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What is Meta-Learning?

* Learning: The model learns to solve a problem
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Multi-task learning vs Meta-learning

* Multi-task learning:

 Given a pre-defined set of tasks {73, ..., Ty} (and corresponding loss functions {£;}),
learn a single model f that solves all tasks simultaneously

* Formally, the objective is given by

IR
‘

K
argmin z Li(Te; )
I =

LY L)

S

e
5=

&
—

EEEs
e
o —

%)7

\
3) 3

* Meta-learning:

* For each task J; from a task distribution p(7), learn a meta-model f that (quickly)
learns a task-specific model f; :== f (- |T;) that solves the given task T; o

* Formally, the objective is given by

argmin Ez. L;(T;; f;)
f
/

Key difference: adaptation
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Multi-task learning vs Meta-learning

* Multi-task learning:

* Given a pre-defined set of tasks {73, ..., Ty} (and corresponding loss functions {£;}),
learn a single model f that solves all tasks simultaneously

* Formally, the objective is given by

K
argmin Z Li(Te; )
I =

* Meta-learning:

* For each task J; from a task distribution p(7), learn a meta-model f that (quickly)
learns a task-specific model f; :== f (- |T;) that solves the given task T;

* Formally, the objective is given by

argmin Ez. L;(T;; f;)
f

* Since we mostly use parametric models (or deep neural network), we will denote
the parameter of meta-model and task-specific models as 8 and ¢;, respectively
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Applications of meta-learning

* Few-shot classification
* Human can classify novel objects even though they see only a few samples

* Example: Classify the breed of dogs (3-way 1-shot problem)

Pomeranian Welsh Corgi Siba Inu
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Applications of meta-learning

* Few-shot classification

* Human can classify novel objects even though they see only a few samples

* Few-shot learning can be formulated as a meta-learning problem

e Task: Given N classes of K samples each (i.e., N-way K-shot), predict the class
of test samples (Each combination of N classes defines a task)

* In this case, the meta model f learns a dog breed classifier fq,4 from the given
training images (and evaluated by test images)

Pomeranian

y

Training images

Test
images

Task: Classify dogs
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Applications of meta-learning

* Few-shot classification
e Classify novel instances with a few-shot of samples

* Few-shot generation
e Generate novel instances of given samples

* Example: Generate new emotions and angles of Mona Lisa (unigue in the world!)

Living portraits
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Applications of meta-learning

* Few-shot classification
* Classify novel instances with a few-shot of samples

* Few-shot generation
* Generate novel instances of given samples

* Generalization of RL
* Generalize to novel environments
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Applications of meta-learning

Few-shot classification
e Classify novel instances with a few-shot of samples

Few-shot generation
* Generate novel instances of given samples

Generalization of RL
* Generalize to novel environments

and LOTS of other applications
* Neural architecture search
* Hyperparameter optimization
* Loss function design
e ..andsoon

Algorithmic Intelligence Lab
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Overview of common approaches

* Problem formulation

* To meta-learn a model, we need a meta-train dataset {(D"", DY)} consist of

training and test datasets for each task J;

* The performance of meta model is evaluated by a meta-test dataset

Meta-train dataset

Train dataset #1: Dogs

Siberian husky

Akita inu

Utonagan dog

Siamese cat

Persian cat

Russian blue

Algorithmic Intelligence Lab

American
goldfinch

European
goldfinch

Hooded
Oriole

Meta-test dataset

Target test dataset : Birds |-~ -----~ -
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Overview of common approaches

* General recipe for meta-learning
* The core of meta-learning is how to learn a task-specific models for a given task

* There are two common ways to learn the model from the dataset Dl-trai“

* Model-based meta-learning
* The meta-parameter 0 is fixed, and the task is encoded to a context variable ¢;
* Namely, the task-specific function is given by f( - |8, ¢;)

* Optimization-based meta-learning

* Learn a parameter ¢; = g(D"; 9) for each task 7;
Namely, the task-specific function is given by f( - |¢;)

Note that deep learning procedure can be decomposed into two steps:
* How to set the initial parameter ¢i(0)

* How to update the parameter cl)l.(t) to the better parameter qbl.(tﬂ)

The meta-learner 6 will learn the initialization and/or update schemes

13



Overview of common approaches

* Metric-based meta-learning
* For a special type of meta-learning, few-shot classification, another common
approach is to learn an embedding function and the corresponding metric

* The embedding function maps similar samples to the similar embedding, and one

can classify a novel sample by finding the nearest cluster

Query Support Embedding

'a a |

--------------------------------------------

Algorithmic Intelligence Lab



Table of Contents

2. Approaches to Meta-learning
* Metric-based meta-learning

Algorithmic Intelligence Lab

15



Matching Networks

* Matching Networks [Vinyals et al. 16] propose to learn a shared embedding
space over multiple subclassification problems.

Algorithmic Intelligence Lab [Vinyals et al. 16] Matching Networks for One Shot Learning, NIPS 2016 16



Matching Networks

Matching network training objective:

9:argm9axELNT Es r.5~L Z log Py (y|x, S)

Obtaining the optimal 8 can be done via episodic training.

* First sample L (label set) from T, and use L to sample the support set S and a
batch B.

* Then minimize the error predicting the labels in the batch B conditioned on the
support set S.

Algorithmic Intelligence Lab
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Matching Networks

* Matching Networks generalize well and thus outperforms baseline classifiers
and meta-learning models (MANN) on few-shot learning tasks.

5-way Acc 20-way Acc

Model Matching Fn  Fine Tune l-shot 5-shot  l-shot 5-shot
PIXELS Cosine N 41.7% 632% 26.7% 42.6%
BASELINE CLASSIFIER Cosine N 80.0% 95.0% @ 69.5% 89.1%
BASELINE CLASSIFIER Cosine Y 823% 98.4%  T70.6% 92.0%
BASELINE CLASSIFIER Softmax Y 86.0% 97.6%  72.9% 92.3%
MANN (No Conv) [21] Cosine N 82.8% 94.9% - -
CONVOLUTIONAL SIAMESE NET [11] Cosine N 96.7% 98.4%  88.0% 96.5%
CONVOLUTIONAL SIAMESE NET [11] Cosine Y 973% 98.4%  88.1% 97.0%
MATCHING NETS (OURS) Cosine N 98.1% 989% 93.8% 98.5%
MATCHING NETS (OURS) Cosine Y 97.9% 98.7% @ 93.5% 98.7%

Table 1: Results on the Omniglot dataset.

