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Motivation

* DNNs achieve remarkable success on various applications
* They usually require massive amounts of manually labeled data
 The annotation cost is high because
* Itis time-consuming: e.g., annotating bounding boxes

* It requires expert knowledge: e.g., medical diagnosis and retrosynthesis

* But, collecting unlabeled samples is extremely easy compared to annotation

* Question: How to utilize the unlabeled samples for learning?
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Terminology

* Supervised learning
D= {(zW,yM), ..., ™,y CcxxY
X and )Y are input and label spaces, respectively
* All training samples have ground-truth labels

. Semi-supervised Iearning
= {",yW),.. @™y c X x Y
u:{x ,...,x(m)}gX

* Only few samples have ground-truth labels, i.e., m > n
* Q) What is the difference from weakly-supervised learning?

* Unsupervised learning (or representation learning)
D={zWV,. .. z™}Ccx
* No labeled samples, i.e., no target task is defined

 The goal is learning good representations
* Q) How to measure the quality of representations?
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Semi-supervised Learning: Entropy Minimization

* EntMin [Grandvalet & Bengio, 2005]
* ldea: Make uncertain predictions of unlabeled samples be more certain

H(f(z;0)) fo@klogf(a: 0)s

* Note that high-capcity models might overfit to a low-entropy solution is available
* EntMin cannot produce competitive results, but it can be combined with others

* Pseudo-labeling [Lee, 2013]
* Idea: Assign a pseudo-label if confidence of prediction is greater than a threshold

* Similar to EntMin, but it encourages only confident samples to be more confident
* Pseudo-labeling is closely related to learning on noisy datasets [Tanaka et al., 2018]

* Extensive experimental analysis on semi-supervised methods [Oliver et al., 2018]



Semi-supervised Learning: Consistency Regularization

* Idea: Models should produce similar outputs for similar samples

* Q) How to know the sampler are similar? How to generate similar samples?
* A) Use random data augmentation & stochastic networks

2

\

* For all samples, add a regularization term enforcing the consistent property
* Temporal Ensembling [Laine & Aila, 2017]
* Mean Teacher [Tarvainen & Harri Valpola, 2017]
e Virtual Adversarial Training [Miyato et al., 2017]
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Semi-supervised Learning: Consistency Regularization

e II-Model [Laine & Aila, 2017]

M-model (t)
w
Vi Z """" »  cross- ¢
1
Xi stochastic > network » _entropy —» weighted ]
augmentation |— | with dropout NL, squared — sum 0S5
Zj difference

1. For each input Z, construct two stochastic outputs z and 2

2. Ifits label y exists, then add the standard supervised loss, e.g., cross-entropy
. ~112

3. Add the squared difference loss HZ — ZH

£total — Z £ Zuyz C|B| ZHZ’L ZZH2

zEBﬂL 1€B
\ # of classes
 w(t) = exp(—5(1 — t)?) is a time-dependent weighting function
* Inthe beginning (f = 0), z has no meaningful information, thus the ramp-up
of the weight should be slow enough

Algorithmic Intelligence Lab * source : [Laine & Aila, 2017]
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Semi-supervised Learning: Consistency Regularization

* |In [I-Model

* The target 2 is generated randomly = It can be noisy

* For each iteration, Z should be computed = 2x longer training

 Temporal Ensembling [Laine & Aila, 2017]

* ldea: Ensemble the predictions at the previous epochs
Temporal ensembling

w(t)
e »|  cross- v
X stochastic network Zj entropy |—» weighted Joss
l - . ’
augmentation with dropout squared — sum
Z; N »| difference
\ > Z;
moving average of previous predictions

» Key difference from II-Model: A maintaining strategy of targets 2z

 Compute the moving average of prediction z; for each i-th sample
J — o/ + (1 — oz)z moving average
<+ Z/(1-ab) bias correction
Algorithmic Intelligence Lab
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Semi-supervised Learning: Consistency Regularization

* JI-Model and Temporal ensembling improve semi- & fully-supervised settings
Table 3: CIFAR-100 results with 10000 labels, averages of 10 runs (4 runs for all labels).

Error rate (%) with # labels

10000 All (50000)

Supervised-only 51.21 4+ 0.33 29.14 4+ 0.25
with augmentation 44.56 + 0.30 26.42 +0.17
II-model 43.43 £+ 0.54 29.06 + 0.21
IT-model with augmentation 39.19 £+ 0.36 26.32 +£0.04
Temporal ensembling with augmentation 38.65 + 0.51 26.30 - 0.15

* Tolerance to incorrect labels
Standard supervised Temporal ensembling

Classification accuracy (%)

1 epoch 360 1 epoch 360
—0% —20% —50% —80% —90% —0% —20% —50% —80% —90%
the portion of randomized labels
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Semi-supervised Learning: Consistency Regularization

 Limitations on Temporal Ensembling
* For each sample, 2 is updated only once per epoch
* In on-line learning, how to maintain the average of predictions?

