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Deploying Deep Neural Networks in Real-World

* “The dreaded 100MB effect”

Deploying deep neural networks (DNNs) has been increasingly difficult
* Constraints on power consumption, memory usage, inference overhead, ...

Inference with a large-scale network consumes huge costs

In mobile apps, such issues become more serious

* Can we make DNNs to perform inferences more efficiently?

Install rate, varying app size
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This item is over 100MB.

Unless an incremental download is

available for this item, "Pokémon GO"

may not download until you connect
to Wi-Fi.

—

*source: https://www.recode.net/2016/10/4/13151432/app-size-calculator-bloat-experiment-developers-segment
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Redundancies in Deep Neural Networks [Denil et al., 2013]

* DNNs include a significant number of redundant parameters

* Denil et al. (2013): Predicting > 95% of weights from < 5%
* Asimple kernel ridge regression is sufficient
e ... without any drop in accuracy!
* Many of the weights need not be learned at all

(a) Original weights

(b) Randomly selected

(c) Predicted from (b)

* Such redundancy can be exploited via network pruning

Algorithmic Intelligence Lab *source: Denil et al., “Predicting Parameters in Deep Learning”, NIPS 2013 7



Network Pruning

* Determining low-saliency parameters, given a pre-trained network

* Follows the framework proposed by LeCun et al. (1990):

.
Train Connectivity

1. Train a deep model until convergence - S

2. Delete “unimportant” connections w.r.t. a certain criteria e

3. Re-train the network ) S2

4. Iterate to step 2, or stop Train Weights

e Defining which connection is unimportant can vary
« Weight magnitudes (L?, L}, ..))

Mean activation [Molchanov et al., 2016]

Avg. % of Zeros (APoZ) [Hu et al., 2016]

Low entropy activation [Luo et al., 2017]

before pruning after pruning

pruning
synapses

-——

pruning
-
neurons

*source: LeCun et al., “Optimal Brain Damage”, NIPS 1990 8



Synaptic Pruning in Human Brain

 Human brains are also using pruning schemes as well
* Synaptic pruning removes redundant synapses in the brain during lifetime

At birth

Expenence-dependent synapse formation
Neurogenesis in the hippocampus

(18-24 prenatal days)

= Cell migration

*S (6-24 prenatal \

3 weeks) { Adult levels of synapses

P! -
1 8 ¥ = 1 4 L s T L L4 2 4 T T A 4 T T T T 1 | ) OR0 SO% ) 2T A v 14
-9 8 -76-5-4-3-2-10 11121314 151617 18 19 2030 40 50 60 70
= E
2 Months g Months Years Decades 2
§ (=1
S
s Age

Next: OBD

*source: Leisman et al., “The neurological development of the child
with the educational enrichment in mind.”, Psicologia Educativa 2015
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Optimal Brain Damage (OBD) [LeCun et al., 1990]

* Network pruning perturbs weights W by zeroing some of them

* How the loss L would be changed when W is perturbed?

* OBD approximates L by the 2"9 order Taylor series:

LNZ—&U TL w2+ 15 TL s s, 105w
’ i ow;2 " 2 > Ow; 0w; T
1st :)rrder ) 2nd‘(:rder ’

/

) ~is usually intractable
()

]

oL
Bw,; 8’wj

* Problem: Computing H = (

* Requires 0(n?) on # weights

* Neural networks usually have enormous number of weights

- e.g. AlexNet: 60M parameters = H consists = 3.6 x 101° elements

Algorithmic Intelligence Lab *source: LeCun et al., “Optimal Brain Damage”, NIPS 1990 10



Optimal Brain Damage (OBD) [LeCun et al., 1990]

Problem: Computing H = (mfjc:;wj )@ ; is usually intractable

Two additional assumptions for tractability

1. Diagonal approximation: H = -0 L =0 if i F J

8w¢ 3’w3‘

2. Extremal assumption: 22 = ( v

« W would be in a local minima if it’s pre-trained

1 O0%L
0L ~ —
Now we get 5 : EIRE

* It only needs diag(H) = (gju%) .

dwi + O(||sWIJ?)

diag(H) can be computed in 0(n), allowing a backprop-like algorithm
* For details, see [LeCun et al., 1987]

Algorithmic Intelligence Lab *source: LeCun et al., “Optimal Brain Damage”, NIPS 1990 11



Optimal Brain Damage (OBD) [LeCun et al., 1990]

How the loss L would be changed when W is perturbed?