* Fine-tuning helped with baseline classifiers, but not in the case of Matching
Networks.

Algorithmic Intelligence Lab [Vinyals et al. 16] Matching Networks for One Shot Learning, NIPS 2016 18



Prototypical Networks

* Prototypical Networks [Snell et al. 17] use meta-learning to learn a metric

space that minimizes the Euclidean distance between the prototypes and each
training instance.

Class
prototype

Embedded
instance

Target class

exp(—d(fy(x),cr))

p¢(y =k ‘ X) — Zk’ exp(—d(f¢(x)7ck’))

Algorithmic Intelligence Lab [Snell et al. 17] Prototypical Networks for Few-shot Learning, NIPS 2017 19



Prototypical Networks

Algorithmic Intelligence Lab

* Prototypical Networks are trained by minimizing the negative log-probability

J(¢) = —logps(y = k| x) via episodic training.

Input: Training set D = {(x1,91),...,(Xn,yn)}, where each y; € {1,..., K}. Dy denotes the
subset of D containing all elements (x;, y;) such that y; = k.
Output: The loss J for a randomly generated training episode.

V < RANDOMSAMPLE({1,..., K}, N¢) > Select class indices for episode
for kin {1,...,N¢} do
Sk < RANDOMSAMPLE(Dy,_, Ng) > Select support examples
Q1 < RANDOMSAMPLE(Dy, \ Sk, Ng) > Select query examples
1
Ck & N Z fo(xi) > Compute prototype from support examples
(x'ivyi)esk
end for
J 0 > Initialize loss

for kin {1,...,N¢c} do
for (x,y) in Q. do

[d(f¢(x), cik)) + log Z exp(—d(fe(x),cr)) > Update loss

end for
end for

[Snell et al. 17] Prototypical Networks for Few-shot Learning, NIPS 2017 20



Prototypical Networks

* Prototypical Networks outperform Matching Networks and MAML on few-shot
classification tasks.

5-way Acc. 20-way Acc.
Model Dist. Fine Tune 1-shot 5-shot 1-shot  5-shot
MATCHING NETWORKS [32] Cosine N 98.1% 989% 93.8% 98.5%
Omniglot MATCHING NETWORKS [32] Cosine Y 97.9% 98.7% 93.5% 98.7%
NEURAL STATISTICIAN [7] - N 98.1% 99.5% 932% 98.1%
MAML [9]* - N 98.7% 999% 95.8% 98.9%
PROTOTYPICAL NETWORKS (OURS) Euclid. N 988% 99.7% 96.0% 98.9%
5-way Acc.
Model Dist. Fine Tune 1-shot 5-shot
mlnllmageNet BASELINE NEAREST NEIGHBORS” Cosine N 28.86 £ 0.54%  49.79 £ 0.79%
MATCHING NETWORKS [32]* Cosine N 4340 £0.78%  51.09 £ 0.71%
MATCHING NETWORKS FCE [32]" Cosine N 43.56 +0.84% 55.31 £ 0.73%
META-LEARNER LSTM [24]* - N 4344+ 0.77%  60.60 + 0.71%
MAML [9] - N 48.70 - 1.84% 63.15+091%
PROTOTYPICAL NETWORKS (OURS) Euclid. N 4942 + 0.78%  68.20 £ 0.66 %

Algorithmic Intelligence Lab
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Relation Networks

* Relation Networks [Sung et al. 18] learns to learn a deep metric space by
learning to minimize the relation scores between the query and the support
samples.

embedding module relation module

rog = 90(CUfo (@), fola;)))

Relation One-hot
score  vector

fo ) m

p, ¢ < argmin Z Z(Ti,j — 1(y; == y;))*
N i=1 j=1

Algorithmic Intelligence Lab [Sung et al. 18] Learning to Compare: Relation Networks for Few-shot Learning, CVPR 2018 22



Relation Networks

* Relation Networks outperforms Prototypical Networks and MAML on few-shot
learning tasks.

Model Fine Tune 5-way Acc. 20-way Acc.
1-shot 5-shot 1-shot 5-shot
MANN [32] N 82.8% 94.9% - -
CONVOLUTIONAL SIAMESE NETS [20] N 96.7% 98.4% 88.0% 96.5%
CONVOLUTIONAL SIAMESE NETS [20] Y 97.3% 98.4% 88.1% 97.0%
MATCHING NETS [39] N 98.1% 98.9% 93.8% 98.5%
. MATCHING NETS [39] Y 97.9% 98.7% 93.5% 98.7%
Omnlglot SIAMESE NETS WITH MEMORY [ 18] N 98.4% 99.6% 95.0% 98.6%
NEURAL STATISTICIAN [8] N 98.1% 99.5% 93.2% 98.1%
META NETS [27] N 99.0% - 97.0% -
PROTOTYPICAL NETS [30] N 98.8% 99.7% 96.0% 98.9%
MAML [10] Y 98.7 £+ 0.4% 99.9 + 0.1% 95.8 £0.3% 98.9 + 0.2%
RELATION NET N 99.6 + 0.2% 99.8+ 0.1% 97.6 + 0.2% 99.1+ 0.1%
Model FT 5-way Acc.
1-shot 5-shot
H™Y- MATCHING NETS [39] 43.56 = 0.84% 55.31 = 0.73%
mlnllmageNet META NETS [27] 49.21 £+ 0.96%

META-LEARN LSTM [29] 43.44 £0.77%  60.60 = 0.71%

Algorithmic Intelligence Lab

MAML [10]

PROTOTYPICAL NETS [

]

48.70 £ 1.84%
49.42 £+ 0.78%

63.11 £ 0.92%
68.20 £ 0.66%

RELATION NET

Z|Z~<ZZZ

50.44 £ 0.82%

65.32 + 0.70%

[Sung et al. 18] Learning to Compare: Relation Networks for Few-shot Learning, CVPR 2018 23



MetaOptNet

* MetaOptNet [Lee et al. 19] uses more complex classifiers (e.g., SVM) instead of

the naive nearest neighbor classifier, upon the learned e

Embeddings of Weights of

=
fo

mbedding

Score (logit)

Training Examples Linear Classifier for Each Class

L m ) 8 —
—(C__J—|(wm) | —(C_I—(+ )=U—|snee

| |

—C_ )