* Mean Teacher [Tarvainen & Harri Valpola, 2017]

* |dea: averaging model weights instead of predictions

3

label
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* source : [Tarvainen & Harri Valpola, 2017] 11



Semi-supervised Learning: Consistency Regularization

 Limitations on Temporal Ensembling
* For each sample, 2 is updated only once per epoch
* In on-line learning, how to maintain the average of predictions?

* Mean Teacher [Tarvainen & Harri Valpola, 2017]
* Idea: averaging model weights instead of predictions

Eunlabeled — ||f($, (9/) o f(ili‘, 9)"2
1/5 = Og;_l —1— (1 - Oé)et

e Advantages
« More accurate targets 2 can be constructed from a faster feedback
 Scalability to large datasets and on-line learning

Algorithmic Intelligence Lab
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Semi-supervised Learning: Consistency Regularization

* Mean teacher enables stable training

1ot 73257 images and labels 73257 images and 500 labels 573257 images and 500 labels
B 100
Q
g \
= " . L
§ 10t N it
= —— 1 model (test set) wp TRy, .-’l:i::t: L. .
& —— Mean teacher (student, test set) ¥ wﬁ“"i‘vﬁ: = b S
8 102 . ' M b 2 EE I --?f;}'.,a::\*w el
= Y M model (training) Wﬁw“;‘“e ; 'm‘
------ Mean teacher (student, training) g L
103
100%
= [1 model
5 0% —— [ model (EMA)
5 = Mean teacher (student)
S 20% —— Mean teacher (teacher) Unstable
3
2 10%
‘0
8 g
& 5%
2%
Ok 20k 40k 60k 80k 100k Ok 20k 40k 60k 80k 100k Ok 20k 40k 60k 80k 100k

Algorithmic Intelligence Lab * source : [Tarvainen & Harri Valpola, 2017] 13



Semi-supervised Learning: Consistency Regularization

* Virtual Adversarial Training [Miyato et al., 2017]

* Motivation: How to choose better similar samples for consistency regularization?
* Previous methods use randomly augmented samples

* |dea: Select an adversarial sample which can most greatly alter the outputs
1. Find the adversarial sample

Tvadv(Z) := argmax D {p(y]a:, é),p(y|x + 7, é)

;|72 <e

D be a divergence between two distributions

AN

@ be the current parameters, but it is considered as constant

Q) How to solve the optimization problem?

A) Use the second-order Taylor approximationat r =0
1 1
D(r) ~ D(0) 4+ r'V,D|,— + 5rTHr — §TTH7“
\ J T

Y
always zero by definition

Hessian matrix

Algorithmic Intelligence Lab
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Semi-supervised Learning: Consistency Regularization

* Virtual Adversarial Training [Miyato et al., 2017]
* Motivation: How to choose better similar samples for consistency regularization?
* Previous methods use randomly augmented samples

* |dea: Select an adversarial sample which can most greatly alter the outputs

1. Find the adversarial sample
U
Fyadv(Z) ~ argmax r' Hr = e—
rillrlla<e ]

U be the first dominant eigenvector of the Hessian matrix
The power iteration method: d < A converges to U

| Hdl
The finite difference method:

_ ViDlr=¢a = Vi Dlr=0 _ Vi Dl|r=¢d

We can compute this!

§ §

Only one iteration is enough (no improvement when using more iterations)

Hd

Algorithmic Intelligence Lab
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Semi-supervised Learning: Consistency Regularization

* Virtual Adversarial Training [Miyato et al., 2017]
* Motivation: How to choose better similar samples for consistency regularization?
* Previous methods use randomly augmented samples

* |dea: Select an adversarial sample which can most greatly alter the outputs
1. Find the adversarial sample

Tvadv(Z) := arg max D [p(y\x, é),p(y\x + 7, 9)}

rillrllz<e

2. Compute the following gradient for minimizing adversarial divergence

VQD {p(y‘$, é)aP(Q’x + Tvadv, 0)}

0=0

Algorithmic Intelligence Lab
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Semi-supervised Learning: Consistency Regularization

