Algorithmic Intelligence Lab

Algorithmic Intelligence Lab

Network Compression

Al602: Recent Advances in Deep Learning
Lecture 14

Slide made by

Jongheon Jeong and Insu Han
KAIST EE

Presentation Schedule

11/21 11/26 12/10 12/12
1 MM 3| David Albert A 0| =
2 HEA Divyam Madaan stz O] E=Xe]
3 SONES rARSRa) a4 M-S
4 2F =5 EARul B a5 xS &
5 SHE ARTES S EE otEI
6 gdst SRS A ARCES
7 Ko Ef o| & M40l s
 TormTmno Gt omg oes
9 Tooba Imtiaz ME=F
10 XUAN TRUNG
PHAM

Algorithmic Intelligence Lab

Presentation Schedule

12/12

12/10

11/26

11/21

Ny

LHO

o

David Albert

10|
70
%0

1ol
ofo
o

10K
LHO

—r

Divyam Madaan

0j0

<4

70

o
RO

~0

o

-l

wl

oF
Ko
K

=T

10l
ki

8o

ol

K]

B
KF

-t

<
[
10l

0:0

=

<

N

K
<

ofo

KK
B0

~0

<r
go
K]

KK
T

-t

il
0

Ny

<[0

od
xr

RO
x

<

-t

wi
104

i

Of %=

O| M| &
Nguyen

Xuan Thanh

Thomas Thanh
Minh DEFARD

XUAN TRUNG
PHAM

K
oF

<

Tooba Imtiaz

9

Algorithmic Intelligence Lab

Deploying Deep Neural Networks in Real-World

* “The dreaded 100MB effect”

Deploying deep neural networks (DNNs) has been increasingly difficult
* Constraints on power consumption, memory usage, inference overhead, ...

Inference with a large-scale network consumes huge costs

In mobile apps, such issues become more serious

* Can we make DNNs to perform inferences more efficiently?

Install rate, varying app size

~1.00
5
s 075 \
g ™
g 050 L
e 0.25
G

0.00

0 35 70 105 140
App Size (MB)

Algorithmic Intelligence Lab

This item is over 100MB.

Unless an incremental download is

available for this item, "Pokémon GO"

may not download until you connect
to Wi-Fi.

—

*source: https://www.recode.net/2016/10/4/13151432/app-size-calculator-bloat-experiment-developers-segment

4

https://www.recode.net/2016/10/4/13151432/app-size-calculator-bloat-experiment-developers-segment

Table of Contents

1. Network Pruning and Re-wiring
* Optimal brain damage
* Pruning modern DNNs
* Dense-Sparse-Dense training flow

2. Sparse Network Learning
 Structured sparsity learning
» Sparsification via variational dropout
* Variational information bottleneck

3. Weight Quantization
* Deep compression
e Binarized neural networks

4. Summary

Algorithmic Intelligence Lab

Table of Contents

1. Network Pruning and Re-wiring
* Optimal brain damage
* Pruning modern DNNs
* Dense-Sparse-Dense training flow

Algorithmic Intelligence Lab

Redundancies in Deep Neural Networks [Denil et al., 2013]

* DNNs include a significant number of redundant parameters

* Denil et al. (2013): Predicting > 95% of weights from < 5%
* Asimple kernel ridge regression is sufficient
e ... without any drop in accuracy!
* Many of the weights need not be learned at all

(a) Original weights

(b) Randomly selected

(c) Predicted from (b)

* Such redundancy can be exploited via network pruning

Algorithmic Intelligence Lab *source: Denil et al., “Predicting Parameters in Deep Learning”, NIPS 2013 7

Network Pruning

* Determining low-saliency parameters, given a pre-trained network

* Follows the framework proposed by LeCun et al. (1990):

.
Train Connectivity

1. Train a deep model until convergence - S

2. Delete “unimportant” connections w.r.t. a certain criteria e

3. Re-train the network) S2

4. Iterate to step 2, or stop Train Weights

e Defining which connection is unimportant can vary
« Weight magnitudes (L?, L}, ..))

Mean activation [Molchanov et al., 2016]

Avg. % of Zeros (APoZ) [Hu et al., 2016]

Low entropy activation [Luo et al., 2017]

before pruning after pruning

pruning
synapses

-——

pruning
-
neurons

*source: LeCun et al., “Optimal Brain Damage”, NIPS 1990 8

Synaptic Pruning in Human Brain

 Human brains are also using pruning schemes as well
* Synaptic pruning removes redundant synapses in the brain during lifetime

At birth

Expenence-dependent synapse formation
Neurogenesis in the hippocampus

(18-24 prenatal days)

= Cell migration

*S (6-24 prenatal \

3 weeks) { Adult levels of synapses

P! -
1 8 ¥ = 1 4 L s T L L4 2 4 T T A 4 T T T T 1 |) OR0 SO%) 2T A v 14
-9 8 -76-5-4-3-2-10 11121314 151617 18 19 2030 40 50 60 70
= E
2 Months g Months Years Decades 2
§ (=1
S
s Age

Next: OBD

*source: Leisman et al., “The neurological development of the child
with the educational enrichment in mind.”, Psicologia Educativa 2015

Algorithmic Intelligence Lab

Optimal Brain Damage (OBD) [LeCun et al., 1990]

* Network pruning perturbs weights W by zeroing some of them

* How the loss L would be changed when W is perturbed?