Training Examples - _JU;‘
Test Examples

* Here, the classifier is defined by a closed form solution of some quadratic

programming (QP) problem

{wk}

| 1
0 = A(DIrin; ¢) = a1g min min 5 > w3 +CD &n
Lk n

1

Algorithmic Intelligence Lab [Lee et al. 19] Meta-Learning with Differentiable Convex Optimization, CVPR 2019 24
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MetaOptNet

* MetaOptNet with ridge regression (RR) and support vector machine (SVM)
shows better results than naive prototypical network

minilmageNet 5-way tieredImageNet 5-way
1-shot 5-shot 1-shot 5-shot
model acc. (%) time (ms) acc. (%) time (ms) acc. (%) time (ms) acc. (%) time (ms)

4-layer conv (feature dimension=1600)

Prototypical Networks [17, 28] 53.474063 6+001 70.68+049 71002  54.28+067 64003 71421061 7+002
MetaOptNet—RR (ours) 53.23 +0.59 203:()_()3 69.51 4048 27:5:()_05 54.63 +0.67 21 +0.05 72.11 +0.59 28:5:()_05
MetaOptNet-SVM (ours) 52.87+057 28+002 68.76+048 374005 54.71+067 284007 71.79+050 384008

ResNet-12 (feature dimension=16000)
Prototypical Networks [17, 28] 59.254+064 60+17 75.60+048 66417 61.74+077 61+17 80.00+055 66413

MetaOptNet-RR (ours) 61411061 68+17 77.88+046 T5+17 65.361071 69+17 813441052 77417
MetaOptNet-SVM (ours) 62.641061 78+17 78.63+046 89+17 65.99.072 78+17 81.56+0s53 90417
minilmageNet 5-way 1-shot minilmageNet 5-way 5-shot
78.75 1
3 A & Al ; ‘ _A
625 < 78.50| | | e
> ‘ > 1 [ ‘
B 62.0 B 78,25 | g
3 > |
2) 615 § 78.00 }
77.75 :
—&— MetaOptNet-SVM —&— MetaOptNet-SVM
61.0 ® MetaOptNet-RR 77.50 @ MetaOptNet-RR
1 2 3 1 2 3
Iterations Iterations (of solver)

[Lee et al. 19] Meta-Learning with Differentiable Convex Optimization, CVPR 2019
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* Model-based meta-learning
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Meta-Learning with MANN

* [Graves et al. 14] propose a Neural Turing Machine (NTM), a neural networks
architecture which has external memory.

* With an explicit storage buffer, it is easier for the network to rapidly incorporate
new information and not to forget in the future.

e [Santoro et al. 16] proposed memory-augmented neural network (MANN) to
rapidly assimilate new data, and to make accurate predictions with few samples.

External Input External Output

NS

Controller J

’ Read Heads ’ Write Heads ‘

T l

’ Memory ‘

Neural Turing Machine

[Graves et al. 14] Neural Turing Machines, 2014 27



Meta-Learning with MANN

* They train MANN to perform classification while presenting the data instance

and labels in a time-offset manner to prevent simple mapping from label to
label.

* Further, they shuffle labels, classes, and samples from time to time to prevent
weights from binding to sample-class binding.

cl Predicti External Memory External Memory
ass Prediction

4 4 > | 7

_’ —» —’ eee —} . ® ..... } —} _’ ce e + l+
i Backpropagated
f f Shuffle: f f ? ? Signal ?
(X0, Y1) (Xe4152) Labels (x1,0) (x2,%1) X, X,
| | Classes | ) | | |
Episode Samples Bind and Encode Retrieve Bound Information

* This method enables to learn a generic scheme to bind representations to their

appropriate labels regardless of the actual contents of data representations or
labels.

Algorithmic Intelligence Lab [Santoro et al. 16] Meta-Learning with Memory-Augmented Neural Networks, ICML 2016 28



Meta-Learning with MANN

 MANN significantly outperforms LSTM (which has internal memory) for few-
shot classification on Omniglot dataset.

1st 2nd 5th 10th 1st 2nd 5th 10th
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Simple Neural Attentlve meta-Learner (SNAIL)

Traditional RNN architectures propagate information by keeping it in their hidden
state from one time step to the next.

* This temporally-linear dependency bottlenecks their capacity.

[Mishra et al. 18] propose a model architectures that addresses this shortcoming.

They combine these two modules for simple neural attentive learner (SNAIL):

* Temporal convolutions, which enable the meta-learner to aggregate contextual
information from past experience

* Causal attention, which allow it to pinpoint specific pieces of information within that
context.

These two components complement each other: while the former provide high-

bandwidth access at the expense of finite context size, the latter provide
pinpoint access over an infinitely large context.

Algorithmic Intelligence Lab [Mishra et al. 18] A Simple Neural Attentive Meta-Learner, ICLR 2018 30



Simple Neural Attentlve meta-Learner (SNAIL)

* Two of the building blocks that compose SNAIL architectures.

* A Dense block applies a causal 1D-convolution, and then concatenates the

output to its input. A Temporal Convolution (TC) block applies a series of dense
blocks with exponentially-increasing dilation rates.

I: function TCBLOCK(inputs, sequence length 7', number of filters D):
2 foriinl,..., [log, T do ‘

3: inputs = DenseBlock(inputs, 2°, D)

4 return inputs

outputs, shape [T, C + D]
] Output
‘ Dilation = 8
concatenate Hidden Layer
* Dilation = 4
TC Block = [T, D]
T causal conv, kernel 2 *D':I‘:t’g: Eaéyef
dilation R, D filters on=
Hidden Layer
‘ Dilation = 1
— Input
inputs, shape [T, C]

Dense Block

Algorithmic Intelligence Lab [Mishra et al. 18] A Simple Neural Attentive Meta-Learner, ICLR 2018 31



Simple Neural Attentlve meta-Learner (SNAIL)

* Two of the building blocks that compose SNAIL architectures.

* A attention block performs a causal key-value lookup and also concatenates the
output to the input; they style this operation after the self-attention mechanism.