1 2L 1
L(OW) ~ 5 §w25w3 = §hii5wz-2

1

1
The saliency for each weight = s; == §hii|w'é|2 s; = |w|

OBD shows robustness on pruning compared to magnitude-based deletion

After re-training, the original test accuracy is recovered

16 16,

14] (a) 141 {b}

124 12]

10 Magnitude 10} w/o re-training
S| & 4
= 2] = 2]

03 ot w/ re-training

-2 + 4 + 4 + =2 4 ; 4 ; $

0~ 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Parameters Parameters

Next: Pruning modern DNNs

Algorithmic Intelligence Lab *source: LeCun et al., “Optimal Brain Damage”, NIPS 1990 12



Pruning Modern DNNs [Han et al., 2015]

19’ Weight distribution before pruning

e Han et al. (2015): Pruning larger DNNs ]
* LeNet, AlexNet, VGG-16, ... on ImageNet
* Highlights the practical efficiency of pruning ]

* OBD introduces extra computation on larger models vsoy s sy e
* It requires an additional, separated backward pass i

* The simple magnitude-based pruning works very well ¢}
as long as the network is re-trained '

=044 003 -poE a0

o o naz ony LA
Wisigha Value

Comparison with other model reduction methods on AlexNet

Network Top-1 Error  Top-5 Error | Parameters E::: pression
Baseline Caffemodel [26] | 42.78% 19.73% 61.0M | x

Data-free pruning [28] 44 40% - 39.6M l.5x
Fastfood-32-AD |29) 41.93% - 32.8M 2%
Fastfood-16-AD |29) 42.90% - 16.4M 3.7x

Collins & Kohli [3(J] 44 40% - 15.2M 4%

Naive Cut 47 18% 23.23% 13.8M 4.4

SVD [12] 44.02% 20.56% 11.9M DX

Network Pruning 42.77 % 19.67 % 6.7TM 9%

Algorithmic Intelligence Lab *source: Han et al., “Learning both Weights and Connections for Efficient Neural Networks”, NIPS 2015 13



Pruning Modern DNNs [Han et al., 2015]

* Han et al. (2015): Pruning larger DNNs
* Highlights the practical efficiency of pruning

* The magnitude-based pruning works well as long as the network is re-trained

Network Top-1 Error  Top-5 Error | Parameters ggg pression
LeNet-300-100 Ref [.64% - 267K

LeNet-300-100 Pruned | 1.59% - 22K 12
LeNet-5 Ref (.80% - 431K

LeNet-5 Pruned 0.77% - 0K 12x
AlexNet Ref 42.78% 19.73% 61M

AlexNet Pruned 42.77% 19.67% 6.7M 0

VGG-16 Ref 31.50% 11.32% 138M

VGG-16 Pruned 31.34% 10.88% 10.3M 13

* Network pruning detects visual attention regions ,
Edge parts of MNIST images

0
50
100
150
200

250

300
0 28 56 84 112 140 168 196 224 252 280 308 336 364 392 420 448 476 504 532 560 588 616 §44 4 700 728 756 784

Algorithmic Intelligence Lab *source: Han et al., “Learning both Weights and Connections for Efficient Neural Networks”, NIPS 2015 14



Pruning Modern DNNs

* The magnitude-based pruning works well as long as the network is re-trained

* Mittal et al. (2018): In fact, pruning criteria are not that important

e ...aslong as the re-training phase exists

* Many strategies cannot even beat random pruning after fine-tuning

Heuristic 25% S0% 715%
[Random 0.650 0.569 0.415]
Mean Activation (0.652 0570 0409
Entropy 0641 0549 0405
Scaled Entropy  0.637 0.550 0.401
I, -norm 0.667 0.593 0.436
APoZ 0647 0564 0422
Sensitivity 0636 0543 0379

Table 1: Comparison of different filter pruning strategies on

VGG-16.

