space by
learning to minimize the relation scores between the query and the support
samples.

embedding module relation module

rog = 90(CUfo (@), fola;)))

Relation One-hot
score vector

fo) m

p, ¢ < argmin Z Z(Ti,j — 1(y; == y;))*
N i=1 j=1

Algorithmic Intelligence Lab [Sung et al. 18] Learning to Compare: Relation Networks for Few-shot Learning, CVPR 2018 22

Relation Networks

* Relation Networks outperforms Prototypical Networks and MAML on few-shot
learning tasks.

Model Fine Tune 5-way Acc. 20-way Acc.
1-shot 5-shot 1-shot 5-shot
MANN [32] N 82.8% 94.9% - -
CONVOLUTIONAL SIAMESE NETS [20] N 96.7% 98.4% 88.0% 96.5%
CONVOLUTIONAL SIAMESE NETS [20] Y 97.3% 98.4% 88.1% 97.0%
MATCHING NETS [39] N 98.1% 98.9% 93.8% 98.5%
. MATCHING NETS [39] Y 97.9% 98.7% 93.5% 98.7%
Omnlglot SIAMESE NETS WITH MEMORY [18] N 98.4% 99.6% 95.0% 98.6%
NEURAL STATISTICIAN [8] N 98.1% 99.5% 93.2% 98.1%
META NETS [27] N 99.0% - 97.0% -
PROTOTYPICAL NETS [30] N 98.8% 99.7% 96.0% 98.9%
MAML [10] Y 98.7 £+ 0.4% 99.9 + 0.1% 95.8 £0.3% 98.9 + 0.2%
RELATION NET N 99.6 + 0.2% 99.8+ 0.1% 97.6 + 0.2% 99.1+ 0.1%
Model FT 5-way Acc.
1-shot 5-shot
H™Y- MATCHING NETS [39] 43.56 = 0.84% 55.31 = 0.73%
mlnllmageNet META NETS [27] 49.21 £+ 0.96%

META-LEARN LSTM [29] 43.44 £0.77% 60.60 = 0.71%

Algorithmic Intelligence Lab

MAML [10]

PROTOTYPICAL NETS [

]

48.70 £ 1.84%
49.42 £+ 0.78%

63.11 £ 0.92%
68.20 £ 0.66%

RELATION NET

Z|Z~<ZZZ

50.44 £ 0.82%

65.32 + 0.70%

[Sung et al. 18] Learning to Compare: Relation Networks for Few-shot Learning, CVPR 2018 23

MetaOptNet

* MetaOptNet [Lee et al. 19] uses more complex classifiers (e.g., SVM) instead of

the naive nearest neighbor classifier, upon the learned e

Embeddings of Weights of

=
fo

mbedding

Score (logit)

Training Examples Linear Classifier for Each Class

L m) 8 —
—(C__J—|(wm) | —(C_I—(+)=U—|snee

| |

—C_)

Training Examples - _JU;‘
Test Examples

* Here, the classifier is defined by a closed form solution of some quadratic

programming (QP) problem

{wk}

| 1
0 = A(DIrin; ¢) = a1g min min 5 > w3 +CD &n
Lk n

1

Algorithmic Intelligence Lab [Lee et al. 19] Meta-Learning with Differentiable Convex Optimization, CVPR 2019 24

Algorithmic Intelligence Lab

MetaOptNet

* MetaOptNet with ridge regression (RR) and support vector machine (SVM)
shows better results than naive prototypical network

minilmageNet 5-way tieredImageNet 5-way
1-shot 5-shot 1-shot 5-shot
model acc. (%) time (ms) acc. (%) time (ms) acc. (%) time (ms) acc. (%) time (ms)

4-layer conv (feature dimension=1600)

Prototypical Networks [17, 28] 53.474063 6+001 70.68+049 71002 54.28+067 64003 71421061 7+002
MetaOptNet—RR (ours) 53.23 +0.59 203:()_()3 69.51 4048 27:5:()_05 54.63 +0.67 21 +0.05 72.11 +0.59 28:5:()_05
MetaOptNet-SVM (ours) 52.87+057 28+002 68.76+048 374005 54.71+067 284007 71.79+050 384008

ResNet-12 (feature dimension=16000)
Prototypical Networks [17, 28] 59.254+064 60+17 75.60+048 66417 61.74+077 61+17 80.00+055 66413

MetaOptNet-RR (ours) 61411061 68+17 77.88+046 T5+17 65.361071 69+17 813441052 77417
MetaOptNet-SVM (ours) 62.641061 78+17 78.63+046 89+17 65.99.072 78+17 81.56+0s53 90417
minilmageNet 5-way 1-shot minilmageNet 5-way 5-shot
78.75 1
3 A & Al ; ‘ _A
625 < 78.50| | | e
> ‘ > 1 [‘
B 62.0 B 78,25 | g
3 > |
2) 615 § 78.00 }
77.75 :
—&— MetaOptNet-SVM —&— MetaOptNet-SVM
61.0 ® MetaOptNet-RR 77.50 @ MetaOptNet-RR
1 2 3 1 2 3
Iterations Iterations (of solver)

[Lee et al. 19] Meta-Learning with Differentiable Convex Optimization, CVPR 2019

25

Table of Contents

2. Approaches to Meta-learning

* Model-based meta-learning

Algorithmic Intelligence Lab

26

Meta-Learning with MANN

* [Graves et al. 14] propose a Neural Turing Machine (NTM), a neural networks
architecture which has external memory.

* With an explicit storage buffer, it is easier for the network to rapidly incorporate
new information and not to forget in the future.

e [Santoro et al. 16] proposed memory-augmented neural network (MANN) to
rapidly assimilate new data, and to make accurate predictions with few samples.

External Input External Output

NS

Controller J

’ Read Heads ’ Write Heads ‘

T l

’ Memory ‘

Neural Turing Machine

[Graves et al. 14] Neural Turing Machines, 2014 27

Meta-Learning with MANN

* They train MANN to perform classification while presenting the data instance

and labels in a time-offset manner to prevent simple mapping from label to
label.