1: function ATTENTIONBLOCK(inputs, key size K, value size V'):
2: keys, query = affine(inputs, K), affine(inputs, K)
3 logits = matmul(query, transpose(keys))

4: probs = CausallyMaskedSoftmax(logits / VK)

5: values = affine(inputs, V') - \
6: read = matmul(probs, values) outputs, shape [T. C + V]

7: return concat(inputs, read) concatenate s [T

4 [T, VI

[T, V] /T\ [T, T] (masked)

affine, output size vV
[ matmul, masked softmax|

Self-attention relates different (values)

positions of a single sequence in /TT, K] \ [T, K]
. affine, oufput size arnne, output size
order to compute a representation (quferyf, |z| | 2 (kefysf kl

A A

<SS E—

A

. . . inputs, shape [T, C]
Algorithmic Intelligence Lab | )

v




Simple Neural Attentlve meta-Learner (SNAIL)

e Overview of the SNAIL for supervised learning:

Predicted Label %t — classification loss (i.e., cross-entropy)

Attention Block

TC Block(= 2 x Dense Block)

\
2 —-0—0

Attention Block

TC Block(= 2 x Dense Block)

[ ) -
Vs smmme o ----- - [ e —————

| S }
(Examples, Xis Xio  Xieq || X,
y

Labels)

Algorithmic Intelligence Lab [Mishra et al. 18] A Simple Neural Attentive Meta-Learner, ICLR 2018
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Simple Neural Attentlve meta-Learner (SNAIL)

* SNAIL outperforms state-of-the-art methods in few-shot classification tasks that

are extensively hand-designed, and/or domain-specific (e.g., Matching
networks [Vinyals et al. 16]).

* It significantly exceeds the performance of methods such as MANN that are

similarly simple and generic.

Method

I 5-Way Omniglot 20-Way Omniglot
I I-shot | 5-shot | 1-shot | 5-shot
Santoro et al. (2016) 82.8% 94.9% - -
Koch (2015) 97.3% 98.4% 88.2% 97.0%
Vinyals et al. (2016) 98.1% 98.9% 93.8% 98.5%
Finn et al. (2017) 98.7% + 0.4% 99.9% =+ 0.3% 95.8% + 0.3% 98.9% + 0.2%
Snell et al. (2017) 97.4% 99.3% 96.0% 98.9%
Munkhdalai & Yu (2017) 98.9% - 97.0% -

SNAIL, Ours | 99.07% +0.16% | 99.78% + 0.09% | 97.64% + 0.30% | 99.36% + 0.18%
Method | 5-Way Mini-ImageNet
| I-shot | 5-shot
Vinyals et al. (2016) 43.6% 55.3%

Finn et al. (2017)
Ravi & Larochelle (2017)
Snell et al. (2017)
Munkhdalai & Yu (2017)

48.7% + 1.84%
43.4% + 0.77% 60.2% + 0.71%
46.61% + 0.78% | 65.77% + 0.70%
49.21% + 0.96% -

63.1% + 0.92%

SNAIL, Ours

Algorithmic Intelligence Lab

| 55.71% +0.99% | 68.88% + 0.92%

[Mishra et al. 18] A Simple Neural Attentive Meta-Learner, ICLR 2018
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Conditional Neural Process

e Conditional Neural Process (CNP) [Garnelo et al. 18] extracts the context
variable of task with set encoder, and predicts target under the context

rq Iy I ry I

POOQOO B T m
SEEEE -0 0 O
EEEEE AEE

Observe Aggregate Predict

m O O W >»

e Given observation Oy, model predicts outputs for both observed and
unobserved samples, and trained to maximize the likelihood

L(6) = ~Ejr [Ex [log Qo({u: 1 10, {o:}2)] |

Algorithmic Intelligence Lab [Garnelo et al. 18] Conditional Neural Process, ICML 2018 35



Conditional Neural Process

* Conditional Neural Process (CNP) behaves like a neural version of Gaussian
process, e.g., it can predict uncertainty of outputs

2

U A

* CNP is also computationally efficient as the input information is amortized to a
single context variable, hence it has linear complexity

5-way Acc 20-way Acc Runtime ~ Omniglot
l-shot  5-shot 1-shot 5-shot classification

MN 981% 989% 938% 98.5% o(nm)
CNP 953% 98.5% 89.9% 96.8% oO(n+m)

Algorithmic Intelligence Lab [Garnelo et al. 18] Conditional Neural Process, ICML 2018
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Learning Good Initialization for Few-Shot Learning

* Few-shot learning tackles limited-data scenario
* One way to overcome the lack of data is initialization

 Common initialization method: pre-train with ImageNet and fine-tune
(+) Generally works very well on various tasks
(-) Not work when one has only a small number of examples (1-shot, 5-shot, etc.)
(-) Cannot be used when target network architectures are different from source model

pre-trained parameters
9,; =0 — OéVgﬁ(@)

(new) test task

* Learning initializations of a network that
* Adapt fast with a small number of examples (few-shot learning)
e Simple and easily generalized to various model architecture and tasks

Algorithmic Intelligence Lab 38



Model-Agnostic Meta-Learning (MAML)

* Key idea
* Train over many tasks, to learn parameter @ that transfers well
* Use objective that encourage 6 to fast adapt when fine-tuned with small data
* Assumption: some representations are more transferrable than others

* Model find parameter 6 that would reduce the validation loss on each task
* To do that, find (one or more steps of) fine-tuned parameter from 6 for each task
* And reduce the validation loss at fine-tuned parameter for each task
* Meta-update the 6 to direction that would adapt faster on each new task

— meta-learning

9 ---- learning/adaptation
VL
Vi,
Vﬁl ,,,, '93
* 7 \\
1° 05

Algorithmic Intelligence Lab
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Model-Agnostic Meta-Learning (MAML)

* Notations and problem set-up

T

Task T ={x,y,L(x,y)}

Consider a distribution over tasks p(7)

Model is trained to learn new task 7; ~ p(7) from only K samples
Loss function for task 7; is L7;

Model f is learned by minimizing the test error on new samples from 7;

Meta-train set
(K = 4 samples per class)

"""""""" Train dataset #1: “cat-bird”  |——

-EMEN g

'\___y ________________________ D € J

L
L7,
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Algorithms

* Consider a model fy parameterized with 6

* Inner-loop

 Adapting model to a new task 7;

Where « is learning rate,

0 =0 —a

VoL7, (fo)

0

VL,

— meta-learning
---- learning/adaptation

NV L

/
* .