* The compressibility of DNNs are NOT due to the specific criterion

Heunstics #Layers Pruned 25% 50%  75%

[ Random 16 0.722 0683 0.617]
[1-norm 16 0.714 0677 0610

[ Random 32 0.696  0.637 0518 |
[1-norm 32 0691 0633 0514

Table 3: Comparison of different filter pruning strategies on
ResNet (Top-1 accuracy of unpruned network is (.745)

e ...but due to the inherent plasticity of DNNs

Algorithmic Intelligence Lab

Next: Dense-Sparse-Dense

*source: Mittal et al., “Recovering from Random Pruning: On the
Plasticity of Deep Convolutional Neural Networks”, WACV 2018
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Network Re-wiring: Dense-Sparse-Dense Training Flow

* Network pruning preserves accuracy of the original network

* Han et al. (2017): Re-wiring the pruned connections improves DNNs further
» “Dense-Sparse-Dense” training flow

Dense Sparse

Pruning

Re-Dense
—_— —_—
Sparsity Constraint Increase Model Capacity

Train on Denge (O} Pruning the Netwaork Train on Sparse (5) Recover Zero Weights Train on Dense (D)

EL0 [+ 54 RAGD E400

aa00f 4a00f 4B00) a0 4800f

E F200 £ az200] E 200 E E 200

d200 |

3 & & 3 8

15004 16004 1600 1600} | 1200f

=0L05 a 0.05 =0.05 L] 0.05 “ =0.05 o 005 o =0.05 o oLas g =005 o o5
Waight Value Waight Value Weight Value Weight Value Weight Value

Algorithmic Intelligence Lab *source: Han et al., “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017 16



Network Re-wiring: Dense-Sparse-Dense Training Flow

* Network pruning preserves accuracy of the original network

* Han et al. (2017): Re-wiring the pruned connections improves DNNs further
» “Dense-Sparse-Dense” training flow

* Pruning discovers better optimum that the current training cannot find

Neural Network Domain  Dataset Type Baseline DSD  Abs. Imp. Rel. Imp.

GoogleNet Vision  ImageNet CNN 31.1%"  30.0% 1.1% 3.6%
VGG-16 Vision  ImageNet CNN 31.5%'  27.2% 4.3% 13.7%

ResNet-18 Vision  ImageNet CNN 304%'  29.2% 1.2% 4.1%

ResNet-30 Vision  ImageNet CNN 24.0%'  22.9% 1.1% 4.6%

NeuralTalk Caption  Flickr-8K LSTM 16.8° 18.5 1.7 10.1%

DeepSpeech Speech ~ WSI'93  RNN 33.6%°  31.6% 2.0% 5.8%

DeepSpeech-2 Speech ~ WSJI'93  RNN 14.5% %  13.4% 1.1% 7.4%

Algorithmic Intelligence Lab

*source: Han et al

., “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017 17
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Sparse Network Learning

The performance of pruning depends on the initial training scheme

* e.g. Which regularization to use: L? or L!?

Which training scheme will maximize the pruning performance?

* We still don’t know about the optimal points of a DNN

One prominent way: Sparse network learning

* Inducing to a sparse solution from training a network
* Weights with value 0 can safely be removed = it does not require re-training

Example: L!-regularization

- e .
/”/’———-—--N\ SS
{ 7 ¢7epnd M O

o ﬁ--—————’
.