* Further, they shuffle labels, classes, and samples from time to time to prevent
weights from binding to sample-class binding.

cl Predicti External Memory External Memory
ass Prediction

4 4 > | 7

_’ —» —’ eee —} . ® } —} _’ ce e + l+
i Backpropagated
f f Shuffle: f f ? ? Signal ?
(X0, Y1) (Xe4152) Labels (x1,0) (x2,%1) X, X,
| | Classes |) | | |
Episode Samples Bind and Encode Retrieve Bound Information

* This method enables to learn a generic scheme to bind representations to their

appropriate labels regardless of the actual contents of data representations or
labels.

Algorithmic Intelligence Lab [Santoro et al. 16] Meta-Learning with Memory-Augmented Neural Networks, ICML 2016 28

Meta-Learning with MANN

 MANN significantly outperforms LSTM (which has internal memory) for few-
shot classification on Omniglot dataset.

1st 2nd 5th 10th 1st 2nd 5th 10th

® Instance ® Instance ® Instance Instance ® Instance ® Instance ® Instance Instance
1.0 1.0
& J‘\.’M“WW\"’;"*‘:“ v
S “\M v
0.8 0.8 .
k7] k7] ry
i 8
0.6 reaf s f’ st . g
8 SRR S ¢
\ e, n®
5 04 P AT o s g W N ! 5 04 d
o .’? s‘p. g 0 A T gL 3 M.~-,~aﬁ*~~ ;
@ s A .

0.2 SR At o e N S SN N 02 [,

0.0 0.0
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Episode Episode
(a) LSTM, five random classes/episode, one-hot vector labels (b) MANN, five random classes/episode, one-hot vector labels
1.0 1.0
p ‘M’.\ J"'\' T «

0.8 0.8 ~m ‘ . (o) ,
© ® e . N % o.o’
g g ’.’co Jﬁ.ﬂ LY ..0 % \ I
5 06 5 06 ,...,. w S
o (V] %
= = o* v'
g 0.4 g 0.4 o ..M
[[
* 02 & 02| ¢ e

) y oo
a0 a) P, -y o
0.0 L et Ao et i 0.0 kL2
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Episode Episode
(c) LSTM, fifteen classes/episode, five-character string labels (d) MANN, fifteen classes/episode, five-character string labels

Algorithmic Intelligence Lab [Santoro et al. 16] Meta-Learning with Memory-Augmented Neural Networks, ICML 2016

Simple Neural Attentlve meta-Learner (SNAIL)

Traditional RNN architectures propagate information by keeping it in their hidden
state from one time step to the next.

* This temporally-linear dependency bottlenecks their capacity.

[Mishra et al. 18] propose a model architectures that addresses this shortcoming.

They combine these two modules for simple neural attentive learner (SNAIL):

* Temporal convolutions, which enable the meta-learner to aggregate contextual
information from past experience

* Causal attention, which allow it to pinpoint specific pieces of information within that
context.

These two components complement each other: while the former provide high-

bandwidth access at the expense of finite context size, the latter provide
pinpoint access over an infinitely large context.

Algorithmic Intelligence Lab [Mishra et al. 18] A Simple Neural Attentive Meta-Learner, ICLR 2018 30

Simple Neural Attentlve meta-Learner (SNAIL)

* Two of the building blocks that compose SNAIL architectures.

* A Dense block applies a causal 1D-convolution, and then concatenates the

output to its input. A Temporal Convolution (TC) block applies a series of dense
blocks with exponentially-increasing dilation rates.

I: function TCBLOCK(inputs, sequence length 7', number of filters D):
2 foriinl,..., [log, T do ‘

3: inputs = DenseBlock(inputs, 2°, D)

4 return inputs

outputs, shape [T, C + D]
] Output
‘ Dilation = 8
concatenate Hidden Layer
* Dilation = 4
TC Block = [T, D]
T causal conv, kernel 2 *D':I‘:t’g: Eaéyef
dilation R, D filters on=
Hidden Layer
‘ Dilation = 1
— Input
inputs, shape [T, C]

Dense Block

Algorithmic Intelligence Lab [Mishra et al. 18] A Simple Neural Attentive Meta-Learner, ICLR 2018 31

Simple Neural Attentlve meta-Learner (SNAIL)

* Two of the building blocks that compose SNAIL architectures.

* A attention block performs a causal key-value lookup and also concatenates the
output to the input; they style this operation after the self-attention mechanism.

1: function ATTENTIONBLOCK(inputs, key size K, value size V'):
2: keys, query = affine(inputs, K), affine(inputs, K)
3 logits = matmul(query, transpose(keys))

4: probs = CausallyMaskedSoftmax(logits / VK)

5: values = affine(inputs, V') - \
6: read = matmul(probs, values) outputs, shape [T. C + V]

7: return concat(inputs, read) concatenate s [T

4 [T, VI

[T, V] /T\ [T, T] (masked)

affine, output size vV
[matmul, masked softmax|

Self-attention relates different (values)

positions of a single sequence in /TT, K] \ [T, K]
. affine, oufput size arnne, output size
order to compute a representation (quferyf, |z| | 2 (kefysf kl

A A

<SS E—

A

. . . inputs, shape [T, C]
Algorithmic Intelligence Lab |)

v

Simple Neural Attentlve meta-Learner (SNAIL)

e Overview of the SNAIL for supervised learning:

Predicted Label %t — classification loss (i.e., cross-entropy)

Attention Block

TC Block(= 2 x Dense Block)

\
2 —-0—0

Attention Block

TC Block(= 2 x Dense Block)

[) -
Vs smmme o ----- - [e —————

| S }
(Examples, Xis Xio Xieq || X,
y

Labels)

Algorithmic Intelligence Lab [Mishra et al. 18] A Simple Neural Attentive Meta-Learner, ICLR 2018

33

Simple Neural Attentlve meta-Learner (SNAIL)

* SNAIL outperforms state-of-the-art methods in few-shot classification tasks that

are extensively hand-designed, and/or domain-specific (e.g., Matching
networks [Vinyals et al. 16]).

* It significantly exceeds the performance of methods such as MANN that are

similarly simple and generic.