*of 0

* We can compute ¢! with one or more gradient descent update steps

Algorithmic Intelligence Lab
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Algorithms

— meta-learning

* Consider a model fy parameterized with 6
---- learning/adaptation

6 that would adapt better than ¢

e Quter-loop
* Model parameters are trained by optimizing the performance of fg;

min Y Lr(fe)= > Lt (fH—aVQL’TZ.(fg))
Ti~p(T) Ti~p(T)

* So, the meta-optimization:

%—5V¢9 > Ly(fe)

Ti~p(T)
Where (3 is meta-learning rate

Algorithmic Intelligence Lab
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Meta-Gradients of MAML

* MAML computes 2" gradients Task-specificly optimized parameters
* 1-step optimization example/

Meta-learned initial model parameters

9/ =0 — CYVQ[,Ti (f@)
IMAML = VGETL-(@/) — (VO’LTi(fH')) ‘ (VGH/)
= (Vo L7, (fo)) - (Vo(0 —aVoLr,(fo)))

* High computation cost
e Computation cost is increased with a number of inner-loop iterations T
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First Order Approximation of MAML

* MAML computes 2" gradients Task-specificly optimized parameters
* 1-step optimization example/

Meta-learned initial model parameters

(9/ =0 — Cng[q‘i (f@)
IgMAML = VGETL-(@/) — (V0’£77;(f0’)) ‘ (VHQ/)
= (Vo L7, (for)) - (Vo(0 — aVoL7,(f0)))

* High computation cost
e Computation cost is increased with a number of inner-loop iterations T

* Use 1%t order approximation

gvamL = VoL (0)) = (Vo L7 (for)) - (Vo0)
= Vo Lr.(for)

* lIgnore 2" order terms
e Empirically show similar performance

Algorithmic Intelligence Lab
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MAML

* Inner loop
* One (or more) step of SGD on training loss starting from a meta-learned network

e Quter loop
* Meta-parameters: initial weights of neural network
« Meta-objective Lo : validation loss
* Meta-optimizer: SGD

* Learned model initial parameters adapt fast to new tasks

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, [3: step size hyperparameters
1: randomly initialize ¢

2: while not done do

3:  Sample batch of tasks 7; ~ p(7)

4: forall 7; do

5: Evaluate Vo L7, (fo) with respect to K examples

6 Compute adapte(d 1:2arameterls) with gradientpde— Innerloop [~ Outer loop
scent: 0, = 0 — aVoLT (fo)

7:  end for

8 Update 0 <= 0 — BV 1 1 L7:(for) |

9: end while

Algorithmic Intelligence Lab



Experiments on Few-Shot Learning Tasks

* Few-shot regression experiments
* Regress the sine wave y = Asin(wx)
« Where A €10.1,5.0], w € [0,7], € [-5,5] are randomly sampled
* MAML with one gradient update inner loop

* Evaluate performance by fine-tuning the model
* On K-samples, compared with simply pre-trained model

Algorithmic Intelligence Lab
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Experiments on Few-Shot Learning Tasks

* Few-shot regression experiments
* Regress the sine wave y = Asin(wx)
« Where A €10.1,5.0], w € [0,7], € [-5,5] are randomly sampled
* MAML with one gradient update inner loop

* Evaluate performance by fine-tuning the model
* On K-samples, compared with simply pre-trained model

e Adapt much faster with small number of samples (purple triangle below)
* MAML regresses well in the region without data (learn periodic nature of sine well)

MAML|K=10 K=5, step size=0.01 [pretrained,|K=10, step size=0.02

- -4

pre-update -+ 1gradstep ==

-6 = 0 -6

10 grad steps —— ground truth 4 4 used for grad pre-update -+ 1gradstep ==+ 10 grad steps
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Experiments on Few-Shot Learning Tasks

* Few-shot regression experiments
* Regress the sine wave y = Asin(wx)
« Where A €10.1,5.0], w € [0,7], € [-5,5] are randomly sampled
* MAML with one gradient update inner loop

* Evaluate performance by fine-tuning the model
* On K-samples, compared with simply pre-trained model

e Adapt much faster with small number of samples (purple triangle below)
* Continue to improve with additional gradient step
* Not overfitted to 6 that only improves after one step
* Learn initialization that amenable to fast adaptation

k-shot regression, k=10

~e— MAML (ours)
- «- pretrained, step=0.02
*- oracle

-

mean squared error

Algorithmic Intelligence Lab ‘ number of gradient Steps
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Experiments on Few-Shot Learning Tasks

e Datasets for few-shot classification task

* Omniglot

T T 1 b

* Various characters obtained from 50 alphabets & (J A% T 1 % &
* Consists of 20 samples of 1623 characters Y RAT AN
- IIEEED o 3

* 1200 meta-training, 423 meta-test classes TEIS T 3 w
I B30 A

aO0Qd6lP v~

* Mini-Imagenet
e Subset of ImageNet Meta-
* 64 training, 12 validation, 24 test classes

* For each class one/five samples are used

Meta-
Test
Pmeta-tes

Algorithmic Intelligence Lab * source : Ravi and Larochelle, Optimization as a model for few-shot learning, ICLR 2017; 49



Experiments on Few-Shot Learning Tasks

* Few-shot classification experiments

* Omniglot

5-way Accuracy 20-way Accuracy
Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% = -
MAML, no conv (ours) 89.7+1.1% | 97.5+0.6% - -
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%
MAML (ours) 98.74+0.4% | 99.9+0.1% | 95.8+0.3% | 98.9 + 0.2%

* Mini-ImageNet

Minilmagenet (Ravi & Larochelle, 2017)

5-way Accuracy

1-shot

5-shot

fine-tuning baseline

28.86 £ 0.54%

49.79 + 0.79%

nearest neighbor baseline

41.08 £+ 0.70%

51.04 £ 0.65%

matching nets (Vinyals et al., 2016)

43.56 £+ 0.84%

55.31 £ 0.73%

meta-learner LSTM (Ravi & Larochelle, 2017)

43.44 +0.77%

60.60 £ 0.71%

MAML, first order approx. (ours)

48.07 £ 1.75%

63.15 + 0.91%

MAML (ours)

48.70 + 1.84%

63.11 +0.92%

Algorithmic Intelligence Lab
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MAML

« MAML outperforms other baselines and generalizes well on unseen tasks

* It is model-agnostic
* No dependency on network architectures
* Can be used for another task not only few-shot learning (e.g., reinforcement learning)
* Easily applicable to many applications

* Many recent works on meta-learning based on MAML
* Learning the learning rate as well [Li, et. al., 2017]
* First-order approximation of MAML [Nichol, et. al., 2018]
* Probabilistic MAML [Finn, et. al., 2018]
* Visual imitation learning [Finn, et. al., 2017]
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An Extension: Meta-SGD - Learning Initialization and Learning Rates