 Virtual Adversarial Training [Miyato et al., 2017]
e Combining with Entorpy Minimization improves performance further

Test error rate(%)

Method SVHN CIFAR-10
N; = 1000 N; = 4000
[T model [24]. 4.82 (£0.17)  12.36 (+0.31)
Temporal ensembling 442 (£0.16)  12.16 (+0.24)
Sajjadi et al. 11.29 (+0.24)
(On Conv-Large used in )
VAT 5.42 (£0.22)  11.36 (40.34)
VAT+EntMin 3.86 (+0.11)  10.55 (40.05)

* Virtual adversarial examples (large € degrades performance)

(1) £=0.1

@e=30  (3e=12.0

. . (a) SVHN
Algorithmic Intelngence Lan

(1)e=2.0

() e=8.0

BRE
,ﬁ.

(3)e=30.0

(b) CIFAR-10

1.00
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* source : [Miyato et al., 2017]
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Semi-supervised Learning: Consistency Regularization

* MixMatch [Berthelot et al., 2019]
* It unifies the dominant paradigms for semi-supervised learning
* Using labeled samples X and unlabeled samples U/, produce ...
* Augmented labeled samples X’
« Augmented unlabeled samples U/’ with its guessed label

X:{(wlvpl)w"} X,:{(xllvpl)a"'}

—1 MixMatch —

U={uy,...} U ={(uy,qy),. ..}

1. For each labeled sample Z, just apply random data augmentation £ = Augment(z)
2. For each unlabeled sample u,

e Construct K different augmented samples

e Guess its label by averaging & sharpening

/ 6—»[ Classify ] ﬂﬂh: \ -

A A
s T > T = I I
6 ““““ > .. Kaugmentations... il 77T > _;i ﬂH - ;DEID DEI ,

Unlabeled\ & — [ Classify ] i / ARG Sharpen

Algorithmic Intelligence Lab * source : [Berthelot et al., 2019] 18



Semi-supervised Learning: Consistency Regularization

* MixMatch [Berthelot et al., 2019]
* It unifies the dominant paradigms for semi-supervised learning
* Using labeled samples X and unlabeled samples U/, produce ...
* Augmented labeled samples X’
« Augmented unlabeled samples U/’ with its guessed label

X:{(wlvpl)w"} X,:{(xllvpl)a"'}

—1 MixMatch —

U={uy,...} U ={(uy,qy),. ..}

/'F = {(Z1,p1),..-}

U={(trk;q1)---}

Mixup(X UlU) — X' U’

Using the labeled or guessed samples, minimize typical cross-entropy loss

Hwhnh e

Algorithmic Intelligence Lab
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Semi-supervised Learning: Consistency Regularization

* MixMatch [Berthelot et al., 2019]

* This simple method achieves state-of-the-art performance on benchmark datasets
CIFAR]-O —8— [1-Model VAT SVHN —8— [1-Model VAT

Mean Teacher —4— Pseudo-Label Mean Teacher —4— Pseudo-Label

. —— MixUp v 30% —— MixUp
© 40% —— MixMatch o —— MixMatch
Ej ===- Supervised LE 20% ===- Supervised
3 20% o
(+]
= = 10%
e ———————————————— fe—  — - E— r =
0% 0%
250 500 1000 2000 4000 250 500 1000 2000 4000
Number of Labeled Datapoints Number of Labeled Datapoints

* Ablation study: all components are important

Ablation 250 labels 4000 labels
MixMatch 11.80 6.00
MixMatch without distribution averaging (K = 1) 17.09 8.06
Averaging MixMatch with K = 3 11.55 6.23
MixMatch with K = 4 12.45 5.88
MixMatch without temperature sharpening (7' = 1) 27.83 10.59 — Sharpening
MixMatch with parameter EMA 11.86 6.47
MixMatch without MixUp 39.11 10.97
Mixup MixMatch with MixUp on labeled only 32.16 9.22
MixMatch with MixUp on unlabeled only 12.35 6.83
MixMatch with MixUp on separate labeled and unlabeled 12.26 6.50
Interpolation Consistency Training [45] 38.60 6.81

Algorithmic Intelligence Lab * source : [Berthelot et al., 2019] 20



Table of Contents
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Unsupervised Learning: Self-supervised Learning

* Self-supervision?
e |tis alabel constructed from only input signals without human-annotation
* Using self-supervision, one can apply supervised learning approaches
* Examples: Predicting relative location of patches! or rotation degree?

Example:

D 4
===
1
1
Vmmt @
sg':?
B
 —"
Y

------------ 90° rotation 270° rotation 180° rotation 0° rotation

 What can we learn from self-supervised learning?