Method

I 5-Way Omniglot 20-Way Omniglot
I I-shot | 5-shot | 1-shot | 5-shot
Santoro et al. (2016) 82.8% 94.9% - -
Koch (2015) 97.3% 98.4% 88.2% 97.0%
Vinyals et al. (2016) 98.1% 98.9% 93.8% 98.5%
Finn et al. (2017) 98.7% + 0.4% 99.9% =+ 0.3% 95.8% + 0.3% 98.9% + 0.2%
Snell et al. (2017) 97.4% 99.3% 96.0% 98.9%
Munkhdalai & Yu (2017) 98.9% - 97.0% -

SNAIL, Ours | 99.07% +0.16% | 99.78% + 0.09% | 97.64% + 0.30% | 99.36% + 0.18%
Method | 5-Way Mini-ImageNet
| I-shot | 5-shot
Vinyals et al. (2016) 43.6% 55.3%

Finn et al. (2017)
Ravi & Larochelle (2017)
Snell et al. (2017)
Munkhdalai & Yu (2017)

48.7% + 1.84%
43.4% + 0.77% 60.2% + 0.71%
46.61% + 0.78% | 65.77% + 0.70%
49.21% + 0.96% -

63.1% + 0.92%

SNAIL, Ours

Algorithmic Intelligence Lab

| 55.71% +0.99% | 68.88% + 0.92%

[Mishra et al. 18] A Simple Neural Attentive Meta-Learner, ICLR 2018

34

Conditional Neural Process

e Conditional Neural Process (CNP) [Garnelo et al. 18] extracts the context
variable of task with set encoder, and predicts target under the context

rq Iy I ry I

POOQOO B T m
SEEEE -0 0 O
EEEEE AEE

Observe Aggregate Predict

m O O W >»

e Given observation Oy, model predicts outputs for both observed and
unobserved samples, and trained to maximize the likelihood

L(6) = ~Ejr [Ex [log Qo({u: 1 10, {o:}2)] |

Algorithmic Intelligence Lab [Garnelo et al. 18] Conditional Neural Process, ICML 2018 35

Conditional Neural Process

* Conditional Neural Process (CNP) behaves like a neural version of Gaussian
process, e.g., it can predict uncertainty of outputs

2

U A

* CNP is also computationally efficient as the input information is amortized to a
single context variable, hence it has linear complexity

5-way Acc 20-way Acc Runtime ~ Omniglot
l-shot 5-shot 1-shot 5-shot classification

MN 981% 989% 938% 98.5% o(nm)
CNP 953% 98.5% 89.9% 96.8% oO(n+m)

Algorithmic Intelligence Lab [Garnelo et al. 18] Conditional Neural Process, ICML 2018

36

Table of Contents

* Optimization-based meta-learning
* Learning model initialization

Algorithmic Intelligence Lab

37

Learning Good Initialization for Few-Shot Learning

* Few-shot learning tackles limited-data scenario
* One way to overcome the lack of data is initialization

 Common initialization method: pre-train with ImageNet and fine-tune
(+) Generally works very well on various tasks
(-) Not work when one has only a small number of examples (1-shot, 5-shot, etc.)
(-) Cannot be used when target network architectures are different from source model

pre-trained parameters
9,; =0 — OéVgﬁ(@)

(new) test task

* Learning initializations of a network that
* Adapt fast with a small number of examples (few-shot learning)
e Simple and easily generalized to various model architecture and tasks

Algorithmic Intelligence Lab 38

Model-Agnostic Meta-Learning (MAML)

* Key idea
* Train over many tasks, to learn parameter @ that transfers well
* Use objective that encourage 6 to fast adapt when fine-tuned with small data
* Assumption: some representations are more transferrable than others

* Model find parameter 6 that would reduce the validation loss on each task
* To do that, find (one or more steps of) fine-tuned parameter from 6 for each task
* And reduce the validation loss at fine-tuned parameter for each task
* Meta-update the 6 to direction that would adapt faster on each new task

— meta-learning

9 ---- learning/adaptation
VL
Vi,
Vﬁl ,,,, '93
* 7 \\
1° 05

Algorithmic Intelligence Lab

39

Model-Agnostic Meta-Learning (MAML)

* Notations and problem set-up

T

Task T ={x,y,L(x,y)}

Consider a distribution over tasks p(7)

Model is trained to learn new task 7; ~ p(7) from only K samples
Loss function for task 7; is L7;

Model f is learned by minimizing the test error on new samples from 7;

Meta-train set
(K = 4 samples per class)

"""""""" Train dataset #1: “cat-bird” |——

-EMEN g

'___y ________________________ D € J

L
L7,

Algorithmic Intelligence Lab 40

Algorithms

* Consider a model fy parameterized with 6

* Inner-loop

 Adapting model to a new task 7;

Where « is learning rate,

0 =0 —a

VoL7, (fo)

0

VL,

— meta-learning
---- learning/adaptation

NV L

/
* .

*of 0

* We can compute ¢! with one or more gradient descent update steps

Algorithmic Intelligence Lab

41

Algorithms

— meta-learning

* Consider a model fy parameterized with 6
---- learning/adaptation

6 that would adapt better than ¢

e Quter-loop
* Model parameters are trained by optimizing the performance of fg;

min Y Lr(fe)= > Lt (fH—aVQL’TZ.(fg))
Ti~p(T) Ti~p(T)

* So, the meta-optimization:

%—5V¢9 > Ly(fe)

Ti~p(T)
Where (3 is meta-learning rate

Algorithmic Intelligence Lab

42

Meta-Gradients of MAML

* MAML computes 2" gradients Task-specificly optimized parameters
* 1-step optimization example/

Meta-learned initial model parameters

9/ =0 — CYVQ[,Ti (f@)
IMAML = VGETL-(@/) — (VO’LTi(fH')) ‘ (VGH/)
= (Vo L7, (fo)) - (Vo(0 —aVoLr,(fo)))

* High computation cost
e Computation cost is increased with a number of inner-loop iterations T

Algorithmic Intelligence Lab 43

First Order Approximation of MAML

* MAML computes 2" gradients Task-specificly optimized parameters
* 1-step optimization example/

Meta-learned initial model parameters

(9/ =0 — Cng[q‘i (f@)
IgMAML = VGETL-(@/) — (V0’£77;(f0’)) ‘ (VHQ/)
= (Vo L7, (for)) - (Vo(0 — aVoL7,(f0)))

* High computation cost
e Computation cost is increased with a number of inner-loop iterations T

* Use 1%t order approximation

gvamL = VoL (0)) = (Vo L7 (for)) - (Vo0)
= Vo Lr.(for)

* lIgnore 2" order terms
e Empirically show similar performance

Algorithmic Intelligence Lab

44

MAML

* Inner loop
* One (or more) step of SGD on training loss starting from a meta-learned network

e Quter loop
* Meta-parameters: initial weights of neural network
« Meta-objective Lo : validation loss
* Meta-optimizer: SGD