« MAML uses the same learning rate for all the task

* Meta-SGD improves MAML by
* Learning the learning rates for each task
* Here the learning rates are vector, so that adjust the gradient direction as well

* Inner loop computation becomes: 6’ =60 — a o VyLr(fo)
* Where a is a vector of learning rates

(]
meta-learning 9;
learning / adaptation
0; =0 —-aoVL(0)

Algorithmic Intelligence Lab * source : Li et. al.,, Meta-SGD: Learning to Learn Quickly for Few-Shot Learning, 2017; 52



Experimental Results on Few-Shot Regression

e Same few-shot regression experiment settings with MAML
* By learning the hyperparameter (learning rates) Meta-SGD outperforms MAML

6 1 e Ground Truth 6 1
—— MAML
w— Meta-SGD

wess Ground Truth

Figure 3: Left: Meta-SGD vs MAML on 5-shot regression. Both initialization (dotted) and result
after one-step adaptation (solid) are shown. Right: Meta-SGD (10-shot meta-training) performs

better with more training examples in meta-testing.

Table 1: Meta-SGD vs MAML on few-shot regression

Meta-training Models 5-shot testing | 10-shot testing | 20-shot testing
5-shot training MAML 1.13+0.18 0.85+0.14 0.71+0.12
Meta-SGD | 0.90 +£0.16 | 0.63 +0.12 0.50+0.10
10-shot training MAML 1.17£0.16 0.77£0.11 0.56 £ 0.08
Meta-SGD | 0.88+0.14 | 0.53 +0.09 0.35 + 0.06
20-shot training MAML 1.29 £+ 0.20 0.76 £0.12 0.48 £0.08
Meta-SGD | 1.01 £0.17 | 0.54 +0.08 0.31 +0.05

Algorithmic Intelligence Lab
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Experimental Results on Few-Shot Classification

* Omniglot experiments

Table 2: Classification accuracies on Omniglot

S-way Accuracy

20-way Accuracy

1-shot 5-shot 1-shot 5-shot
Siamese Nets 97.3% 98.4% 88.2% 97.0%
Matching Nets 98.1% 98.9% 93.8% 98.5%
MAML 98.7 £ 0.4% 99.9 4+ 0.1% 95.8 £ 0.3% 98.9 + 0.2%
Meta-SGD 99.53 +0.26% | 99.93 £ 0.09% | 95.93 +0.38% | 98.97 + 0.19%

* Mini-Imagenet experiments

Table 3: Classification accuracies on Minilmagenet

S-way Accuracy

20-way Accuracy

1-shot

5-shot

1-shot

5-shot

Matching Nets

43.56 £+ 0.84%

55.31 +0.73%

17.31 £ 0.22%

22.69 £ 0.20%

Meta-LSTM

43.44 +0.77%

60.60 + 0.71%

16.70 £ 0.23%

26.06 + 0.25%

MAML

48.70 + 1.84%

63.11 + 0.92%

16.49 + 0.58%

19.29 + 0.29%

Meta-SGD

50.47 + 1.87%

64.03 + 0.94%

17.56 + 0.64%

28.92 + 0.35%

Algorithmic Intelligence Lab

* Meta-SGD outperforms baselines with a large margin
* Especially, it works well with many number of classes (20-way)

54



Meta-Learning for Learning Various Learning Rules

* Meta-SGD outperforms MAML in many experiments
* Learning hyperparameter is useful as well
* Indicate simple hyperparameter learning also gives benefit

* In many meta-learning methods meta-networks learn also:

* |Optimizer parameters: Learning rates, momentum, or optimizer itself

* Metric space for data distribution similarity comparison
* Weights of loss for each sample for handling data imbalance

* And many other learning rules

Algorithmic Intelligence Lab
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MT-NET

 MT-NET [Choi et al. 18] proposes a MAML variant that chooses a subset of
weights to fine-tune.

MAML
(97;/ =0 — OAVQETZ. (fg)

U

W1« W —aVwL (0w, 01, D train)

MT-NET

* A model fg consists of L cells, where each cell is parameterized as TW .

* The meta-learner specifies weights to be changed(dotted line) over initial
weights(black) as chosen by task-specific learners(colored).

Algorithmic Intelligence Lab
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T-NET

* A model fg consists of L cells, where each cell is parameterized as TW'.

input

W' —> 1!

W* —> T°

Task Mutual

Task T w
Specific

input

L] i o
T l,z/:; I

* T matrix learns a metric in activation space so that task specific weights W can
preserve task identity.

Algorithmic Intelligence Lab
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MT-NET

* By adding binary mask, which selects weights to be updated, MT-NET chooses
subspace that contributes to generalization.

| I

Task Mutual

Task
Specific

input

input

* Again, the meta-learner specifies
subspace(dotted line) over initial
weights(black) as chosen by task-
specific learners(colored).

Algorithmic Intelligence Lab
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Experiments-Classification

* Mini-ImageNet extracts 100 classes from ImageNet, and each class have 600
instances.

 MT-NET shows outperforming results over baselines.

h E ,-ﬂ,\ [ = I—75 1 Models 5-way 1-shot acc. (%)
: Matching Networks(Vinyals et al., 2016)! 43.56 £ 0.84
Meta L Dirain : Prototypical Networks(Snell et al., 2017)? 46.61 +0.78
o .‘ 3 SRamn 5 . mAP-SSVM(Triantafillou et al., 2017) 50.32 4+ 0.80
Train - < Fine-tune baseline' 28.86 £ 0.54
Drmeta—train | {555 e Nearest Neighbor baseline' 41.08 4 0.70
. . meta-learner LSTM(Ravi & Larochelle, 2017) 43.44 4+ 0.77
. . MAML(Finn et al., 2017) 48.70 + 1.84
4 z 3 y: 5 T 2 L-MAML(Grant et al., 2018) 49.40 4+ 1.83
S : . e Meta-SGD(Li et al., 2017) 50.47 + 1.87
Meta- 5‘-‘4 % aN L § s J T-net (ours) 50.86 + 1.82
Test Dtzasn : Dt MT-net (ours) 51.70 + 1.84

Dineta—test e s
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Table of Contents

* Optimization-based meta-learning

* Learning optimizers
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Optimizers for Learning DNNs

* Learning DNNs is an optimization problem

0* = arg mein L(0)
* L be a task-specific objective (e.g., cross-entropy for classification)

* O be parameters of a neural network

* How to find the optimal 8* which minimize L ?
* The parameters are updated iteratively by taking gradient