% \ 0,

RO P ,é _ Ai o
VIV ey

/

“rescaling” eigenvalues
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“sparse” solution

- 4 U

*

0i

o/
- )
L),

" 0= (sgn(@{k) max{
Next: Structured sparsity learning
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Structured Sparsity Learning [Wen et al., 2016]

* “Un-structured” weight-level pruning may not engage a practical speed-up
* Despite of extremely high sparsity, actual speed-ups in GPU is limited

Sparsity = percentage ot zeros

o ¢ i L E3Quadro K600
- =  ETesla K40c
) 3 CIGTX Titan
v2 -O-Sparsity
T T -0

convl conv2 convld conv4 convs

Speed-up ratio of weight-level pruning

Non-structured sparsity (poor data pattern)

Structured sparsity (regular data pattern)

i

Algorithmic Intelligence Lab *source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016 20



Structured Sparsity Learning [Wen et al., 2016]

e Structured sparsity can be induced by adding group-lasso regularization

G «— #groups
win £(W +)\ZR ), Rg(w) =) |[w9
g=1
* Filter-wise and channel-wise: /# filters # channels
[ l
Ry(W®) = S8 W+ 50T W,
* Shape-wise sparsity: /width/ height

C !
Ry(W®D) = 520 S Sy W
» Depth-wise sparsity (applicable only for ResNet):
Ry(WH) = [[WO|,

channel-wise W,!!) | shortcut
E Sl S ok

- L8 N
i n : ) “shape-wise
& wh
epamy.ky u . I
— depth-wise W'

Algorithmic Intelligence Lab *source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016 21



Structured Sparsity Learning [Wen et al., 2016]

* Structured sparsity can be induced by adding group-lasso regularization

L G
win L(W) + XY Ry(WW), Ry (w) =) W]
=1 g=1
# filters # channels

* Filter-wise and channel-wise:
N e () % err (1)
RQ(W(D) - anzl ||W?’Ll,2,:,:||2 —l_ chzl ||W:7Cla:a:||2

Table 1: Results after penalizing unimportant filters and channels in LeNet

LeNet # Error  Filter#°  Channel #* FLOP * Speedup *
| (baseline) 09%  20—50 1—20 100%—100%  1.00x—1.00x
2 0.8% 5—19 1—4 25%—17.6% 1.64x—5.23 %
3 1.0% 3—12 1—3 15%—3.6% 1.99x—7.44x

*In the order of convl—conv2

LeNet 1 2R R e 1P Y P I L0 O P L5 Y 1
L2 [ ) 1 =
LN | D 1 Y e

Fewer but smoother feature extractors

Algorithmic Intelligence Lab *source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016 22



Structured Sparsity Learning [Wen et al., 2016]

e Structured sparsity can be induced by adding group-lasso regularization
G

mmﬁ )+ )\ZR W) Ry (w) = Z w93

g=1

* Shape-wise sparsity: / widthA/ height

l
Ry (WW) =G s s pwl

Table 2: Results after learning filter shapes in LeNet

LeNet # Error  Filtersize®  Channel # FLOP Speedup
1 (baseline)  0.9% 25—500 1—20 100%—100%  1.00x—1.00x
4 0.8% 21—41 1—2 8.49%—82%  2.33x—693x
5 1.0% T—14 1—I1 1.4%—2.8%  5.19x—10.82x

¥ The sizes of filters after removing zero shape fibers, in the order of convI—conv2

Learned shapes

of conv1 filters: 5y5 n |

LeNet 1 LeNet 4 LeNet 5

Algorithmic Intelligence Lab *source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016 23



Structured Sparsity Learning [Wen et al., 2016]

* Structured sparsity can be induced by adding group-lasso regularization

min L (
W

=1

* Depth-wise sparsity: R,(W®) = ||[WO ||,

ResNet-20/32: baseline with 20/32 layers

SSL-ResNet-#: Ours with # layers after
learning depth of ResNet-20

.IGJ‘EE| ddliU= UE 2AOWSY

Algorithmic Intelligence Lab

shortcut

depth-wise W'

20
18
4 161

12
10

# conv layer

SN

L G
W)+ 2> Ry(WW), Ry (w) =) w9,
g=1
| # layers error | # layers error
ResNet |20 8.82% | 32 7.51%
SSL-ResNet | 14 8.54% | 18 7.40%
jDszxsz -16><16 -s><s\ ! H

SSL—ResNet—

Next: Sparsification via variational dropout

*source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016 24



Recall: Variational Dropout [Kingma et al., 2015]