* To predict (well-designed) self-supervision, one might require high-level
understanding of inputs,

» E.g., we should know :_: is the right ear of the cat for predicting locations
* Thus, high-level representations could be learned w/o human-annotation

Algorithmic Intelligence Lab * source : [Doersch et al., 2015], 2[Gidaris et al., 2018] 22



Unsupervised Learning: Self-supervised Learning

* Context Prediction [Doersch et al., 2015]
* From a natural image, extract 3x3 patches

* Patchl: The center patch & Patch2: Choose one of other patches randomly

* Task: Given Patch1-2, predict its label (1-8)

F ~ R e
fc9 (8) H D v
fc8 (4096) T
. -
fc7 (4096) |
i, i,
fc6 (4096) f--------1 fc6 (4096)

pool5 (3x3,256,2)

pool5 (3x3,256,2)

conv5 (3x3,256,1)

conv5 (3x3,256,1)

conv4 (3x3,384,1)

convé4 (3x3,384,1)

conv3 (3x3,384,1)

conv3 (3x3,384,1)

LRN2

LRN2

pool2 (3x3,384,2)

pool2 (3x3,384,2)

conv2 (5x5,384,2)

conv2 (5x5,384,2)

LRN1

LRN1

pooll (3x3,96,2)

pooll (3x3,96,2)

convl (11x11,96,4)

convl (11x11,96,4)

-

/ Patch 1

i,

Patch 2 /

* Each patch’s embedding is computed by one shared embedding function

Algorithmic Intelligence Lab
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Unsupervised Learning: Self-supervised Learning

* Solving Jigsaw Puzzles [Noroozi & Favaro, 2016]
* Extension from [Doersch et al., 2015]
* From (a) a natural image, extract 3x3 patches and (b) shuffle them

* Task: From (b) the shuffled patches, find which permutation is applied

Algorithmic Intelligence Lab * source : [Noroozi & Favaro, 2016] 24



Unsupervised Learning: Self-supervised Learning

* Solving Jigsaw Puzzles [Noroozi & Favaro, 2016]

* Extension from [Doersch et al., 2016]
* From a natural image, extract 3x3 patches and shuffle them

* Task: From the shuffled patches, find which permutation is applied

Permutation Set

index permutation Reorder patches according to

the selected permutation

64 9.4,683251,7

~N o~ (9] B w N —t

(oc]

el

=

) AN ©

11x11x96  5x5x256 3x3x384

3x3x384

3x3x256

4608, 4096/100/ .

fc7 fc8 softmax

* Each patch’s embedding is computed by one shared embedding function
* There are too many permutations (9!=362k) = choose a subset of them
* Empirically, neither simple nor ambiguous tasks achieve better performance

Algorithmic Intelligence Lab
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Unsupervised Learning: Self-supervised Learning

* Solving Jigsaw Puzzles [Noroozi & Favaro, 2016]
* Extension 1: Completing Damaged Jigsaw Puzzles [Kim et al., 2018]

.&NH

0-4-a-V :[eneds v O-v-a-g eiodwn] 'y

(Spatial) (Temporal)

Algorithmic Intelligence Lab * source : [Kim et al., 2018], [Kim et al., 2019] 26



Unsupervised Learning: Self-supervised Learning

* Feature Learning by Inpainting [Pathak et al., 2016]
* Task: Predict the masked region using its surrounding information

 The auto-encoder is trained via reconstruction loss
Lrec(z) =M © (x—F((1-M)o )3
F

Channel-wise
Fully
Connected

Encoder)

Decoder ) L . .
i

L —
———y

[ Decoder Features ]

[ Encoder Features J

Algorithmic Intelligence Lab * source : [Pathak et al., 2016] 27



Unsupervised Learning: Self-supervised Learning

* Feature Learning by Inpainting [Pathak et al., 2016]
* Task: Predict the masked region using its surrounding information

* The auto-encoder is trained via reconstruction loss

Lrec(®) = ||M 6 (z — F((1 - M) ©))|3

* With adversarial loss, reconstruction quality is improved further

Lade = maxE,cy |log D(z) +log(1 — D(F((1 - M) © z))

(a) Input context (b) Human artist (c) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)

Algorithmic Intelligence Lab * source : [Pathak et al., 2016] 28



Unsupervised Learning: Self-supervised Learning

* Feature Learning by Inpainting [Pathak et al., 2016]
* Task: Predict the masked region using its surrounding information