* Learned model initial parameters adapt fast to new tasks

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, [3: step size hyperparameters
1: randomly initialize ¢

2: while not done do

3: Sample batch of tasks 7; ~ p(7)

4: forall 7; do

5: Evaluate Vo L7, (fo) with respect to K examples

6 Compute adapte(d 1:2arameterls) with gradientpde— Innerloop [~ Outer loop
scent: 0, = 0 — aVoLT (fo)

7: end for

8 Update 0 <= 0 — BV 1 1 L7:(for) |

9: end while

Algorithmic Intelligence Lab

Experiments on Few-Shot Learning Tasks

* Few-shot regression experiments
* Regress the sine wave y = Asin(wx)
« Where A €10.1,5.0], w € [0,7], € [-5,5] are randomly sampled
* MAML with one gradient update inner loop

* Evaluate performance by fine-tuning the model
* On K-samples, compared with simply pre-trained model

Algorithmic Intelligence Lab

46

Experiments on Few-Shot Learning Tasks

* Few-shot regression experiments
* Regress the sine wave y = Asin(wx)
« Where A €10.1,5.0], w € [0,7], € [-5,5] are randomly sampled
* MAML with one gradient update inner loop

* Evaluate performance by fine-tuning the model
* On K-samples, compared with simply pre-trained model

e Adapt much faster with small number of samples (purple triangle below)
* MAML regresses well in the region without data (learn periodic nature of sine well)

MAML|K=10 K=5, step size=0.01 [pretrained,|K=10, step size=0.02

- -4

pre-update -+ 1gradstep ==

-6 = 0 -6

10 grad steps —— ground truth 4 4 used for grad pre-update -+ 1gradstep ==+ 10 grad steps

Algorithmic Intelligence Lab

Experiments on Few-Shot Learning Tasks

* Few-shot regression experiments
* Regress the sine wave y = Asin(wx)
« Where A €10.1,5.0], w € [0,7], € [-5,5] are randomly sampled
* MAML with one gradient update inner loop

* Evaluate performance by fine-tuning the model
* On K-samples, compared with simply pre-trained model

e Adapt much faster with small number of samples (purple triangle below)
* Continue to improve with additional gradient step
* Not overfitted to 6 that only improves after one step
* Learn initialization that amenable to fast adaptation

k-shot regression, k=10

~e— MAML (ours)
- «- pretrained, step=0.02
*- oracle

-

mean squared error

Algorithmic Intelligence Lab ‘ number of gradient Steps

48

Experiments on Few-Shot Learning Tasks

e Datasets for few-shot classification task

* Omniglot

T T 1 b

* Various characters obtained from 50 alphabets & (J A% T 1 % &
* Consists of 20 samples of 1623 characters Y RAT AN
- IIEEED o 3

* 1200 meta-training, 423 meta-test classes TEIS T 3 w
I B30 A

aO0Qd6lP v~

* Mini-Imagenet
e Subset of ImageNet Meta-
* 64 training, 12 validation, 24 test classes

* For each class one/five samples are used

Meta-
Test
Pmeta-tes

Algorithmic Intelligence Lab * source : Ravi and Larochelle, Optimization as a model for few-shot learning, ICLR 2017; 49

Experiments on Few-Shot Learning Tasks

* Few-shot classification experiments

* Omniglot

5-way Accuracy 20-way Accuracy
Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% = -
MAML, no conv (ours) 89.7+1.1% | 97.5+0.6% - -
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%
MAML (ours) 98.74+0.4% | 99.9+0.1% | 95.8+0.3% | 98.9 + 0.2%

* Mini-ImageNet

Minilmagenet (Ravi & Larochelle, 2017)

5-way Accuracy

1-shot

5-shot

fine-tuning baseline

28.86 £ 0.54%

49.79 + 0.79%

nearest neighbor baseline

41.08 £+ 0.70%

51.04 £ 0.65%

matching nets (Vinyals et al., 2016)

43.56 £+ 0.84%

55.31 £ 0.73%

meta-learner LSTM (Ravi & Larochelle, 2017)

43.44 +0.77%

60.60 £ 0.71%

MAML, first order approx. (ours)

48.07 £ 1.75%

63.15 + 0.91%

MAML (ours)

48.70 + 1.84%

63.11 +0.92%

Algorithmic Intelligence Lab

50

MAML

« MAML outperforms other baselines and generalizes well on unseen tasks

* It is model-agnostic
* No dependency on network architectures
* Can be used for another task not only few-shot learning (e.g., reinforcement learning)
* Easily applicable to many applications

* Many recent works on meta-learning based on MAML
* Learning the learning rate as well [Li, et. al., 2017]
* First-order approximation of MAML [Nichol, et. al., 2018]
* Probabilistic MAML [Finn, et. al., 2018]
* Visual imitation learning [Finn, et. al., 2017]

51

An Extension: Meta-SGD - Learning Initialization and Learning Rates

« MAML uses the same learning rate for all the task

* Meta-SGD improves MAML by
* Learning the learning rates for each task
* Here the learning rates are vector, so that adjust the gradient direction as well

* Inner loop computation becomes: 6’ =60 — a o VyLr(fo)
* Where a is a vector of learning rates

(]
meta-learning 9;
learning / adaptation
0; =0 —-aoVL(0)

Algorithmic Intelligence Lab * source : Li et. al.,, Meta-SGD: Learning to Learn Quickly for Few-Shot Learning, 2017; 52

Experimental Results on Few-Shot Regression

e Same few-shot regression experiment settings with MAML
* By learning the hyperparameter (learning rates) Meta-SGD outperforms MAML

6 1 e Ground Truth 6 1
—— MAML
w— Meta-SGD

wess Ground Truth

Figure 3: Left: Meta-SGD vs MAML on 5-shot regression. Both initialization (dotted) and result
after one-step adaptation (solid) are shown. Right: Meta-SGD (10-shot meta-training) performs

better with more training examples in meta-testing.