* OBD approximates L by the 2"9 order Taylor series:

LNZ—&U TL w2+ 15 TL s s, 105w
’ i ow;2 " 2 > Ow; 0w; T
1st :)rrder) 2nd‘(:rder ’

/

) ~is usually intractable
()

]

oL
Bw,; 8’wj

* Problem: Computing H = (

* Requires 0(n?) on # weights

* Neural networks usually have enormous number of weights

- e.g. AlexNet: 60M parameters = H consists = 3.6 x 101° elements

Algorithmic Intelligence Lab *source: LeCun et al., “Optimal Brain Damage”, NIPS 1990 10

Optimal Brain Damage (OBD) [LeCun et al., 1990]

Problem: Computing H = (mfjc:;wj)@ ; is usually intractable

Two additional assumptions for tractability

1. Diagonal approximation: H = -0 L =0 if i F J

8w¢ 3’w3‘

2. Extremal assumption: 22 = (v

« W would be in a local minima if it’s pre-trained

1 O0%L
0L ~ —
Now we get 5 : EIRE

* It only needs diag(H) = (gju%) .

dwi + O(||sWIJ?)

diag(H) can be computed in 0(n), allowing a backprop-like algorithm
* For details, see [LeCun et al., 1987]

Algorithmic Intelligence Lab *source: LeCun et al., “Optimal Brain Damage”, NIPS 1990 11

Optimal Brain Damage (OBD) [LeCun et al., 1990]

How the loss L would be changed when W is perturbed?

1 2L 1
L(OW) ~ 5 §w25w3 = §hii5wz-2

1

1
The saliency for each weight = s; == §hii|w'é|2 s; = |w|

OBD shows robustness on pruning compared to magnitude-based deletion

After re-training, the original test accuracy is recovered

16 16,

14] (a) 141 {b}

124 12]

10 Magnitude 10} w/o re-training
S| & 4
= 2] = 2]

03 ot w/ re-training

-2 + 4 + 4 + =2 4 ; 4 ; $

0~ 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Parameters Parameters

Next: Pruning modern DNNs

Algorithmic Intelligence Lab *source: LeCun et al., “Optimal Brain Damage”, NIPS 1990 12

Pruning Modern DNNs [Han et al., 2015]

19’ Weight distribution before pruning

e Han et al. (2015): Pruning larger DNNs]
* LeNet, AlexNet, VGG-16, ... on ImageNet
* Highlights the practical efficiency of pruning]

* OBD introduces extra computation on larger models vsoy s sy e
* It requires an additional, separated backward pass i

* The simple magnitude-based pruning works very well ¢}
as long as the network is re-trained '

=044 003 -poE a0

o o naz ony LA
Wisigha Value

Comparison with other model reduction methods on AlexNet

Network Top-1 Error Top-5 Error | Parameters E::: pression
Baseline Caffemodel [26] | 42.78% 19.73% 61.0M | x

Data-free pruning [28] 44 40% - 39.6M l.5x
Fastfood-32-AD |29) 41.93% - 32.8M 2%
Fastfood-16-AD |29) 42.90% - 16.4M 3.7x

Collins & Kohli [3(J] 44 40% - 15.2M 4%

Naive Cut 47 18% 23.23% 13.8M 4.4

SVD [12] 44.02% 20.56% 11.9M DX

Network Pruning 42.77 % 19.67 % 6.7TM 9%

Algorithmic Intelligence Lab *source: Han et al., “Learning both Weights and Connections for Efficient Neural Networks”, NIPS 2015 13

Pruning Modern DNNs [Han et al., 2015]

* Han et al. (2015): Pruning larger DNNs
* Highlights the practical efficiency of pruning

* The magnitude-based pruning works well as long as the network is re-trained

Network Top-1 Error Top-5 Error | Parameters ggg pression
LeNet-300-100 Ref [.64% - 267K

LeNet-300-100 Pruned | 1.59% - 22K 12
LeNet-5 Ref (.80% - 431K

LeNet-5 Pruned 0.77% - 0K 12x
AlexNet Ref 42.78% 19.73% 61M

AlexNet Pruned 42.77% 19.67% 6.7M 0

VGG-16 Ref 31.50% 11.32% 138M

VGG-16 Pruned 31.34% 10.88% 10.3M 13

* Network pruning detects visual attention regions ,
Edge parts of MNIST images

0
50
100
150
200

250

300
0 28 56 84 112 140 168 196 224 252 280 308 336 364 392 420 448 476 504 532 560 588 616 §44 4 700 728 756 784

Algorithmic Intelligence Lab *source: Han et al., “Learning both Weights and Connections for Efficient Neural Networks”, NIPS 2015 14

Pruning Modern DNNs

* The magnitude-based pruning works well as long as the network is re-trained

* Mittal et al. (2018): In fact, pruning criteria are not that important

e ...aslong as the re-training phase exists

* Many strategies cannot even beat random pruning after fine-tuning

Heuristic 25% S0% 715%
[Random 0.650 0.569 0.415]
Mean Activation (0.652 0570 0409
Entropy 0641 0549 0405
Scaled Entropy 0.637 0.550 0.401
I, -norm 0.667 0.593 0.436
APoZ 0647 0564 0422
Sensitivity 0636 0543 0379

Table 1: Comparison of different filter pruning strategies on

VGG-16.