 Variational dropout (VD) allows to learn the dropout rates separately

* Unlike dropout, VD imposes noises on weights 0:
w; = 0; - &, where pg, (&) = N(1, «;)

* A Bayesian generalization of Gaussian dropout [Srivastava et al., 2014]
« w = (w;); is adapted to data in Bayesian sense by optimizing a and @

* Re-parametrization trick allows w to be learned via minibatch-based gradient
estimation methods [Kingma & Welling, 2013]

* o and 0 can be optimized separated from noises

w; = 6; + (9@\/04_2) - &4, where ¢g; ~ N(O, l)

Algorithmic Intelligence Lab *source : Kingma et al., “Variational dropout and the local reparametrization trick”, NIPS 2015 25



Variational Dropout Sparsifies DNNs [Molchanov et al., 2017]

* VD imposes noises on weights 0

w; = 0; - gia

where p,, (&) = N(1,|q;

I
* The original VD set a constraint a; < 1 for technical reasons

* It corresponds to p < 0.5 in binary dropout

Q. What if a; > 1? What happens when «; — c0?

o p(w;) = 0; - p(&) = N (0, i67)

* w; will be completely random as a; — o©

* Such w; will corrupt the expected log likelihood

e ..exceptthat 6, — 0 as well!

2
9.3_3,' — 0, (-Yijg?',j — 0

2
q(‘h‘)ij ‘ gija Of-ij} — J\df(’i‘f,-‘ij ‘ 0, 0) = 5(11;'@'3')

40
35

30 ~ _
T=25 — w;;=0, aqjislarge

< 20 —— |wj| >0, a; is small
o 15 — |wj| >0, aj is large
10
5
0

Algorithmic Intelligence Lab *source : Molchanov et al., “Variational Dropout Sparsifies Deep Neural Networks”, ICML 2017 26



Variational Dropout Sparsifies DNNs [Molchanov et al., 2017]

Q. What if a; > 1? What happens when a; — 00?

* It will corrupt the expected log likelihood except that 6; — 0 as well

* Molchanov et al. (2017): Extending VD for «; > 1 = Super sparse solutions
* Weights with log o > 3 are pruned away during training

Epoch: 0 Compression ratio: 1x  Accuracy: 8 4 Epoch: 0 Compression ratio: 1x  Accuracy: 8.4

i (o ] ] ] L ot S

B A l WP L I

] R O P N
e PEEEEEEERE |-
£ PP AR RS
= [T A B3 N P
5 ERERAREEEE |-
HREEEE SRS I

F0.00

] 51 P T 3 ol O 8 1
L L el o [l SR
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Fully connected layer

-0.02

F 000

—0.02

—0.04

*source : Molchanov et al., “Variational Dropout Sparsifies Deep Neural Networks”, ICML 2017 27



Variational Dropout Sparsifies DNNs [Molchanov et al., 2017]

Q. What if @; > 1? What happens when «; — 00?

* It will corrupt the expected log likelihood except that 6; — 0 as well

* Molchanov et al. (2017): Extending VD for «; > 1 = Super sparse solutions
* Weights with log a > 3 are pruned away during training

Network Method  Error % Sparsity per Layer % %
Original 1.64 1
Pruning 1.59  92.0-91.0 - 74.0 12 [Hanetal., 2015]
LeNet-300-100 DNS 1.99  98.2—-98.2—-94.5 56
SWS 1.94 23
(ours) Sparse VD 1.92  98.9 — 97.2 — 62.0 68
Original 0.80 1
Pruning 0.77 34—-88—-92.0—-81 12 [Hanetal,2015]
LeNet-5-Caffe DNS 091 86 —-97—-99.3-96 111
SWS 0.97 200

(ours) Sparse VD 0.75 67 —98 —99.8 -95 280

Next: Variational information bottleneck

Algorithmic Intelligence Lab *source : Molchanov et al., “Variational Dropout Sparsifies Deep Neural Networks”, ICML 2017 28



Variational Information Bottleneck [Dai et al., 2018]