* The auto-encoder is trained via reconstruction loss

Lrec(®) = ||M 6 (z — F((1 - M) ©))|3

e With adversarial loss, reconstruction quality is improved further

Lade = maxE,cy |log D(z) +log(1 — D(F((1 - M) © z))

* How to construct the masks? A segmentation mask in other dataset

Algorithmic Intelligence Lab (a) Central region (b) Random block (c) Random region * source : [Pathak et al., 2016] 29



Unsupervised Learning: Self-supervised Learning

* Colorization [Larsson et al., 2017]
* Task: Predict color information for each pixel from gray images

* Dense prediction is required for colorization = which type of architecture?
* Hypercolumn: for each pixel, concatenate all feature vectors in feature map

VGG-16-Gray Hypercolumn Hue Ground-truth

(fc7) conv7

convb_3

Chroma

Lightness

® Aft Input: Grayscale Image Output: Colorlmage egreSS|0n
* This can handle multimodal color distributions well

Algorithmic Intelligence Lab * source : [Larsson et al., 2016]
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Unsupervised Learning: Self-supervised Learning

* Split-Brain Autoencoders [Zhang et al., 2017]
* Task: Cross-channel auto-encoding

o Spht the input data: X € RHXWXC — concat(Xl c RHXWXCl,XQ c RHXWXCQ)
* Examples: colors & depth, L & ab (in Lab color space)

L Grayscale Channel X4 Predicted Color Channels X, RGB Channels X; Predicted HHA channels X,

Fi|—

F1

\ Predicted

RGB-HHA
image
Input Image X Predicted Image X . —
ab Color Channels X, Predicted Grayscale Channel X; HHA Channels X, Predicted RGB Channels X;
(a) Lab Images (b) RGB-D Images

* Train multiple cross-channel auto-encoders

.7:; argrr}__inﬁl(Fl(Xl),Xg)

F; = arg H}Tin Lo(Fa(X2), X1)

Algorithmic Intelligence Lab * source : [Zhang et al., 2017] 31



Unsupervised Learning: Self-supervised Learning

* Rotation [Gidaris et al.,
* Task: Predict the rotation degree from a rotated image

Image X

* What is the optimal number of classes (rotations)?
* Empirically, using 4 rotations (0°, 90°, 180°, 270°) is best

Algorithmic Intelligence Lab

2018]

—» g(X,y=0)

Rotate 0 degrees

Rotated image: X"

— g(X,y=1)

Rotate 90 degrees

#

Rotated image: X'

—» g(X,y=2)

Rotate 180 degrees

-

Rotated image: X

> g(X,y=3)

Rotate 270 degrees

"

Rotated image: X°

ConvNet
model F( )

\\\
ConvNet T
model F(.)

\
ConvNet
model F(.)

—

ConvNet
model F(.)

Maximize prob.

Predict 0 degrees rotation (y=0)

Maximize prob.

Predict 90 degrees rotation (y=1)

|
Maximize prob.
F(X)

| Predict 180 degrees rotation (y=2)

Maximize prob.

| Predict 270 degrees rotation (y=3) |

* source : [Gidaris et al., 2018] 32



Unsupervised Learning: Self-supervised Learning

* Rotation [Gidaris et al., 2018]
* Task: Predict the rotation degree from a rotated image

* Due to its simplicity, this approach is widely used for other applications
e Semi-supervised Learning [Zhai et al., 2019]
* Training GAN [Chen et al., 2019]

Real / Fake
PD(9|I)

Fake image

1

1

1

1

| Shared
| weights
]

1

1

D T Rotationdegree
- QD(R|I’)

Real image

L 270°

- - —

Algorithmic Intelligence Lab * source : [Zhai et al., 2019], [Chen et al., 2019] 33



Unsupervised Learning: Self-supervised Learning

 How to measure the quality of self-supervision? (quantitative)
1. Self-supervised Learning on a large-scale dataset
2. Fine-tuning for a downstream task
3. Compare with
* Without step 1, pre-training (lower bound)
e With supervised learning with labels in step 1 (upper bound)
e Other unsupervised learning methods

* Popular benchmark 1:
* Pretraining on ImageNet
* Fine-tuning on VOC Pascal tasks (Classification, Detection, Segmentation)

* Popular benchmark 2:
* Pretraining on ImageNet

* Training only classifiers on ImageNet/Places datasets with freezing embedding
functions

Algorithmic Intelligence Lab
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Unsupervised Learning: Self-supervised Learning

 How to measure the quality of self-supervision? (quantitative)
* Popular benchmark 1:
* Pretraining on ImageNet
* Fine-tuning on VOC Pascal tasks (Classification, Detection, Segmentation)