9t+1 = 975 — nyﬁ(@t)

* DNNs are often trained via “hand-designed” gradient-based optimizers

* e.g., Nesterov momentum [Nesterov, 1983], Adagrad [Duchi et al., 2011],
RMSProp [Tieleman and Hinton, 2012], ADAM [Kingma and Ba, 2015]
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An Example of Optimizers: SGD with Momentum

* Update rules of SGD with momentum:

Or41 = 0r — my me = pmg—1 + YV L(0)

where y is a learning rate and ¢ is a momentum

e Unroll the update steps

Parameters 6 Gradients Optimizer Updates

(90 > Vgﬁ((go) > My = ’)/VQ,C(QQ) > AHO = —My
01 = 0y + Aby " VoL (01) sm1 = umo + YVeL(01) "AO = —my
0o = 01 + Aby 2 Vo L(02) smo = pmy +yVeL(02) " Ay = —my

Algorithmic Intelligence Lab



An Example of Optimizers: ADAM

e Update rules of ADAM [Kingma and Ba, 2015]:
me = Prme—1 + (1 — B1)VeL(6;)
vy = Bovs_1 + (1 — B2)(VeL(6))?

where y is a learning rate and (1, 5, are decay rates for the moments

Briy = 6, —

~

e Unroll the update steps

—My

NG

Parameters 6 Gradients
(90 > VQE(Q())
01 = 0y + Aby " Vo L(61)
05 = 0 + A6y > V@E(Qg)

Algorithmic Intelligence Lab
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\4

Optimizer Updates
|mo = (1= 51)VeL(0o) A0 = ——my
vo = (1= B2)(VeL(6p))* 0
mi = Bimg + (1 - 51)VQ£(91) JAG; = —iml
v1 = Pavg + (1 — 52)(V9£(91))2 o
mz = Pimy+ (1= F1)VeL(2) | g — 7
va = Bovy + (1 — 2)(VeL(62))” ”




Learning Optimizers for Learning DNNs

No Free Lunch Theorem [Wolpert and Macready, 1997]
No algorithm is able to do better than a random strategy in expectation

* Drawbacks of these hand-designed optimizers (or update rules)
* Potentially poor performance on some problems

 Difficult to hand-craft the optimizer for every specific class of functions to
optimize

* Solution: Learning an optimizer in an automatic way [Andrychowicz et al., 2016]
* Explicitly model optimizers using recurrent neural networks (RNNs)

et—l—l — 9t + g¢(v£(9t)a ht) ht — f¢(V£(0t), ht—l)

Outputs of RNN Inputs  Hidden states

e Cast an optimizer design as a learning problem

6" = argmin £(6r(0))

where 61(¢) are the T-step updated parameters given the RNN optimizer ¢
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Recall: SGD with Momentum

* Update rules of SGD with momentum:

9t+1 = 9t — My

my = UMi—1 + ’YV@E(et)

where y is a learning rate and u is a momentum

Inputs V.L(6,) Hidden states m, Outputs A6,
Parameters 6 Gradients Optimizer Updates
(90 N Vgﬁ((go) » 1y — ’)/Vgﬁ(eo) » AHO — —1Myo
01 = 0y + Aby " VoL (01) sm1 = umo + YVeL(01) "AO = —my
0o = 601 + Aby " VoL (02) smo = umy +yVeL(02) s Ay = —m

Algorithmic Intelligence Lab

69



Recall: ADAM

e Update rules of ADAM [Kingma and Ba, 2015]:
Y my = Bimy—1 + (1 — 81)VeL(6;)

9t+1 — 9t — — =M

VUt vy = Bovi—1 + (1 — B2)(VoL(6y))?

where y is a learning rate and (1, 5, are decay rates for the moments

Inputs V.L(6,) Hidden states m;, v, Outputs A9,
Parameters 6 Gradients Optimizer Updates
mo = (1 — B1)VeL(6o) Y
90 > VQE(Q()) > 0 > Aeo = —\/?mo
vo = (1 — B2)(VgL(6h)) 0
— + (1 — B1)VoL(0 8
01 = 0o + Aby 2 VoLl(01) T = o+ (1= Ve 1)2 AL = —\/77711
v1 = Bavo + (1 — B2)(VeL(01)) !
mo = Bimq + (1 — VoLl(6 Y
By = ) + A —{ VoL (0o)H—b frmy + (1= B1)Vs <2>2 :Aﬁgz—\—ﬁmQ
vy = Pav1 + (1 — B2)(VeL(62)) >
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How to Learn an Optimizer

* [Andrychowicz et al. 16] proposes to learn the optimizer along with the learned

model (optimizee).

optimizer optimizee
error signa\

01 =0 + 9:(Vf(6r),0)

* The optimizer could be thought as a neural network parameterized with ¢ that
receives the gradient at step t as an input, and generates the update Af.

Algorithmic Intelligence Lab * source : Andrychowicz, et. al., Learning to learn by gradient descent by gradient descent, NIPS 2016 71



RNN Optimizer

* Update rules based on a RNN fy, g4 parameterized by ¢

9,5_|_1 = Ht + g¢(V[,(9t), ht)

ht = f¢(V£((9t); ht—l)

* Inner-loop: update the parameters 0 via the optimizer for T times

Parameters 0 Gradients Optimizer Updates

(90 » VQL(QO) > ho — f¢(V£(90), O) > Aeo = g¢(V£(90), ho)
01 = 6y + A6y > V9£(6’1) »hi = f¢(V£(91), ho) » A = g¢(V£(91), hl)
Oy = 01 + AO1 Vo L(02)—ha = fo(VL(02), h1) = AOs = g4 (VL(O2), ha)

Algorithmic Intelligence Lab
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Objective for Learning RNN Optimizer

* Objective for the RNN optimizer ¢ on the entire training trajectory

T
£meta(¢) = Z wtﬁ(ﬁt) where w; weights for each time-step
t=1

Parameters 0 Gradients Optimizer Updates
0o " Vo L(0g)—ho = fo(VL(0),0)—4AbOy = g4(VL(Oy), ho)

L L(0g + Abp)
0y = 0o + Do VoL (01) {1 = f2(VL(01), ho) {281 = g0 (VL(G1), )

L L0, + Ab,)
0y — 0, + A0 —] Vo L(02) T2 = Fo(VL(8), ha) = Abs = g5 (VL(8), )