* Motivation: Markov chain interpretation of DNN [Tishby & Zaslavsky, 2015]

y—x=ho—h —---—h_1—>h;—-—h,—y
p(hilhi—1) Approximate p(y|hr)

via tractable p(gy|hp)
“color 1

animal type amimal type - cat
1. Maximize /(h;; y) for high-accuracy prediction

location
2. Minimize [(h;; h;_,) for compression = “information bottleneck”

mood

S

* Layer-wise losses become: Mutual information

N\
Li=~1I(hihi—1)—I(h;y)
The reIati>: strength of bottleneck

Algorithmic Intelligence Lab *source : Dai et al., “Compressing Neural Networks using the Variational Information Bottleneck”, ICML 2018 29



Variational Information Bottleneck [Dai et al., 2018]

Layer-wise losses become £; = v;I(h;; h;—1) — I(h;;y)

Problem: Computing I(-; -) is usually intractable

Instead, we minimize variational upper bound of it

L;<L; = %E[KL(p(hi‘hi—l)"g(hi))] — Ellog Q(yf!hL)]

variational approx. of p(h;) variational approx. of p(y|h;)

multinomal for classification
Gaussian for regression

* Variational Information Bottleneck (VIB) model

p(hilhi_1) = fi(hi—1) © N (h;|p;, diag(o?))

a(hi) = N (a0, ding(€))
- fc/coan BN H ReLU
fi

Hi
Reparametrization trick { ¢

g
[Kingma & Welling, 2013] L )
oty —

Algorithmic Intelligence Lab *source : Dai et al., “Compressing Neural Networks using the Variational Information Bottleneck”, ICML 2018 30




Variational Information Bottleneck [Dai et al., 2018]

* We minimize variational upper bound of £,
Li<L;= YVE[KL(p(hi|hi-1)|lg(hi))] — Ellog ¢(y|hL)]

* Final variational objective function (VIBNet):

# layers
L 12, /
L=Y ) log|1+ —|| —L-Elloga(ylhr)]
\2;:1 J /ZJ P dai?:;—ﬁt

v
regularizatV
2
Hiq

* Pruning criteria: a;; == — — 0

]

* Neurons with low value of @;;’s are pruned after training

hi_4
fc/coan BN H RelLU
fi

Hi
Reparametrization trick { ¢

g
[Kingma & Welling, 2013] L )
oty —

Algorithmic Intelligence Lab *source : Dai et al., “Compressing Neural Networks using the Variational Information Bottleneck”, ICML 2018 31




Variational Information Bottleneck [Dai et al., 2018]

* VIBNet outperforms various methods by large margins
* 1y (%): ratio of # parameters

* 1v(%): ratio of memory footprint
After fine-tuning

Method | rw (%) rn(%) error(%) Pruned Model Method | rw (%) FLOP(Mil) '-'"N(%) error(%)
VD 2528  58.95 1.8 512-114-72 BC-GNJ | 6.57 141.5 81.68 8.6
BC-GNJ | 10.76  32.85 1.8 278-98-13 BC-GHS | 540 121.9 74.82 9.0
Lo 2602 45.02 1.4 219-214-100 PF 35.99 206.3 8397 6.6
LOo-sep | 1001 3269 18 266-88-33 SSBB; ;[7):3 ééiﬁ ggzé ;3
DN 2305 57.94 1.8 042-83-6] VIBNet 545 86.82 57.86 6.5 (6.1)
VIBNet | 3.59  16.98 1.6 97-71-33 NS-Sigle | 11,50 1655 - £5
Table 1. Compression results on MNIST using LeNet-300-100. NS-Best 8.60 147.0 - 5.9
VIBNet | 5.79 116.0 59.60 6.2 (5.8)
800 ‘ Table 3. Compression results on CIFAR10 using VGG-16.
! — VIBNet
700, Regular Net Method | ry (%) FLOPMil) rx(%)  error(%)
— | I(hy; x) RNP - 160 - 38.0
600, VIBNet | 22.75 133.6 59.80 37.6 (37.4)
NS-Single | 24.90 250.5 - 26.5
. 7 7 | NS-Best 20.80 214.8 - 26.0
0 100 200 500, 100 200 VIBNet | 15.08 203.1 73.80 259 (25.7)

Epoch Epoch
Table 4. Compression results on CIFAR100 using VGG-16.