* The compressibility of DNNs are NOT due to the specific criterion

Heunstics #Layers Pruned 25% 50% 75%

[Random 16 0.722 0683 0.617]
[1-norm 16 0.714 0677 0610

[Random 32 0.696 0.637 0518 |
[1-norm 32 0691 0633 0514

Table 3: Comparison of different filter pruning strategies on
ResNet (Top-1 accuracy of unpruned network is (.745)

e ...but due to the inherent plasticity of DNNs

Algorithmic Intelligence Lab

Next: Dense-Sparse-Dense

*source: Mittal et al., “Recovering from Random Pruning: On the
Plasticity of Deep Convolutional Neural Networks”, WACV 2018

15

Network Re-wiring: Dense-Sparse-Dense Training Flow

* Network pruning preserves accuracy of the original network

* Han et al. (2017): Re-wiring the pruned connections improves DNNs further
» “Dense-Sparse-Dense” training flow

Dense Sparse

Pruning

Re-Dense
—_— —_—
Sparsity Constraint Increase Model Capacity

Train on Denge (O} Pruning the Netwaork Train on Sparse (5) Recover Zero Weights Train on Dense (D)

EL0 [+ 54 RAGD E400

aa00f 4a00f 4B00) a0 4800f

E F200 £ az200] E 200 E E 200

d200 |

3 & & 3 8

15004 16004 1600 1600} | 1200f

=0L05 a 0.05 =0.05 L] 0.05 “ =0.05 o 005 o =0.05 o oLas g =005 o o5
Waight Value Waight Value Weight Value Weight Value Weight Value

Algorithmic Intelligence Lab *source: Han et al., “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017 16

Network Re-wiring: Dense-Sparse-Dense Training Flow

* Network pruning preserves accuracy of the original network

* Han et al. (2017): Re-wiring the pruned connections improves DNNs further
» “Dense-Sparse-Dense” training flow

* Pruning discovers better optimum that the current training cannot find

Neural Network Domain Dataset Type Baseline DSD Abs. Imp. Rel. Imp.

GoogleNet Vision ImageNet CNN 31.1%" 30.0% 1.1% 3.6%
VGG-16 Vision ImageNet CNN 31.5%' 27.2% 4.3% 13.7%

ResNet-18 Vision ImageNet CNN 304%' 29.2% 1.2% 4.1%

ResNet-30 Vision ImageNet CNN 24.0%' 22.9% 1.1% 4.6%

NeuralTalk Caption Flickr-8K LSTM 16.8° 18.5 1.7 10.1%

DeepSpeech Speech ~ WSI'93 RNN 33.6%° 31.6% 2.0% 5.8%

DeepSpeech-2 Speech ~ WSJI'93 RNN 14.5% % 13.4% 1.1% 7.4%

Algorithmic Intelligence Lab

*source: Han et al

., “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017 17

Table of Contents

2. Sparse Network Learning
 Structured sparsity learning
» Sparsification via variational dropout
* Variational information bottleneck

Algorithmic Intelligence Lab

18

Sparse Network Learning

The performance of pruning depends on the initial training scheme

* e.g. Which regularization to use: L? or L!?

Which training scheme will maximize the pruning performance?

* We still don’t know about the optimal points of a DNN

One prominent way: Sparse network learning

* Inducing to a sparse solution from training a network
* Weights with value 0 can safely be removed = it does not require re-training

Example: L!-regularization

- e .
/”/’———-—--N\ SS
{ 7 ¢7epnd M O

o ﬁ--—————’
.

% \ 0,

RO P ,é _ Ai o
VIV ey

/

“rescaling” eigenvalues

Algorithmic Intelligence Lab

“sparse” solution

- 4 U

*

0i

o/
-)
L),

" 0= (sgn(@{k) max{
Next: Structured sparsity learning

19

Structured Sparsity Learning [Wen et al., 2016]

* “Un-structured” weight-level pruning may not engage a practical speed-up
* Despite of extremely high sparsity, actual speed-ups in GPU is limited

Sparsity = percentage ot zeros

o ¢ i L E3Quadro K600
- = ETesla K40c
) 3 CIGTX Titan
v2 -O-Sparsity
T T -0

convl conv2 convld conv4 convs

Speed-up ratio of weight-level pruning

Non-structured sparsity (poor data pattern)

Structured sparsity (regular data pattern)

i

Algorithmic Intelligence Lab *source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016 20

Structured Sparsity Learning [Wen et al., 2016]

e Structured sparsity can be induced by adding group-lasso regularization

G «— #groups
win £(W +)\ZR), Rg(w) =) |[w9
g=1
* Filter-wise and channel-wise: /# filters # channels
[l
Ry(W®) = S8 W+ 50T W,
* Shape-wise sparsity: /width/ height

C !
Ry(W®D) = 520 S Sy W
» Depth-wise sparsity (applicable only for ResNet):
Ry(WH) = [[WO|,

channel-wise W,!!) | shortcut
E Sl S ok

- L8 N
i n :) “shape-wise
& wh
epamy.ky u . I
— depth-wise W'

Algorithmic Intelligence Lab *source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016 21

Structured Sparsity Learning [Wen et al., 2016]