Table 1: Meta-SGD vs MAML on few-shot regression

Meta-training Models 5-shot testing | 10-shot testing | 20-shot testing
5-shot training MAML 1.13+0.18 0.85+0.14 0.71+0.12
Meta-SGD | 0.90 +£0.16 | 0.63 +0.12 0.50+0.10
10-shot training MAML 1.17£0.16 0.77£0.11 0.56 £ 0.08
Meta-SGD | 0.88+0.14 | 0.53 +0.09 0.35 + 0.06
20-shot training MAML 1.29 £+ 0.20 0.76 £0.12 0.48 £0.08
Meta-SGD | 1.01 £0.17 | 0.54 +0.08 0.31 +0.05

Algorithmic Intelligence Lab

53

Experimental Results on Few-Shot Classification

* Omniglot experiments

Table 2: Classification accuracies on Omniglot

S-way Accuracy

20-way Accuracy

1-shot 5-shot 1-shot 5-shot
Siamese Nets 97.3% 98.4% 88.2% 97.0%
Matching Nets 98.1% 98.9% 93.8% 98.5%
MAML 98.7 £ 0.4% 99.9 4+ 0.1% 95.8 £ 0.3% 98.9 + 0.2%
Meta-SGD 99.53 +0.26% | 99.93 £ 0.09% | 95.93 +0.38% | 98.97 + 0.19%

* Mini-Imagenet experiments

Table 3: Classification accuracies on Minilmagenet

S-way Accuracy

20-way Accuracy

1-shot

5-shot

1-shot

5-shot

Matching Nets

43.56 £+ 0.84%

55.31 +0.73%

17.31 £ 0.22%

22.69 £ 0.20%

Meta-LSTM

43.44 +0.77%

60.60 + 0.71%

16.70 £ 0.23%

26.06 + 0.25%

MAML

48.70 + 1.84%

63.11 + 0.92%

16.49 + 0.58%

19.29 + 0.29%

Meta-SGD

50.47 + 1.87%

64.03 + 0.94%

17.56 + 0.64%

28.92 + 0.35%

Algorithmic Intelligence Lab

* Meta-SGD outperforms baselines with a large margin
* Especially, it works well with many number of classes (20-way)

54

Meta-Learning for Learning Various Learning Rules

* Meta-SGD outperforms MAML in many experiments
* Learning hyperparameter is useful as well
* Indicate simple hyperparameter learning also gives benefit

* In many meta-learning methods meta-networks learn also:

* |Optimizer parameters: Learning rates, momentum, or optimizer itself

* Metric space for data distribution similarity comparison
* Weights of loss for each sample for handling data imbalance

* And many other learning rules

Algorithmic Intelligence Lab

55

MT-NET

 MT-NET [Choi et al. 18] proposes a MAML variant that chooses a subset of
weights to fine-tune.

MAML
(97;/ =0 — OAVQETZ. (fg)

U

W1« W —aVwL (0w, 01, D train)

MT-NET

* A model fg consists of L cells, where each cell is parameterized as TW .

* The meta-learner specifies weights to be changed(dotted line) over initial
weights(black) as chosen by task-specific learners(colored).

Algorithmic Intelligence Lab

56

T-NET

* A model fg consists of L cells, where each cell is parameterized as TW'.

input

W' —> 1!

W* —> T°

Task Mutual

Task T w
Specific

input

L] i o
T l,z/:; I

* T matrix learns a metric in activation space so that task specific weights W can
preserve task identity.

Algorithmic Intelligence Lab

57

MT-NET

* By adding binary mask, which selects weights to be updated, MT-NET chooses
subspace that contributes to generalization.

| I

Task Mutual

Task
Specific

input

input

* Again, the meta-learner specifies
subspace(dotted line) over initial
weights(black) as chosen by task-
specific learners(colored).

Algorithmic Intelligence Lab

58

Experiments-Classification

* Mini-ImageNet extracts 100 classes from ImageNet, and each class have 600
instances.

 MT-NET shows outperforming results over baselines.

h E ,-ﬂ,\ [= I—75 1 Models 5-way 1-shot acc. (%)
: Matching Networks(Vinyals et al., 2016)! 43.56 £ 0.84
Meta L Dirain : Prototypical Networks(Snell et al., 2017)? 46.61 +0.78
o .‘ 3 SRamn 5 . mAP-SSVM(Triantafillou et al., 2017) 50.32 4+ 0.80
Train - < Fine-tune baseline' 28.86 £ 0.54
Drmeta—train | {555 e Nearest Neighbor baseline' 41.08 4 0.70
. . meta-learner LSTM(Ravi & Larochelle, 2017) 43.44 4+ 0.77
. . MAML(Finn et al., 2017) 48.70 + 1.84
4 z 3 y: 5 T 2 L-MAML(Grant et al., 2018) 49.40 4+ 1.83
S : . e Meta-SGD(Li et al., 2017) 50.47 + 1.87
Meta- 5‘-‘4 % aN L § s J T-net (ours) 50.86 + 1.82
Test Dtzasn : Dt MT-net (ours) 51.70 + 1.84

Dineta—test e s

Algorithmic Intelligence Lab

Table of Contents

* Optimization-based meta-learning

* Learning optimizers

Algorithmic Intelligence Lab

64

Optimizers for Learning DNNs

* Learning DNNs is an optimization problem

0* = arg mein L(0)
* L be a task-specific objective (e.g., cross-entropy for classification)

* O be parameters of a neural network

* How to find the optimal 8* which minimize L ?
* The parameters are updated iteratively by taking gradient

9t+1 = 975 — nyﬁ(@t)

* DNNs are often trained via “hand-designed” gradient-based optimizers

* e.g., Nesterov momentum [Nesterov, 1983], Adagrad [Duchi et al., 2011],
RMSProp [Tieleman and Hinton, 2012], ADAM [Kingma and Ba, 2015]

65

An Example of Optimizers: SGD with Momentum

* Update rules of SGD with momentum:

Or41 = 0r — my me = pmg—1 + YV L(0)

where y is a learning rate and ¢ is a momentum

e Unroll the update steps

Parameters 6 Gradients Optimizer Updates

(90 > Vgﬁ((go) > My = ’)/VQ,C(QQ) > AHO = —My
01 = 0y + Aby " VoL (01) sm1 = umo + YVeL(01) "AO = —my
0o = 01 + Aby 2 Vo L(02) smo = pmy +yVeL(02) " Ay = —my

Algorithmic Intelligence Lab

An Example of Optimizers: ADAM

e Update rules of ADAM [Kingma and Ba, 2015]:
me = Prme—1 + (1 — B1)VeL(6;)
vy = Bovs_1 + (1 — B2)(VeL(6))?