Classification = Detection Segmentation
(%emAP) (%mAP) (%mloU)

Trained layers | fc6-8  all all all
ImageNet labels | 789 799 56.8 48.0
Random 533 434 19.8
Random rescaled Krahenbiihl et al. (2015) | 39.2  56.6 45.6 32.6
Egomotion (Agrawal et al., 2015) 31.0 542 439

Context Encoders (Pathak et al., 2016b) 346  56.5 44.5 29.7
Tracking (Wang & Gupta, 2015) 556  63.1 47.4

Context (Doersch et al., 2015) 55.1 65.3 51.1

Colorization (Zhang et al., 2016a) 61.5 65.6 46.9 35.6
BIGAN (Donahue et al., 2016) 523  60.1 46.9 34.9
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 53.2 37.6
NAT (Bojanowski & Joulin, 2017) 56.7 65.3 494

Split-Brain (Zhang et al., 2016b) 63.0 67.1 46.7 36.0
ColorProxy (Larsson et al., 2017) 65.9 384
Counting (Noroozi et al., 2017) - 67.7 514 36.6
(Ours) RotNet | 70.87 72.97 54.4 39.1

Algorithmic Intelligence Lab * source : [Gidaris et al., 2018] 35



Unsupervised Learning: Self-supervised Learning

 How to measure the quality of self-supervision? (quantitative)

* Popular benchmark 2:
* Pretraining on ImageNet

* Training only classifiers on ImageNet/Places datasets with freezing embedding

functions

* It measures the quality of representations more directly

Method | Convl Conv2 Conv3 Conv4 Conv5
ImageNet labels | 193 363 442 483 505
Random 11.6 17.1 16.9 16.3 14.1
Random rescaled Krihenbiihl et al. (2015) 17.5 23.0 24.5 23.2 20.6
Context (Doersch et al., 2015) 16.2 23.3 30.2 31.7 29.6
Context Encoders (Pathak et al., 2016b) 14.1 20.7 21.0 19.8 15.5
Colorization (Zhang et al., 2016a) 12.5 24.5 304 31.5 30.3
Jigsaw Puzzles (Noroozi & Favaro, 2016) 18.2 28.8 34.0 339 27.1
BIGAN (Donahue et al., 2016) 17.7 24.5 31.0 29.9 28.0
Split-Brain (Zhang et al., 2016b) 17.7 29.3 354 35.2 32.8
Counting (Noroozi et al., 2017) 18.0 30.6 343 32.5 25.7
(Ours) RotNet | 1838 31.7 38.7 38.2 36.5

Algorithmic Intelligence Lab
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Unsupervised Learning: Self-supervised Learning

 How to measure the quality of self-supervision? (qualitative)
* Find the nearest samples from a query on embedding space

Input Random Initialization ImageNet AlexNet

< E N

!I 1. 3'1.. l"f' S e "’1&]@7]
mwaﬁ -ﬁ —

XAMELE
Al AT

Algorithmic Intelligence Lab * source : [Doersch et al., 2015] 37



Unsupervised Learning: Self-supervised Learning

* Limitations on self-supervised learning
1. Domain-specific knowledge is required to design self-supervision
* For different domains (e.g., audio), existing methods might be not working

2. The use of self-supervision is limited
* Patch-based tasks for small-sized datasets, e.g., CIFAR
» Colorization-based tasks for single-channel inputs, e.g., gray images

3. Pre-processing is important to avoid trivial solutions

* In some cameras, one color channel (commonly green) is shrunk toward the
image center relative to the others

* CNN can capture the difference, so predicting location is available without
high-level understanding

* Next: more general approaches, Clustering & Mutual Information-based

38



Unsupervised Learning: Clustering-based

* Noise As Target [Bojanowski & Joulin, 2017]
* ldea: Assume that (oracle) representation vectors lies on the unit sphere uniformly
* Itis similar that each image belongs to a unique class

« f(X) € R™*4 . the predicted representation vectors

« C € R™ 9. the fixed true representation vectors

« P e{0,1}""" : Assignment matrix, i.e., if p;; = 1, then we aim to learn f(z;) = ¢;
Target space

o Ci
O

200 u
@00)_, m
@00 L]
@00 H

f(X) p

Images Features Assignment

Algorithmic Intelligence Lab * source : [Bojanowski & Joulin, 2017] 39



Unsupervised Learning: Clustering-based

* Noise As Target [Bojanowski & Joulin, 2017]
* ldea: Assume that (oracle) representation vectors lies on the unit sphere uniformly