Algorithmic Intelligence Lab
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Learning RNN Optimizer by Gradient Descent

* Objective for the RNN optimizer ¢ on the entire training trajectory

T
ﬁmeta(¢) = Z wtﬁ(ﬁt) where w; weights for each time-step
t=1

* Outer-loop: minimize L,0t4(¢) using gradient descent on ¢
* For simplicity, assume V4 Vg L(8;) = 0 (then, only requires first-order gradients)

Parameters 6 Gradients Optimizer Updates
0o VoL(00) > ho = fs(VL(6y),0) A8y = go(VL(Bo), ho)
....... E(QO + AHO)

01 = 0y + Abg|  [VoL(01)|xchn = f5(VLO1), o)l A8 = g4 (VL(61), 1)

backprop “{ L(01 + Ab)

Oy = 01 4+ Ab1| | VL(02) X\ ha = f3(VL(O2), hy) | Ab2 = g4(VL(02), h2)

Algorithmic Intelligence Lab
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Architecture of RNN Optimizer

* A challenge is optimizing (at least) tens of thousands of parameters
e Computationally not feasible with fully connected RNN architecture

e Use LSTM optimizer which operates coordinate-wise on the parameters

* By considering coordinate-wise optimizer
* Able to use small network for optimizer

e Share optimizer parameters across different parameters of the model
* Input: gradient for single coordinate and the hidden state
* Qutput: update for corresponding model parameter

Algorithmic Intelligence Lab * source : Andrychowicz, et. al., Learning to learn by gradient descent by gradient descent, NIPS 2016 75



Effectiveness of a Learned Optimizer

* Learning models for

* Quadratic functions ,
L(0) = X0 —yll5

* Optimizer is trained by optimizing random functions from this family
» Tested on newly sampled functions from the same distribution

* Neural network on MNIST dataset
* Trained for 100 steps with MLP (1 hidden layer of 20 units, using a sigmoid function)

e Outperform baseline optimizers
* Also perform well beyond the meta-trained steps (> 100 steps)

Quadratics MNIST MNIST, 200 steps

Loss

h\nw_,., »

= ’

120 140 160 180 200

Algorithmic Intelligence Lab * source : Andrychowicz, et. al., Learning to learn by gradient descent by gradient descent, NIPS 2016 76



Generalization of a Learned Optimizer

* Generalization to different architecture models
* Learn LSTM optimizer for MNIST dataset
* With 1 hidden layers (20 units) of sigmoid activation MLP
* Test generalization ability of a LSTM optimizer for

» Different number of hidden units (20 = 40)
» Different number of hidden layers (1 2 2)

» Different activation functions (Sigmoid = RelU)

* When learning dynamics are similar, the learned optimizer is generalized well
» Different activation function significantly changes the problems to solve

MNIST, 40 units MNIST, 2 layers MNIST, RelLU
N === ADAM O I e T
H o L\. .1 -~ — T .
"1 A o === RMSprop &;:.\ ------ \ \,
|'| S -« SGD \ h . LU \ N
0 ,'; AR N \ e~ . e N
(V)] 10 ] Illll ‘\\t‘ - ~ - NAG ] "r.»._‘[“"' ‘~:.~e‘ B \‘ ‘Q = -
0 NN ‘.. = LSTM \\ *F2q AT S
@) ALY i ~ -~ .
S N1y e ~ A i
~\ XX - ‘“-\\u _‘y,,__ fae ”‘cv “““ -
el A A TEIARATANARY
-y . -~ - '?m ~—\
1 I T - ‘rln — _—;\.‘ﬂdl ] T 1 I
20 40 60 80 100 20 40 60

80 100

20 40 60
Algorithmic Intelligence Lab
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Generalization of a Learned Optimizer

* Generalization to different datasets
* Learn LSTM optimizer on CIFAR-10
* Test on subset of CIFAR-10 (CIFAR-5 and CIFAR-2)

* Learn much faster than baseline optimizers
* Even for different (but similar) dataset
e Without additional tuning of the learned optimizer

CIFAR-10 ) CIFAR-5 i CIFAR-2

=== ADAM
=== RMSprop
=== SGD

=== NAG

= LSTM
= LSTM-sub

Loss

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Step

Algorithmic Intelligence Lab * source : Andrychowicz, et. al., Learning to learn by gradient descent by gradient descent, NIPS 2016 78



An Extension: Hierarchical RNN Optimizer

* Previous works have have difficulties in:
* Large problems (e.g., large scale architecture, large number of steps)
* Generalizing for various tasks

* To tackle these, hierarchical RNN is proposed [Wichrowska et al., 2017]

| e > GlobalRNN aggregates global information

l ﬁ*‘“—\ from all of TensorRNNs
LTensor RNN Tensor RNN

m#m J\l TensorRNN aggregates local information
(6.1, 0212 [10a)s) (102 (16212 from a subset of ParameterRNNs

Parameter RNNs

Inputs outputs TensorRNN and GlobalRNN allow
sose grcots, ——> ST B Updta drecton ParameterRNNSs to have few hidden units

[HZ]J change in magnitude, ...

* |t generalizes to train Inception/ResNet on ImageNet for thousands of steps

Algorithmic Intelligence Lab * source : Wichrowska, et. al., Learned Optimizers that Scale and Generalize, ICML 2017 79



Optimization as a Model for Few-shot Learning

* [Ravi and Larochelle17] used the learnable optimizer for few-shot learning.

* The meta-learning with learnable optimizer can be done by training it over
multiple tasks.

(Xlin) (X2,Y>2) (X3,Y3) (XT» Yr) (X,f)

. ~l — B I -
> —>
Learner - .
 (V1,£1) % (Va, £2) (
e o o
< <

01 O LM(X;0741),Y)
S — —

Meta-learner

Model S-class
1-shot 5-shot
Baseline-finetune 28.86 £0.54%  49.79 £ 0.79%
Baseline-nearest-neighbor 41.08 £ 0.70%  51.04 £0.65%
Matching Network 43.40+0.78%  51.09+0.71%
Matching Network FCE 43.56 £ 0.84% 55.31 £0.73%
Meta-Learner LSTM (OURS) | 43.44 +0.77% 60.60 +0.71%

* The meta-learning optimizer (Meta-learner LSTM) outperforms Matching
Networks for 5-shot cases.

Algorithmic Intelligence Lab [Ravi and Larochelle 17] Optimization as a Model for Few-shot Learning, ICLR 2017 80
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