Algorithmic Intelligence Lab *source : Dai et al., “Compressing Neural Networks using the Variational Information Bottleneck”, ICML 2018 32
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Deep Compression [Han et al., 2016]

* Quantizing weights can further compress the pruned networks
* Weights are clustered into discrete values
* The network is represented only with several centroid values

 Han et al. (2015): Pruning DNNs = 9x-13x reduction

 Han et al. (2016): Pruning + Quantization + Huffman = 35x-49x reduction

Network Weight Huffman
Pruning Quantization Encoding
L - %, i =TmEmmmEmEmmmm—m—— .y % l.!" _________ - LY
r " L \ | i
| 1 || Cluster the Weights i ! '
! | Train Connectivity : & ! ' | Encode Weights :
e | 1 ] ]
: < | same ;¢ ! acs:u"::c b accuracy
[ laccuracy | g nerate Code Buulc] ' Vi !
! | Prune Connections ! E> b ' |:> : \ :
A | 9x13x |~ 7 ! 27x31x | | Encode Index | ! 3;5"'4.9"
. A reductioni |Quantize the Weight i reduction | re uction
I 1 F
: Train Weights : : it cndz:mh . R ¢
1 . ‘_J 1 T ]
S v | | Retrain Code Book |
% r

I e e

*source : Han et al., “Deep Compression - Compressing Deep Neural Networks
Algorithmic Intelligence Lab with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016



Deep Compression [Han et al., 2016]

* Quantizing weights can further compress the pruned networks
* Weights are clustered into discrete values
* The network is represented only with several centroid values

1. Train a deep model until convergence
2. Find k clusters that minimizes within-cluster sum of squares (WCSS):

. k 2
argming y ., Zweq lw — ¢
3. Quantize with the cluster C' via weight sharing
4. Fine-tune the network with the shared weights
. . . '.I'-'Ei;g hts l;lus1-,=l,-r index fine-tunead
° |n the flne_tunlng phase’ grad|ents (32 bit float) (2 bit uint) centroids cantroids
in each cluster are aggregated: i S O . .
cluster 1 1 i ] | 1.50 ~ 1.48
= 1T 1.1, "3
Z aﬁ aWH '} i 3 i} | 0.00 -0.04
1.53 | 1.49 3 1 2 2 0| -1.00 wir |.097
ack aWZJ aOk gradient
oL oor o] [am[ose[osa|oa]
— 1(WEJ S Ck ) roun by g ag | o1 | -0.02 reduce | .02
%: OW3; = =
i o.01 0.02 |-0.01 | 0.01 | 0.04 | -0.02 0.04
0of | -0.02 -0.09 | -0.02 | 0007 | L0 -0.03

*source : Han et al., “Deep Compression - Compressing Deep Neural Networks
Algorithmic Intelligence Lab with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016



Deep Compression [Han et al., 2016]

* Deep compression reduces the model size significantly

.. . Compressed Compression Original Compressed
Network Original Size Size Ratio Accuracy (%) Accuracy (%)
LeNet-300 1070KB — 27KB 40x 98.36 —* 98.42
LeNet-5 1720KB —>  44KB 39x 99.20 —* 99.26
AlexNet 240MB —* ©6.9MB 35x 80.27 —* 80.30
VGGNet 550MB —— 11.3MB 49x 88.68 —— 89.09
GooglLeNet 28MB —— 2.8MB 10x 8890 —— 88.92
SqueezeNet 4.8MB — 0.47/MB 10x 80.32 — 80.35
© Pruning + Quantization # Pruning Only Quantization Only SVD
0.5%
0.0%
o -0.5%
§-1.0%
o -1.5%
g -2.0%
5 25%
8 -3.0%
< 35%
-4.0%
'4.50/0 | I
2% 5% 8% 1% 14% 17% 20%

Next: Binarized neural networks
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Model Size Ratio after Compression