where y is a learning rate and (1, 5, are decay rates for the moments

Briy = 6, —

~

e Unroll the update steps

—My

NG

Parameters 6 Gradients
(90 > VQE(Q())
01 = 0y + Aby " Vo L(61)
05 = 0 + A6y > V@E(Qg)

Algorithmic Intelligence Lab

\ 4

\4

Optimizer Updates
|mo = (1= 51)VeL(0o) A0 = ——my
vo = (1= B2)(VeL(6p))* 0
mi = Bimg + (1 - 51)VQ£(91) JAG; = —iml
v1 = Pavg + (1 — 52)(V9£(91))2 o
mz = Pimy+ (1= F1)VeL(2) | g — 7
va = Bovy + (1 — 2)(VeL(62))” ”

Learning Optimizers for Learning DNNs

No Free Lunch Theorem [Wolpert and Macready, 1997]
No algorithm is able to do better than a random strategy in expectation

* Drawbacks of these hand-designed optimizers (or update rules)
* Potentially poor performance on some problems

 Difficult to hand-craft the optimizer for every specific class of functions to
optimize

* Solution: Learning an optimizer in an automatic way [Andrychowicz et al., 2016]
* Explicitly model optimizers using recurrent neural networks (RNNs)

et—l—l — 9t + g¢(v£(9t)a ht) ht — f¢(V£(0t), ht—l)

Outputs of RNN Inputs Hidden states

e Cast an optimizer design as a learning problem

6" = argmin £(6r(0))

where 61(¢) are the T-step updated parameters given the RNN optimizer ¢

Algorithmic Intelligence Lab 68

Recall: SGD with Momentum

* Update rules of SGD with momentum:

9t+1 = 9t — My

my = UMi—1 + ’YV@E(et)

where y is a learning rate and u is a momentum

Inputs V.L(6,) Hidden states m, Outputs A6,
Parameters 6 Gradients Optimizer Updates
(90 N Vgﬁ((go) » 1y — ’)/Vgﬁ(eo) » AHO — —1Myo
01 = 0y + Aby " VoL (01) sm1 = umo + YVeL(01) "AO = —my
0o = 601 + Aby " VoL (02) smo = umy +yVeL(02) s Ay = —m

Algorithmic Intelligence Lab

69

Recall: ADAM

e Update rules of ADAM [Kingma and Ba, 2015]:
Y my = Bimy—1 + (1 — 81)VeL(6;)

9t+1 — 9t — — =M

VUt vy = Bovi—1 + (1 — B2)(VoL(6y))?

where y is a learning rate and (1, 5, are decay rates for the moments

Inputs V.L(6,) Hidden states m;, v, Outputs A9,
Parameters 6 Gradients Optimizer Updates
mo = (1 — B1)VeL(6o) Y
90 > VQE(Q()) > 0 > Aeo = —\/?mo
vo = (1 — B2)(VgL(6h)) 0
— + (1 — B1)VoL(0 8
01 = 0o + Aby 2 VoLl(01) T = o+ (1= Ve 1)2 AL = —\/77711
v1 = Bavo + (1 — B2)(VeL(01)) !
mo = Bimq + (1 — VoLl(6 Y
By =) + A —{ VoL (0o)H—b frmy + (1= B1)Vs <2>2 :Aﬁgz—\—ﬁmQ
vy = Pav1 + (1 — B2)(VeL(62)) >

Algorithmic Intelligence Lab 70

How to Learn an Optimizer

* [Andrychowicz et al. 16] proposes to learn the optimizer along with the learned

model (optimizee).

optimizer optimizee
error signa\

01 =0 + 9:(Vf(6r),0)

* The optimizer could be thought as a neural network parameterized with ¢ that
receives the gradient at step t as an input, and generates the update Af.

Algorithmic Intelligence Lab * source : Andrychowicz, et. al., Learning to learn by gradient descent by gradient descent, NIPS 2016 71

RNN Optimizer

* Update rules based on a RNN fy, g4 parameterized by ¢

9,5_|_1 = Ht + g¢(V[,(9t), ht)

ht = f¢(V£((9t); ht—l)

* Inner-loop: update the parameters 0 via the optimizer for T times

Parameters 0 Gradients Optimizer Updates

(90 » VQL(QO) > ho — f¢(V£(90), O) > Aeo = g¢(V£(90), ho)
01 = 6y + A6y > V9£(6’1) »hi = f¢(V£(91), ho) » A = g¢(V£(91), hl)
Oy = 01 + AO1 Vo L(02)—ha = fo(VL(02), h1) = AOs = g4 (VL(O2), ha)

Algorithmic Intelligence Lab

72

Objective for Learning RNN Optimizer

* Objective for the RNN optimizer ¢ on the entire training trajectory

T
£meta(¢) = Z wtﬁ(ﬁt) where w; weights for each time-step
t=1

Parameters 0 Gradients Optimizer Updates
0o " Vo L(0g)—ho = fo(VL(0),0)—4AbOy = g4(VL(Oy), ho)

L L(0g + Abp)
0y = 0o + Do VoL (01) {1 = f2(VL(01), ho) {281 = g0 (VL(G1),)

L L0, + Ab,)
0y — 0, + A0 —] Vo L(02) T2 = Fo(VL(8), ha) = Abs = g5 (VL(8),)

Algorithmic Intelligence Lab

73

Learning RNN Optimizer by Gradient Descent

* Objective for the RNN optimizer ¢ on the entire training trajectory

T
ﬁmeta(¢) = Z wtﬁ(ﬁt) where w; weights for each time-step
t=1

* Outer-loop: minimize L,0t4(¢) using gradient descent on ¢
* For simplicity, assume V4 Vg L(8;) = 0 (then, only requires first-order gradients)

Parameters 6 Gradients Optimizer Updates
0o VoL(00) > ho = fs(VL(6y),0) A8y = go(VL(Bo), ho)
....... E(QO + AHO)

01 = 0y + Abg| [VoL(01)|xchn = f5(VLO1), o)l A8 = g4 (VL(61), 1)

backprop “{ L(01 + Ab)

Oy = 01 4+ Ab1| | VL(02) X\ ha = f3(VL(O2), hy) | Ab2 = g4(VL(02), h2)