* Structured sparsity can be induced by adding group-lasso regularization

L G
win L(W) + XY Ry(WW), Ry (w) =) W]
=1 g=1
filters # channels

* Filter-wise and channel-wise:
N e () % err (1)
RQ(W(D) - anzl ||W?’Ll,2,:,:||2 —l_ chzl ||W:7Cla:a:||2

Table 1: Results after penalizing unimportant filters and channels in LeNet

LeNet # Error Filter#° Channel #* FLOP * Speedup *
| (baseline) 09% 20—50 1—20 100%—100% 1.00x—1.00x
2 0.8% 5—19 1—4 25%—17.6% 1.64x—5.23 %
3 1.0% 3—12 1—3 15%—3.6% 1.99x—7.44x

*In the order of convl—conv2

LeNet 1 2R R e 1P Y P I L0 O P L5 Y 1
L2 [) 1 =
LN | D 1 Y e

Fewer but smoother feature extractors

Algorithmic Intelligence Lab *source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016 22

Structured Sparsity Learning [Wen et al., 2016]

e Structured sparsity can be induced by adding group-lasso regularization
G

mmﬁ)+)\ZR W) Ry (w) = Z w93

g=1

* Shape-wise sparsity: / widthA/ height

l
Ry (WW) =G s s pwl

Table 2: Results after learning filter shapes in LeNet

LeNet # Error Filtersize® Channel # FLOP Speedup
1 (baseline) 0.9% 25—500 1—20 100%—100% 1.00x—1.00x
4 0.8% 21—41 1—2 8.49%—82% 2.33x—693x
5 1.0% T—14 1—I1 1.4%—2.8% 5.19x—10.82x

¥ The sizes of filters after removing zero shape fibers, in the order of convI—conv2

Learned shapes

of conv1 filters: 5y5 n |

LeNet 1 LeNet 4 LeNet 5

Algorithmic Intelligence Lab *source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016 23

Structured Sparsity Learning [Wen et al., 2016]

* Structured sparsity can be induced by adding group-lasso regularization

min L (
W

=1

* Depth-wise sparsity: R,(W®) = ||[WO ||,

ResNet-20/32: baseline with 20/32 layers

SSL-ResNet-#: Ours with # layers after
learning depth of ResNet-20

.IGJ‘EE| ddliU= UE 2AOWSY

Algorithmic Intelligence Lab

shortcut

depth-wise W'

20
18
4 161

12
10

conv layer

SN

L G
W)+ 2> Ry(WW), Ry (w) =) w9,
g=1
| # layers error | # layers error
ResNet |20 8.82% | 32 7.51%
SSL-ResNet | 14 8.54% | 18 7.40%
jDszxsz -16><16 -s><s\ ! H

SSL—ResNet—

Next: Sparsification via variational dropout

*source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016 24

Recall: Variational Dropout [Kingma et al., 2015]

 Variational dropout (VD) allows to learn the dropout rates separately

* Unlike dropout, VD imposes noises on weights 0:
w; = 0; - &, where pg, (&) = N(1, «;)

* A Bayesian generalization of Gaussian dropout [Srivastava et al., 2014]
« w = (w;); is adapted to data in Bayesian sense by optimizing a and @

* Re-parametrization trick allows w to be learned via minibatch-based gradient
estimation methods [Kingma & Welling, 2013]

* o and 0 can be optimized separated from noises

w; = 6; + (9@\/04_2) - &4, where ¢g; ~ N(O, l)

Algorithmic Intelligence Lab *source : Kingma et al., “Variational dropout and the local reparametrization trick”, NIPS 2015 25

Variational Dropout Sparsifies DNNs [Molchanov et al., 2017]

* VD imposes noises on weights 0

w; = 0; - gia

where p,, (&) = N(1,|q;

I
* The original VD set a constraint a; < 1 for technical reasons

* It corresponds to p < 0.5 in binary dropout

Q. What if a; > 1? What happens when «; — c0?

o p(w;) = 0; - p(&) = N (0, i67)

* w; will be completely random as a; — o©

* Such w; will corrupt the expected log likelihood

e ..exceptthat 6, — 0 as well!

2
9.3_3,' — 0, (-Yijg?',j — 0

2
q(‘h‘)ij ‘ gija Of-ij} — J\df(’i‘f,-‘ij ‘ 0, 0) = 5(11;'@'3')

40
35

30 ~ _
T=25 — w;;=0, aqjislarge

< 20 —— |wj| >0, a; is small
o 15 — |wj| >0, aj is large
10
5
0

Algorithmic Intelligence Lab *source : Molchanov et al., “Variational Dropout Sparsifies Deep Neural Networks”, ICML 2017 26

Variational Dropout Sparsifies DNNs [Molchanov et al., 2017]

Q. What if a; > 1? What happens when a; — 00?

* It will corrupt the expected log likelihood except that 6; — 0 as well

* Molchanov et al. (2017): Extending VD for «; > 1 = Super sparse solutions
* Weights with log o > 3 are pruned away during training