It is similar that each image belongs to an unique class

e If Pis given, then the optimization is written as

min fo(X) ~ PC%

* Which P is optimal?
* Given 0, optimal P can be found in 0(n3) = inefficient for large datasets

« Stochastic update on P with each mini-batch

Maintain £ during training

For each mini-batch, compute f(Xb) and its corressponding targets
Find

Update 0 minimizing || fo(Xs) — Py C||%

For each epoch, the update can be done in O(bg X n/b) = O(nb2)

Algorithmic Intelligence Lab 40



Unsupervised Learning: Clustering-based

* Noise As Target [Bojanowski & Joulin, 2017]

query

3 nearest neighbors

Algorithmic Intelligence Lab * source : [Bojanowski & Joulin, 2017] 41



Unsupervised Learning: Clustering-based

* Instance Discrimination [Wu et al., 2018]
* Idea: Each image belongs to an unique class

CNN backbone

-
>

128D 128D \ E n-1 th image S

R Vi—2
n-| mage
- e [

n 1-th image Vi

Va

low dim L2 norm / H 2-th image V3
|:| ‘ ‘ -

* Non-parameteric classifier

e/
P(ilv) z;bzl eXp(VjTV/T)

e Each class has only one instance = V; can be used directly as a class prototype

Algorithmic Intelligence Lab * source : [Wu et al., 2017] 42



Unsupervised Learning: Clustering-based

Algorithmic Intelligence Lab

* Instance Discrimination [Wu et al., 2018]
* Idea: Each image belongs to an unique class

* Non-parameteric classifier

P(ilv) = exp(v, v/1)

D i exp(v; v/T)

Computing P(i|v) is inefficient because it requires all v; = fg(x;)and VjTV

Solution 1: Memory bank
e Store all Vj in memory and update them for each mini-batch

Solution 2: Noise-Contrastive Estimation [Gutmann & Hyvarinen, 2010]
* It casts multi-class classification into a set of binary classification problems

" : . exp(v; v)
Positive sample:  P(D = 1]i,v) = P(i|v) = ™
exp(v/ v)+> 1o, eXp(V;;V)
N

m negative samples
Objective: Lncg = —Ep,[log P(D = 1|i,v)] — mEp_[log P(D = 0]i, v')]

\ data distribution \ noise distribution (uniform) 43



Unsupervised Learning: Clustering-based

e Instance Discrimination [Wu et al,,

e Ablation Study

* Non-parametric sofmatx is better than the parametric version

2018]

* NCE with many negative samples appraoches to the no-approximation version

Training / Testing |Linear SVM |Nearest Neighbor
Param Softmax 60.3 63.0
Non-Param Softmax 75.4 80.8
NCEm =1 44.3 42.5
NCEm =10 60.2 63.4
NCE m = 512 64.3 78.4
NCE m = 4096 70.2 80.4

* Large embedding size increases the performance, but it is saturated at 256

embedding size

32 64

128

256

top-1 accuracy

34.0 | 38.8

41.0

40.1

* source : [Wu et al., 2017] 44



Unsupervised Learning: Clustering-based

* DeepCluster [Caron et al., 2018]
* ldea: Clustering on embedding space provides pseudo-labels

Classification

®
0‘.,\f»\?“o I
v ]

1 Pseudo-labels

Input Convnet

* Simple method: Alternate between

Clustering

o0
‘"% e®
.

/ \

® &
[ ] o~
.~

1. Clustering the features to produce pseudo-labels
2. Updating parameters by predicting these pseudo-labels

 What are trivial solutions? and how to avoide them?

* Empty cluster <& feature quantization (it reassigns empty clusters)
* Imbalanced sizes of clusters < over-sampling

Algorithmic Intelligence Lab * source : [Caron et al., 2018] 45



Unsupervised Learning: Clustering-based

Algorithmic Intelligence Lab

* DeepCluster [Caron et al., 2018]
* |Is the clustering quality improved during training?
a. Clustering overlap between DeepCluster and ImageNet
b. Clustering overlap between the current and previous epochs
c. Influence of the number of clusters

$0.45 0.72
Z F
g o~ 0.70 P 66 A
a0l . - PN
= / =0.68 ~ o 64 .
£0.35 o / < /
2 ( £0.66 / 62
S Z /
5030 0.64 G0l
20.25 0.62 580 - - .
0 100 200 300 0 100 200 300 10 10 10 10°
epochs epochs k
(a) Clustering quality (b) Cluster reassignment (c) Influence of k

* Which images activate the target filters in the last convolutional layer?