Algorithmic Intelligence Lab

74

Architecture of RNN Optimizer

* A challenge is optimizing (at least) tens of thousands of parameters
e Computationally not feasible with fully connected RNN architecture

e Use LSTM optimizer which operates coordinate-wise on the parameters

* By considering coordinate-wise optimizer
* Able to use small network for optimizer

e Share optimizer parameters across different parameters of the model
* Input: gradient for single coordinate and the hidden state
* Qutput: update for corresponding model parameter

Algorithmic Intelligence Lab * source : Andrychowicz, et. al., Learning to learn by gradient descent by gradient descent, NIPS 2016 75

Effectiveness of a Learned Optimizer

* Learning models for

* Quadratic functions ,
L(0) = X0 —yll5

* Optimizer is trained by optimizing random functions from this family
» Tested on newly sampled functions from the same distribution

* Neural network on MNIST dataset
* Trained for 100 steps with MLP (1 hidden layer of 20 units, using a sigmoid function)

e Outperform baseline optimizers
* Also perform well beyond the meta-trained steps (> 100 steps)

Quadratics MNIST MNIST, 200 steps

Loss

h\nw_,., »

= ’

120 140 160 180 200

Algorithmic Intelligence Lab * source : Andrychowicz, et. al., Learning to learn by gradient descent by gradient descent, NIPS 2016 76

Generalization of a Learned Optimizer

* Generalization to different architecture models
* Learn LSTM optimizer for MNIST dataset
* With 1 hidden layers (20 units) of sigmoid activation MLP
* Test generalization ability of a LSTM optimizer for

» Different number of hidden units (20 = 40)
» Different number of hidden layers (1 2 2)

» Different activation functions (Sigmoid = RelU)

* When learning dynamics are similar, the learned optimizer is generalized well
» Different activation function significantly changes the problems to solve

MNIST, 40 units MNIST, 2 layers MNIST, RelLU
N === ADAM O I e T
H o L\. .1 -~ — T .
"1 A o === RMSprop &;:.\ ------ \ \,
|'| S -« SGD \ h . LU \ N
0 ,'; AR N \ e~ . e N
(V)] 10] Illll ‘\\t‘ - ~ - NAG] "r.»._‘[“"' ‘~:.~e‘ B \‘ ‘Q = -
0 NN ‘.. = LSTM \\ *F2q AT S
@) ALY i ~ -~ .
S N1y e ~ A i
~\ XX - ‘“-\\u _‘y,,__ fae ”‘cv “““ -
el A A TEIARATANARY
-y . -~ - '?m ~—\
1 I T - ‘rln — _—;\.‘ﬂdl] T 1 I
20 40 60 80 100 20 40 60

80 100

20 40 60
Algorithmic Intelligence Lab

Steps

* source : Andrychowicz, et. al., Learning to learn by gradient descent by gradient descent, NIPS 2016 77

Generalization of a Learned Optimizer

* Generalization to different datasets
* Learn LSTM optimizer on CIFAR-10
* Test on subset of CIFAR-10 (CIFAR-5 and CIFAR-2)

* Learn much faster than baseline optimizers
* Even for different (but similar) dataset
e Without additional tuning of the learned optimizer

CIFAR-10) CIFAR-5 i CIFAR-2

=== ADAM
=== RMSprop
=== SGD

=== NAG

= LSTM
= LSTM-sub

Loss

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Step

Algorithmic Intelligence Lab * source : Andrychowicz, et. al., Learning to learn by gradient descent by gradient descent, NIPS 2016 78

An Extension: Hierarchical RNN Optimizer

* Previous works have have difficulties in:
* Large problems (e.g., large scale architecture, large number of steps)
* Generalizing for various tasks

* To tackle these, hierarchical RNN is proposed [Wichrowska et al., 2017]

| e > GlobalRNN aggregates global information

l ﬁ*‘“—\ from all of TensorRNNs
LTensor RNN Tensor RNN

m#m J\l TensorRNN aggregates local information
(6.1, 0212 [10a)s) (102 (16212 from a subset of ParameterRNNs

Parameter RNNs

Inputs outputs TensorRNN and GlobalRNN allow
sose grcots, ——> ST B Updta drecton ParameterRNNSs to have few hidden units

[HZ]J change in magnitude, ...

* |t generalizes to train Inception/ResNet on ImageNet for thousands of steps

Algorithmic Intelligence Lab * source : Wichrowska, et. al., Learned Optimizers that Scale and Generalize, ICML 2017 79

Optimization as a Model for Few-shot Learning

* [Ravi and Larochelle17] used the learnable optimizer for few-shot learning.

* The meta-learning with learnable optimizer can be done by training it over
multiple tasks.

(Xlin) (X2,Y>2) (X3,Y3) (XT» Yr) (X,f)

. ~l — B I -
> —>
Learner - .
 (V1,£1) % (Va, £2) (
e o o
< <

01 O LM(X;0741),Y)
S — —

Meta-learner

Model S-class
1-shot 5-shot
Baseline-finetune 28.86 £0.54% 49.79 £ 0.79%
Baseline-nearest-neighbor 41.08 £ 0.70% 51.04 £0.65%
Matching Network 43.40+0.78% 51.09+0.71%
Matching Network FCE 43.56 £ 0.84% 55.31 £0.73%
Meta-Learner LSTM (OURS) | 43.44 +0.77% 60.60 +0.71%

* The meta-learning optimizer (Meta-learner LSTM) outperforms Matching
Networks for 5-shot cases.

Algorithmic Intelligence Lab [Ravi and Larochelle 17] Optimization as a Model for Few-shot Learning, ICLR 2017 80

References

[Andrychowicz, et. al., 2016] Learning to learn by gradient descent by gradient descent, NIPS 2016
https://arxiv.org/abs/1606.04474

[Vinyals, et. al., 2016] Matching networks for one shot learning, NIPS 2016
https://arxiv.org/abs/1606.04080

[Santoro, et. al., 2016] One-shot learning with memory-augmented neural networks, ICML 2016
https://arxiv.org/abs/1605.06065

[Koch, et. al., 2015] Siamese neural networks for one-shot image recognition, ICML workshop 2015
https://www.cs.cmu.edu/~rsalakhu/papers/oneshotl.pdf

[Ravi and Larochelle, 2017] Optimization as a model for few-shot learning, ICLR 2017
https://openreview.net/pdf?id=rJY0-Kcll