Epoch: 0 Compression ratio: 1x Accuracy: 8 4 Epoch: 0 Compression ratio: 1x Accuracy: 8.4

i (o]]] L ot S

B A l WP L I

] R O P N
e PEEEEEEERE |-
£ PP AR RS
= [T A B3 N P
5 ERERAREEEE |-
HREEEE SRS I

F0.00

] 51 P T 3 ol O 8 1
L L el o [l SR

Algorithmic Intelligence Lab

Fully connected layer

-0.02

F 000

—0.02

—0.04

*source : Molchanov et al., “Variational Dropout Sparsifies Deep Neural Networks”, ICML 2017 27

Variational Dropout Sparsifies DNNs [Molchanov et al., 2017]

Q. What if @; > 1? What happens when «; — 00?

* It will corrupt the expected log likelihood except that 6; — 0 as well

* Molchanov et al. (2017): Extending VD for «; > 1 = Super sparse solutions
* Weights with log a > 3 are pruned away during training

Network Method Error % Sparsity per Layer % %
Original 1.64 1
Pruning 1.59 92.0-91.0 - 74.0 12 [Hanetal., 2015]
LeNet-300-100 DNS 1.99 98.2—-98.2—-94.5 56
SWS 1.94 23
(ours) Sparse VD 1.92 98.9 — 97.2 — 62.0 68
Original 0.80 1
Pruning 0.77 34—-88—-92.0—-81 12 [Hanetal,2015]
LeNet-5-Caffe DNS 091 86 —-97—-99.3-96 111
SWS 0.97 200

(ours) Sparse VD 0.75 67 —98 —99.8 -95 280

Next: Variational information bottleneck

Algorithmic Intelligence Lab *source : Molchanov et al., “Variational Dropout Sparsifies Deep Neural Networks”, ICML 2017 28

Variational Information Bottleneck [Dai et al., 2018]

* Motivation: Markov chain interpretation of DNN [Tishby & Zaslavsky, 2015]

y—x=ho—h —---—h_1—>h;—-—h,—y
p(hilhi—1) Approximate p(y|hr)

via tractable p(gy|hp)
“color 1

animal type amimal type - cat
1. Maximize /(h;; y) for high-accuracy prediction

location
2. Minimize [(h;; h;_,) for compression = “information bottleneck”

mood

S

* Layer-wise losses become: Mutual information

N\
Li=~1I(hihi—1)—I(h;y)
The reIati>: strength of bottleneck

Algorithmic Intelligence Lab *source : Dai et al., “Compressing Neural Networks using the Variational Information Bottleneck”, ICML 2018 29

Variational Information Bottleneck [Dai et al., 2018]

Layer-wise losses become £; = v;I(h;; h;—1) — I(h;;y)

Problem: Computing I(-; -) is usually intractable

Instead, we minimize variational upper bound of it

L;<L; = %E[KL(p(hi‘hi—l)"g(hi))] — Ellog Q(yf!hL)]

variational approx. of p(h;) variational approx. of p(y|h;)

multinomal for classification
Gaussian for regression

* Variational Information Bottleneck (VIB) model

p(hilhi_1) = fi(hi—1) © N (h;|p;, diag(o?))

a(hi) = N (a0, ding(€))
- fc/coan BN H ReLU
fi

Hi
Reparametrization trick { ¢

g
[Kingma & Welling, 2013] L)
oty —

Algorithmic Intelligence Lab *source : Dai et al., “Compressing Neural Networks using the Variational Information Bottleneck”, ICML 2018 30

Variational Information Bottleneck [Dai et al., 2018]

* We minimize variational upper bound of £,
Li<L;= YVE[KL(p(hi|hi-1)|lg(hi))] — Ellog ¢(y|hL)]

* Final variational objective function (VIBNet):

layers
L 12, /
L=Y) log|1+ —|| —L-Elloga(ylhr)]
\2;:1 J /ZJ P dai?:;—ﬁt

v
regularizatV
2
Hiq

* Pruning criteria: a;; == — — 0

]

* Neurons with low value of @;;’s are pruned after training

hi_4
fc/coan BN H RelLU
fi

Hi
Reparametrization trick { ¢

g
[Kingma & Welling, 2013] L)
oty —

Algorithmic Intelligence Lab *source : Dai et al., “Compressing Neural Networks using the Variational Information Bottleneck”, ICML 2018 31

Variational Information Bottleneck [Dai et al., 2018]

* VIBNet outperforms various methods by large margins
* 1y (%): ratio of # parameters

* 1v(%): ratio of memory footprint
After fine-tuning

Method | rw (%) rn(%) error(%) Pruned Model Method | rw (%) FLOP(Mil) '-'"N(%) error(%)
VD 2528 58.95 1.8 512-114-72 BC-GNJ | 6.57 141.5 81.68 8.6
BC-GNJ | 10.76 32.85 1.8 278-98-13 BC-GHS | 540 121.9 74.82 9.0
Lo 2602 45.02 1.4 219-214-100 PF 35.99 206.3 8397 6.6
LOo-sep | 1001 3269 18 266-88-33 SSBB; ;[7):3 ééiﬁ ggzé ;3
DN 2305 57.94 1.8 042-83-6] VIBNet 545 86.82 57.86 6.5 (6.1)
VIBNet | 3.59 16.98 1.6 97-71-33 NS-Sigle | 11,50 1655 - £5
Table 1. Compression results on MNIST using LeNet-300-100. NS-Best 8.60 147.0 - 5.9
VIBNet | 5.79 116.0 59.60 6.2 (5.8)
800 ‘ Table 3. Compression results on CIFAR10 using VGG-16.
! — VIBNet
700, Regular Net Method | ry (%) FLOPMil) rx(%) error(%)
— | I(hy; x) RNP - 160 - 38.0
600, VIBNet | 22.75 133.6 59.80 37.6 (37.4)
NS-Single | 24.90 250.5 - 26.5
. 7 7 | NS-Best 20.80 214.8 - 26.0
0 100 200 500, 100 200 VIBNet | 15.08 203.1 73.80 259 (25.7)

Epoch Epoch
Table 4. Compression results on CIFAR100 using VGG-16.