*source : Han et al., “Deep Compression - Compressing Deep Neural Networks

with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Binarized Neural Networks [Hubara et al., 2016]

* Neural networks can be even binarized (+1 or -1)
* DNNs trained to use binary weights and binary activations

* Expensive 32-bit MAC (Multiply-ACcumulate) = Cheap 1-bit XNOR-Count

* “MAC == XNOR-Count”: when the weights and activations are +1 \
# 1s in bits

Binarized weights

G

Algorithmic Intelligence Lab *source : Hubara et al., “Binarized Neural Networks ”, NIPS 2016 37



Binarized Neural Networks [Hubara et al., 2016]

* Idea: Training real-valued nets (I#,.) treating binarization (W},) as noise
* Training W, is done by stochastic gradient descent

 Binarization (I, - W) occurs for each forward propagation
 On each of weights: W, = sign(W,.)
« ...also on each activation: a;, = sign(a,.)

* Gradients for W, is estimated from 53—121&—75 [Bengio et al., 2013]

e “Straight-through estimator”: Ignore the binarization during backward!

oL _ 0L q
oWwW,. — oW, —IW-|<1

oL OL 1
oa, Oay la.-|<1

* Cancelling gradients for better performance
* When the value is too large

Algorithmic Intelligence Lab *source : Hubara et al., “Binarized Neural Networks ”, NIPS 2016 38



Binarized Neural Networks [Hubara et al., 2016]

* Neural networks can be even binarized (+1 or -1)
* DNNs trained to use binary weights and binary activations

* BNN yields 32x less memory compared to the baseline 32-bit DNNs
... also expected to reduce energy consumption drastically

* 23x faster on kernel execution times

* BNN allows us to use XNOR kernels
e 3.4x faster than cuBLAS

Operation MUL ADD )
8bit Integer 0.2p)  0.03pJ )
32bit Integer 3.lp]  0.1p] ‘
l6bit Floating Point  1.1pJ]  0.4p] | . l . .

32tbit Floating Point  3.7p]  0.9p]

GPU KERNELS' EXECUTION TIMES

wn

r

[

=2

MATRIX MULT. (5 MNISTMLP (s) MLP TEST ERROR (%)

W BASELINE KERNEL mCUBLAS/THEANO XNOR KERNEL
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Binarized Neural Networks [Hubara et al., 2016]

* Neural networks can be even binarized (+1 or -1)
* DNNs trained to use binary weights and binary activations

* BNN achieves comparable error rates over existing DNNs

Data set MNIST SVHN CIFAR-10
Binarized activations+weights, during training and test

BNN (Torch7) 1.40% 2.53% 10.15%

BNN (Theano) 0.96% 2.80% 11.40%

Committee Machines’ Array (Baldassi et al., 2015) 1.35% - .
Binarized weights, during training and test

BinaryConnect (Courbariaux et al., 2015) 1.20+ 0.08% 2.30% 9 90%
Binarized activations+weights, during test

EBP (Cheng et al., 2015) 22+ 0.1% - -

Bitwise DNNs (Kim & Smaragdis, 2016) 1.33% - -

Ternary weights, binary activations, during test
(Hwang & Sung, 2014) 1.45% - -
No binarization (standard results)

Maxout Networks (Goodfellow et al.) 0.94% 2.47% 11.68%

Network in Network (Lin et al.) - 2.35% 10.41%

Gated pooling (Lee et al., 2015) - 1.69% 7.62%

Algorithmic Intelligence Lab *source : Hubara et al., “Binarized Neural Networks ”, NIPS 2016  4(
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Summary

Broad economic viability requires energy efficient Al [Welling, 2018]
* “Energy efficiency of a brain is 100x better than current hardware”
e “Al algorithms will be measured by the amount of intelligence per kwWh”

Network pruning and re-wiring
* Asimple but effective way to compress DNNs
e Allow us to find better optimum that the current training cannot

Sparse network learning
* Which training scheme will maximize the pruning performance?
* It has gained significant attention recently

Various other techniques have been also proposed
* Weight quantization
* Anytime/adaptive networks [Huang et al., 2018]
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