[Lake, et. al., 2015] Human-level concept learning through probabilistic program induction, Science 2015
http://web.mit.edu/cocosci/Papers/Science-2015-Lake-1332-8.pdf

[Jake Snell, et. al., 2017] Prototypical networks for few-shot learning, NIPS 2017
http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning

[Mishra, et. al., 2018] A simple neural attentive meta-learner, ICLR 2018
https://openreview.net/pdf?id=B1DmUzWAW

[Lemke, et. al., 2015] Metalearning: a survey of trends and technologies, Artificial intelligence review, 2015
https://link.springer.com/content/pdf/10.1007%2Fs10462-013-9406-y.pdf

Algorithmic Intelligence Lab 81

https://arxiv.org/abs/1606.04474
https://arxiv.org/abs/1606.04080
https://arxiv.org/abs/1605.06065
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://openreview.net/pdf?id=rJY0-Kcll
http://web.mit.edu/cocosci/Papers/Science-2015-Lake-1332-8.pdf
http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning
https://openreview.net/pdf?id=B1DmUzWAW
https://link.springer.com/content/pdf/10.1007/s10462-013-9406-y.pdf

References

[Vilalta, et. al., 2009] Meta-learning-concepts and techniques. Data mining and knowledge discovery handbook.
Springer, Boston, MA, 2009. 717-731.
https://link.springer.com/content/pdf/10.1007%2F978-0-387-09823-4.pdf

[Metz, et. al., 2018] Learning unsupervised learning rules, 2018
https://arxiv.org/abs/1804.00222

[Li and Malik, 2017] Learning to optimize, ICLR 2017
https://arxiv.org/pdf/1606.01885.pdf

[Wichrowska, et. al., 2017] Learned optimizers that scale and generalize, ICML 2017
https://arxiv.org/pdf/1703.04813.pdf

[Nichol, et. al., 2018] On first-order meta-learning algorithms, 2018
https://arxiv.org/abs/1803.02999

[Finn, et. al., 2017] Model-agnostic meta-learning, ICML 2017
https://arxiv.org/abs/1703.03400

[Finn, et. al., 2018] Probabilistic model-agnostic meta-learning, NIPS 2018
https://arxiv.org/abs/1806.02817

[Finn, et. al., 2017] One-Shot Visual Imitation Learning via Meta-Learning, CoRL 2017
https://arxiv.org/abs/1709.04905

[Metz, et. al., 2018] Learned optimizers that outperform SGD on wall-clock and test loss, 2018
https://arxiv.org/abs/1810.10180

[Li, et. al., 2017] Meta-SGD: Learning to learn quickly for few-shot leanring
https://arxiv.org/pdf/1707.09835.pdf

Algorithmic Intelligence Lab

82

https://link.springer.com/content/pdf/10.1007/978-0-387-09823-4.pdf
https://arxiv.org/abs/1804.00222
https://arxiv.org/pdf/1606.01885.pdf
https://arxiv.org/pdf/1703.04813.pdf
https://arxiv.org/abs/1803.02999
https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/1806.02817
https://arxiv.org/abs/1709.04905
https://arxiv.org/abs/1810.10180
https://arxiv.org/pdf/1707.09835.pdf

References

[Nesterov, 1983] A method of solving a convex programming problem with convergence rate o(1/k2), Soviet
Mathematics Doklady, 1983

[Duchi et al., 2011] Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011
http://www.jmlr.org/papers/volumel12/duchilla/duchilla.pdf

[Tieleman and Hinton, 2012] Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude,
COURSERA: Neural Networks for Machine Learning, 2012
https://www.coursera.org/learn/machine-learning

[Kingma and Ba, 2015] Adam: A method for stochastic optimization, ICLR 2015
https://arxiv.org/pdf/1412.6980.pdf

[Wolpert and Macready, 1997] No free lunch theorems for optimization, Transactions on Evolutionary Computation,
1997
https://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf

[Finn, et al., 2018] Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate
any Learning Algorithm, ICLR 2018
https://arxiv.org/pdf/1710.11622.pdf

[Sung, et. al., 2018] Learning to Compare: Relation Network for Few-Shot Learning, CVPR 2018
https://arxiv.org/pdf/1711.06025.pdf

[Grant, et. al., 2018] Recasting Gradient-Based Meta-Learning as Hierarchical Bayes, ICLR 2018
https://arxiv.org/pdf/1801.08930.pdf

[Kim, et. al., 2018] Auto-Meta: Automated Gradient Based Meta Learner Search, NIPS 2018
https://arxiv.org/pdf/1806.06927.pdf

Algorithmic Intelligence Lab

83

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.coursera.org/learn/machine-learning
https://arxiv.org/pdf/1412.6980.pdf
https://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
https://arxiv.org/pdf/1710.11622.pdf
https://arxiv.org/pdf/1711.06025.pdf
https://arxiv.org/pdf/1801.08930.pdf
https://arxiv.org/pdf/1806.06927.pdf

References

[Lee, et. al., 2018] Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace, ICML 2018
https://arxiv.org/pdf/1902.04552.pdf

[A. Rusu, et. al., 2019] Meta-Learning with Latent Embedding Optimization, ICLR 2019
https://arxiv.org/pdf/1807.05960.pdf

[Allen, et. al., 2019] Infinite Mixture Prototypes for Few-Shot Learning, ICML 2019
https://arxiv.org/pdf/1902.04552.pdf

[Mishra et al. 18] A Simple Neural Attentive Meta-Learner, ICLR 2018
https://arxiv.org/pdf/1707.03141.pdf

[Garnelo et al. 18] Conditional Neural Process, ICML 2018
https://arxiv.org/pdf/1807.01613.pdf

[Lee et al. 19] Meta-Learning with Differentiable Convex Optimization, CVPR 2019
https://arxiv.org/pdf/1904.03758.pdf

[Rajeswaran et al. 19] Meta-Learning with Implicit Gradients, NeurIPS 2019
https://arxiv.org/pdf/1909.04630.pdf

Algorithmic Intelligence Lab

https://arxiv.org/pdf/1902.04552.pdf
https://arxiv.org/pdf/1807.05960.pdf
https://arxiv.org/pdf/1902.04552.pdf
https://arxiv.org/pdf/1707.03141.pdf
https://arxiv.org/pdf/1807.01613.pdf
https://arxiv.org/pdf/1904.03758.pdf
https://arxiv.org/pdf/1909.04630.pdf