Algorithmic Intelligence Lab *source : Dai et al., “Compressing Neural Networks using the Variational Information Bottleneck”, ICML 2018 32

Table of Contents

1. Network Pruning and Re-wiring
e Optimal brain damage
* Pruning modern DNNs
e Dense-Sparse-Dense training flow

2. Sparse Network Learning
e Structured sparsity learning
» Sparsification via variational dropout
e Variational information bottleneck

3. Weight Quantization
* Deep compression
* Binarized neural networks

4. Summary

Algorithmic Intelligence Lab

33

Deep Compression [Han et al., 2016]

* Quantizing weights can further compress the pruned networks
* Weights are clustered into discrete values
* The network is represented only with several centroid values

 Han et al. (2015): Pruning DNNs = 9x-13x reduction

 Han et al. (2016): Pruning + Quantization + Huffman = 35x-49x reduction

Network Weight Huffman
Pruning Quantization Encoding
L - %, i =TmEmmmEmEmmmm—m—— .y % l.!" _________ - LY
r " L \ | i
| 1 || Cluster the Weights i ! '
! | Train Connectivity : & ! ' | Encode Weights :
e | 1]]
: < | same ;¢ ! acs:u"::c b accuracy
[laccuracy | g nerate Code Buulc] ' Vi !
! | Prune Connections ! E> b ' |:> : \ :
A | 9x13x |~ 7 ! 27x31x | | Encode Index | ! 3;5"'4.9"
. A reductioni |Quantize the Weight i reduction | re uction
I 1 F
: Train Weights : : it cndz:mh . R ¢
1 . ‘_J 1 T]
S v | | Retrain Code Book |
% r

I e e

*source : Han et al., “Deep Compression - Compressing Deep Neural Networks
Algorithmic Intelligence Lab with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016

Deep Compression [Han et al., 2016]

* Quantizing weights can further compress the pruned networks
* Weights are clustered into discrete values
* The network is represented only with several centroid values

1. Train a deep model until convergence
2. Find k clusters that minimizes within-cluster sum of squares (WCSS):

. k 2
argming y ., Zweq lw — ¢
3. Quantize with the cluster C' via weight sharing
4. Fine-tune the network with the shared weights
. . . '.I'-'Ei;g hts l;lus1-,=l,-r index fine-tunead
° |n the flne_tunlng phase’ grad|ents (32 bit float) (2 bit uint) centroids cantroids
in each cluster are aggregated: i S O . .
cluster 1 1 i] | 1.50 ~ 1.48
= 1T 1.1, "3
Z aﬁ aWH '} i 3 i} | 0.00 -0.04
1.53 | 1.49 3 1 2 2 0| -1.00 wir |.097
ack aWZJ aOk gradient
oL oor o] [am[ose[osa|oa]
— 1(WEJ S Ck) roun by g ag | o1 | -0.02 reduce | .02
%: OW3; = =
i o.01 0.02 |-0.01 | 0.01 | 0.04 | -0.02 0.04
0of | -0.02 -0.09 | -0.02 | 0007 | L0 -0.03

*source : Han et al., “Deep Compression - Compressing Deep Neural Networks
Algorithmic Intelligence Lab with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016

Deep Compression [Han et al., 2016]

* Deep compression reduces the model size significantly

.. . Compressed Compression Original Compressed
Network Original Size Size Ratio Accuracy (%) Accuracy (%)
LeNet-300 1070KB — 27KB 40x 98.36 —* 98.42
LeNet-5 1720KB —> 44KB 39x 99.20 —* 99.26
AlexNet 240MB —* ©6.9MB 35x 80.27 —* 80.30
VGGNet 550MB —— 11.3MB 49x 88.68 —— 89.09
GooglLeNet 28MB —— 2.8MB 10x 8890 —— 88.92
SqueezeNet 4.8MB — 0.47/MB 10x 80.32 — 80.35
© Pruning + Quantization # Pruning Only Quantization Only SVD
0.5%
0.0%
o -0.5%
§-1.0%
o -1.5%
g -2.0%
5 25%
8 -3.0%
< 35%
-4.0%
'4.50/0 | I
2% 5% 8% 1% 14% 17% 20%

Next: Binarized neural networks

Algorithmic Intelligence Lab

Model Size Ratio after Compression

*source : Han et al., “Deep Compression - Compressing Deep Neural Networks

with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016

36

Binarized Neural Networks [Hubara et al., 2016]

* Neural networks can be even binarized (+1 or -1)
* DNNs trained to use binary weights and binary activations

* Expensive 32-bit MAC (Multiply-ACcumulate) = Cheap 1-bit XNOR-Count

* “MAC == XNOR-Count”: when the weights and activations are +1 \
1s in bits

Binarized weights

G

Algorithmic Intelligence Lab *source : Hubara et al., “Binarized Neural Networks ”, NIPS 2016 37

Binarized Neural Networks [Hubara et al., 2016]

* Idea: Training real-valued nets (I#,.) treating binarization (W},) as noise
* Training W, is done by stochastic gradient descent

 Binarization (I, - W) occurs for each forward propagation
 On each of weights: W, = sign(W,.)
« ...also on each activation: a;, = sign(a,.)