Filter 0 Filter 33 Filter 145 Filter 194

R Y

* source : [Caron et al., 2018] 46




Unsupervised Learning: Maximizing mutual information

* Deep InfoMax [Hjelm et al., 2019]
* Idea: Maximizing mutual information between inputs and features

« Y = E,;(X) is the feature vector of input X where E is an embedding function
* How to optimize mutual information? [Donsker & Varadhan, 1983]

I(X;Y) = Drr(IM) 2 PV (X;Y) = Eg[Ty (2, y)] - log Enle™ *¥)

* Optimize the embedding function £, and discriminator 73, simultaneously

W, = argmax L, (X; By (X))

W,

Algorithmic Intelligence Lab * source : [Hjelm et al., 2019] 47



Unsupervised Learning: Maximizing mutual information

* Deep InfoMax [Hjelm et al., 2019]
* Idea: Maximizing mutual information between inputs and features

« Y = E,;(X) is the feature vector of input X where E is an embedding function

M x M feature map (see Figure 1) Score M x M features M x M Scores

AN “Real”

N “Real”
\ Local feature (+)

M \\ > |:| 3 MM / o

: N " Feature vector amEs
NN \ / p LA » \\‘\_,‘
M M
~ N I T \ / '/”d M
~ Discriminator —
“Fake”
ﬁg ;_____——r I
: “Fake!! [ T - >

Local feature (-) [ M

S
M x M features drawn from another image M x M features drawn from another image

 Instead of (left) maximizing Ml between global features, (right) doing Ml between
global and local features achieves better performance
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Unsupervised Learning: Maximizing mutual information

* Contrastive Predictive Coding [Oord et al., 2018]
* ldea: Predicting future information with discarding low-level information

 Tt:dataattimet
e 2t = Genc(T¢): high-level latent representation of
e ¢t = Gar(T1,%2,..., %) : context latent representation summarizing all 2<t¢

Predictions

/%“/h“/%q/%\/%“/%“/%ﬁ/%\

Ti1 Tt42 Tt43 Tita

W\W il l’ffw— wﬁ W\M«-* Wﬂm P W’WW-- v

Algorithmic Intelligence Lab * source : [Oord et al., 2018] 49



Unsupervised Learning: Maximizing mutual information

* Contrastive Predictive Coding [Oord et al., 2018]
* ldea: Predicting future information with discarding low-level information

* Tt¢:dataattimet
* 2t = Jenc(Z¢): high-level latent representation of Z;
e ¢t = Gar(T1,%2,..., %) : context latent representation summarizing all 2<t

gar - output

Genc - Output

F 4 I
| id
Y]

64 px P
Zi+ol |- T PR
Zt+3| |« 17 -~ Predictions
Rt+4| Jeaf T

50% overlap

b
()1
(=)
=
P
— T

v input image
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Unsupervised Learning: Maximizing mutual information

* Contrastive Predictive Coding [Oord et al., 2018]
* ldea: Predicting future information with discarding low-level information

* How to maximize mutual information between ¢+ and ¢¢?
« Randomly choose one positive sample Zt+k and N-1 negative samples {x}
* Minimize the following NCE-based loss:

fk($t+k,ct)
DI ct>]

,CN = —]EX [10

where fi(z,¢) = exp(z' Wic)

o I(x¢1p,ct) >10g(N) — Ly and it bocomes tighter as N becomes larger

Algorithmic Intelligence Lab
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Unsupervised Learning: Maximizing mutual information

Algorithmic Intelligence Lab

* Contrastive Predictive Coding [Oord et al., 2018]
* This framework is working on Audio, Vision, NLP and RL

Image patches that activate a certain neuron t-SNE of audio representations for 10 speakers

- rooms_walarmaze . axplore_goal_locations_small - seekavold_arena_01 5 laseniag three_opponents_small = rooms_keys_doors_puzzle
20
&0 no 5 »
I
S0 =1 2 5
EY
E 0 E o0 E 2 E 15 E 20
= = 3 = =
=] =] = 2 =]
2w 2 150 2w 2 2
15
i} 100 1 s}
10
0 = . 0 5
0 0 ] -5 0
] 250M  S00M  750M 18 0 250M  S00M  750M 1B 0 250M  S00M  750M 1B ] 250M  500M  750M 18 ] 250M  500M  7S0M 18
Frame Frame Frame Frame Frame

Contrastive loss improves agents on RL environments (red)

* source : [Oord et al., 2018]
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