* Gradients for W, is estimated from 53—121&—75 [Bengio et al., 2013]

e “Straight-through estimator”: Ignore the binarization during backward!

oL _ 0L q
oWwW,. — oW, —IW-|<1

oL OL 1
oa, Oay la.-|<1

* Cancelling gradients for better performance
* When the value is too large

Algorithmic Intelligence Lab *source : Hubara et al., “Binarized Neural Networks ”, NIPS 2016 38

Binarized Neural Networks [Hubara et al., 2016]

* Neural networks can be even binarized (+1 or -1)
* DNNs trained to use binary weights and binary activations

* BNN yields 32x less memory compared to the baseline 32-bit DNNs
... also expected to reduce energy consumption drastically

* 23x faster on kernel execution times

* BNN allows us to use XNOR kernels
e 3.4x faster than cuBLAS

Operation MUL ADD)
8bit Integer 0.2p) 0.03pJ)
32bit Integer 3.lp] 0.1p] ‘
l6bit Floating Point 1.1pJ] 0.4p] | . l . .

32tbit Floating Point 3.7p] 0.9p]

GPU KERNELS' EXECUTION TIMES

wn

r

[

=2

MATRIX MULT. (5 MNISTMLP (s) MLP TEST ERROR (%)

W BASELINE KERNEL mCUBLAS/THEANO XNOR KERNEL

Algorithmic Intelligence Lab *source : Hubara et al., “Binarized Neural Networks ”, NIPS 2016 39

Binarized Neural Networks [Hubara et al., 2016]

* Neural networks can be even binarized (+1 or -1)
* DNNs trained to use binary weights and binary activations

* BNN achieves comparable error rates over existing DNNs

Data set MNIST SVHN CIFAR-10
Binarized activations+weights, during training and test

BNN (Torch7) 1.40% 2.53% 10.15%

BNN (Theano) 0.96% 2.80% 11.40%

Committee Machines’ Array (Baldassi et al., 2015) 1.35% - .
Binarized weights, during training and test

BinaryConnect (Courbariaux et al., 2015) 1.20+ 0.08% 2.30% 9 90%
Binarized activations+weights, during test

EBP (Cheng et al., 2015) 22+ 0.1% - -

Bitwise DNNs (Kim & Smaragdis, 2016) 1.33% - -

Ternary weights, binary activations, during test
(Hwang & Sung, 2014) 1.45% - -
No binarization (standard results)

Maxout Networks (Goodfellow et al.) 0.94% 2.47% 11.68%

Network in Network (Lin et al.) - 2.35% 10.41%

Gated pooling (Lee et al., 2015) - 1.69% 7.62%

Algorithmic Intelligence Lab *source : Hubara et al., “Binarized Neural Networks ”, NIPS 2016 4(

Table of Contents

1. Network Pruning and Re-wiring
e Optimal brain damage
* Pruning modern DNNs
* Dense-Sparse-Dense training flow

2. Sparse Network Learning
e Structured sparsity learning
» Sparsification via variational dropout
e Variational information bottleneck

3. Weight Quantization
* Deep compression
e Binarized neural networks

4. Summary

Algorithmic Intelligence Lab

41

Summary

Broad economic viability requires energy efficient Al [Welling, 2018]
* “Energy efficiency of a brain is 100x better than current hardware”
e “Al algorithms will be measured by the amount of intelligence per kwWh”

Network pruning and re-wiring
* Asimple but effective way to compress DNNs
e Allow us to find better optimum that the current training cannot

Sparse network learning
* Which training scheme will maximize the pruning performance?
* It has gained significant attention recently

Various other techniques have been also proposed
* Weight quantization
* Anytime/adaptive networks [Huang et al., 2018]

Algorithmic Intelligence Lab

42

References

e [LeCun, 1987] Lecun, Y. (1987). PhD thesis: Modeles connexionnistes de I'apprentissage (connectionist learning
models).
Link: https://nyuscholars.nyu.edu/en/publications/phd-thesis-modeles-connexionnistes-de-lapprentissage-
connectionis

* [LeCun et al., 1990] LeCun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In Advances in neural
information processing systems (pp. 598-605).
Link: http://papers.nips.cc/paper/250-optimal-brain-damage.pdf

* [Bengio et al., 2013] Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432.
Link: https://arxiv.org/abs/1308.3432

* [Denil et al., 2013] Denil, M., Shakibi, B., Dinh, L., & De Freitas, N. (2013). Predicting parameters in deep learning.
In Advances in neural information processing systems (pp. 2148-2156).
Link: http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning

* [Kingma & Welling, 2013] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.
Link: https://arxiv.org/abs/1312.6114

* [Hanetal., 2015] Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient
neural network. In Advances in neural information processing systems (pp. 1135-1143).
Link: http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network

* [Kingma et al., 2015] Kingma, D. P., Salimans, T., & Welling, M. (2015). Variational dropout and the local
reparameterization trick. In Advances in Neural Information Processing Systems (pp. 2575-2583).
Link: http://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick

Algorithmic Intelligence Lab 43

https://nyuscholars.nyu.edu/en/publications/phd-thesis-modeles-connexionnistes-de-lapprentissage-connectionis
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
https://arxiv.org/abs/1308.3432
http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning
https://arxiv.org/abs/1312.6114
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network
http://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick

References

* [Leisman et al., 2015] Leisman, G., Mualem, R., & Mughrabi, S. K. (2015). The neurological development of the
child with the educational enrichment in mind. Psicologia Educativa, 21(2), 79-96.
Link: https://www.sciencedirect.com/science/article/pii/S1135755X15000226

* [Tishby & Zaslavsky, 2015] Tishby, N., & Zaslavsky, N. (2015, April). Deep learning and the information bottleneck
principle. In Information Theory Workshop (ITW), 2015 IEEE (pp. 1-5). IEEE.
Link: https://ieeexplore.ieee.org/abstract/document/7133169

 [Hanetal., 2016] Han, S., Mao, H., & Dally, W. J. (2016). Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning Representations.
Link: https://arxiv.org/abs/1510.00149

* [Huetal., 2016] Hu, H., Peng, R., Tai, Y. W,, & Tang, C. K. (2016). Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250.
Link: https://arxiv.org/abs/1607.03250

* [Hubara et al., 2016] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural
networks. In Advances in neural information processing systems (pp. 4107-4115).
Link: http://papers.nips.cc/paper/6573-binarized-neural-networks

* [Molchanov et al., 2016] Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2016). Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440.
Link: https://arxiv.org/abs/1611.06440

 [Wenetal., 2016] Wen, W., Wu, C., Wang, Y., Chen, Y., & Li, H. (2016). Learning structured sparsity in deep neural
networks. In Advances in Neural Information Processing Systems (pp. 2074-2082).
Link: http://papers.nips.cc/paper/6503-learning-structured-sparsity-in-deep-neural-networks

* [Hanetal., 2017] Han, S., Pool, J., Narang, S., Mao, H., Gong, E., Tang, S., ... & Catanzaro, B. (2017). Dsd: Dense-
sparse-dense training for deep neural networks. In International Conference on Learning Representations.
Link: https://openreview.net/forum?id=HyoST 9xI

Algorithmic Intelligence Lab

https://www.sciencedirect.com/science/article/pii/S1135755X15000226
https://ieeexplore.ieee.org/abstract/document/7133169
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1607.03250
http://papers.nips.cc/paper/6573-binarized-neural-networks
https://arxiv.org/abs/1611.06440
http://papers.nips.cc/paper/6503-learning-structured-sparsity-in-deep-neural-networks
https://openreview.net/forum?id=HyoST_9xl

References

 [Luoetal., 2017] Luo, J. H., Wu, J., & Lin, W. (2017). ThiNet: A Filter Level Pruning Method for Deep Neural
Network Compression. In Proceedings of the IEEE International Conference on Computer Vision (pp. 5058-5066).
Link: http://openaccess.thecvf.com/content_iccv_2017/html/Luo_ThiNet A_Filter ICCV_2017 paper.html

* [Molchanov et al., 2017] Molchanov, D., Ashukha, A. & Vetrov, D.. (2017). Variational Dropout Sparsifies Deep
Neural Networks. Proceedings of the 34th International Conference on Machine Learning, in PMLR 70:2498-2507
Link: http://proceedings.mlr.press/v70/molchanovl7a.html

* [Daietal., 2018] Dai, B., Zhu, C., Guo, B. & Wipf, D.. (2018). Compressing Neural Networks using the Variational
Information Bottleneck. Proceedings of the 35th International Conference on Machine Learning, in PMLR
80:1135-1144
Link: http://proceedings.mlr.press/v80/dail8d.html

* [Huang et al., 2018] Huang, G., Chen, D,, Li, T., Wu, F., van der Maaten, L., & Weinberger, K. Q. (2018). Multi-scale
dense networks for resource efficient image classification. In International Conference on Learning
Representations
Link: https://openreview.net/forum?id=Hk2almxAb

« [Mittal et al., 2018] Mittal, D., Bhardwaij, S., Khapra, M. M., & Ravindran, B. (2018, March). Recovering from
Random Pruning: On the Plasticity of Deep Convolutional Neural Networks. In 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV) (pp. 848-857). IEEE.

Link: https://www.computer.org/csdl/proceedings/wacv/2018/4886/00/488601a848-abs.html

* [Welling, 2018] Welling, M. (2018). Intelligence per Kilowatthour.
Link: https://icml.cc/Conferences/2018/Schedule?showEvent=1866

Algorithmic Intelligence Lab 45

http://openaccess.thecvf.com/content_iccv_2017/html/Luo_ThiNet_A_Filter_ICCV_2017_paper.html
http://proceedings.mlr.press/v70/molchanov17a.html
http://proceedings.mlr.press/v80/dai18d.html
https://openreview.net/forum?id=Hk2aImxAb
https://www.computer.org/csdl/proceedings/wacv/2018/4886/00/488601a848-abs.html
https://icml.cc/Conferences/2018/Schedule?showEvent=1866

