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• DNNs achieve remarkable success on various applications
• They usually require massive amounts of manually labeled data

• The annotation cost is high because

• It is time-consuming: e.g., annotating bounding boxes 

• It requires expert knowledge: e.g., medical diagnosis and retrosynthesis

• But, collecting unlabeled samples is extremely easy compared to annotation 

• Question: How to utilize the unlabeled samples for learning?

Motivation
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• Supervised learning

• and      are input and label spaces, respectively 

• All training samples have ground-truth labels

• Semi-supervised learning

• Only few samples have ground-truth labels, i.e., 

• Q) What is the difference from weakly-supervised learning?

• Unsupervised learning (or representation learning)

• No labeled samples, i.e., no target task is defined

• The goal is learning good representations

• Q) How to measure the quality of representations?

Terminology
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• EntMin [Grandvalet & Bengio, 2005]
• Idea: Make uncertain predictions of unlabeled samples be more certain

• Note that high-capcity models might overfit to a low-entropy solution is available 

• EntMin cannot produce competitive results, but it can be combined with others

• Pseudo-labeling [Lee, 2013]
• Idea: Assign a pseudo-label if confidence of prediction is greater than a threshold

• Similar to EntMin, but it encourages only confident samples to be more confident

• Pseudo-labeling is closely related to learning on noisy datasets [Tanaka et al., 2018]

• Extensive experimental analysis on semi-supervised methods [Oliver et al., 2018]

Semi-supervised Learning: Entropy Minimization 
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• Idea: Models should produce similar outputs for similar samples 

• Q) How to know the sampler are similar? How to generate similar samples?

• A) Use random data augmentation & stochastic networks

• For all samples, add a regularization term enforcing the consistent property
• Temporal Ensembling [Laine & Aila, 2017]
• Mean Teacher [Tarvainen & Harri Valpola, 2017]
• Virtual Adversarial Training [Miyato et al., 2017]

Semi-supervised Learning: Consistency Regularization
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• 𝜫-Model [Laine & Aila, 2017]

1. For each input    , construct two stochastic outputs    and  

2. If its label     exists, then add the standard supervised loss, e.g., cross-entropy

3. Add the squared difference loss

• is a time-dependent weighting function

• In the beginning (           ),      has no meaningful information, thus the ramp-up 
of the weight should be slow enough

Semi-supervised Learning: Consistency Regularization
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• In Π-Model 

• The target     is generated randomly  ⇒ It can be noisy

• For each iteration,     should be computed  ⇒ 2x longer training

• Temporal  Ensembling [Laine & Aila, 2017]
• Idea: Ensemble the predictions at the previous epochs

• Key difference from Π-Model: A maintaining strategy of targets

• Compute the moving average of prediction      for each i-th sample

Semi-supervised Learning: Consistency Regularization

9* source : [Laine & Aila, 2017]
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• Π-Model and Temporal ensembling improve semi- & fully-supervised settings

• Tolerance to incorrect labels

Semi-supervised Learning: Consistency Regularization
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• Limitations on Temporal Ensembling
• For each sample,     is updated only once per epoch

• In on-line learning, how to maintain the average of predictions?

• Mean Teacher [Tarvainen & Harri Valpola, 2017]
• Idea: averaging model weights instead of predictions

Semi-supervised Learning: Consistency Regularization

11* source : [Tarvainen & Harri Valpola, 2017]
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• Limitations on Temporal Ensembling
• For each sample,     is updated only once per epoch

• In on-line learning, how to maintain the average of predictions?

• Mean Teacher [Tarvainen & Harri Valpola, 2017]
• Idea: averaging model weights instead of predictions

• Advantages

• More accurate targets     can be constructed from a faster feedback

• Scalability to large datasets and on-line learning

Semi-supervised Learning: Consistency Regularization
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• Mean teacher enables stable training

Semi-supervised Learning: Consistency Regularization

13

Unstable

Unstable

Stable

* source : [Tarvainen & Harri Valpola, 2017]



Algorithmic Intelligence Lab

• Virtual Adversarial Training [Miyato et al., 2017]
• Motivation: How to choose better similar samples for consistency regularization?

• Previous methods use randomly augmented samples

• Idea: Select an adversarial sample which can most greatly alter the outputs

1. Find the adversarial sample

• be a divergence between two distributions

• be the current parameters, but it is considered as constant

• Q) How to solve the optimization problem?

• A) Use the second-order Taylor approximation at 

Semi-supervised Learning: Consistency Regularization
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• Virtual Adversarial Training [Miyato et al., 2017]
• Motivation: How to choose better similar samples for consistency regularization?

• Previous methods use randomly augmented samples

• Idea: Select an adversarial sample which can most greatly alter the outputs

1. Find the adversarial sample

• be the first dominant eigenvector of the Hessian matrix

• The power iteration method:                      converges to 

• The finite difference method:

• Only one iteration is enough (no improvement when using more iterations)

Semi-supervised Learning: Consistency Regularization
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• Virtual Adversarial Training [Miyato et al., 2017]
• Motivation: How to choose better similar samples for consistency regularization?

• Previous methods use randomly augmented samples

• Idea: Select an adversarial sample which can most greatly alter the outputs

1. Find the adversarial sample

2. Compute the following gradient for minimizing adversarial divergence

Semi-supervised Learning: Consistency Regularization
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• Virtual Adversarial Training [Miyato et al., 2017]
• Combining with Entorpy Minimization improves performance further

• Virtual adversarial examples (large 𝜖 degrades performance)

Semi-supervised Learning: Consistency Regularization

17* source : [Miyato et al., 2017]
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• MixMatch [Berthelot et al., 2019]
• It unifies the dominant paradigms for semi-supervised learning

• Using labeled samples      and unlabeled samples     , produce …

• Augmented labeled samples

• Augmented unlabeled samples        with its guessed label 

1. For each labeled sample    , just apply random data augmentation

2. For each unlabeled sample    ,

• Construct K different augmented samples

• Guess its label by averaging & sharpening

Semi-supervised Learning: Consistency Regularization
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• MixMatch [Berthelot et al., 2019]
• It unifies the dominant paradigms for semi-supervised learning

• Using labeled samples      and unlabeled samples     , produce …

• Augmented labeled samples

• Augmented unlabeled samples        with its guessed label 

1.

2.

3.

4. Using the labeled or guessed samples, minimize typical cross-entropy loss

Semi-supervised Learning: Consistency Regularization
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• MixMatch [Berthelot et al., 2019]
• This simple method achieves state-of-the-art performance on benchmark datasets

• Ablation study: all components are important

Semi-supervised Learning: Consistency Regularization
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• Self-supervision?
• It is a label constructed from only input signals without human-annotation

• Using self-supervision, one can apply supervised learning approaches

• Examples: Predicting relative location of patches1 or rotation degree2

• What can we learn from self-supervised learning?
• To predict (well-designed) self-supervision, one might require high-level 

understanding of inputs,

• E.g., we should know       is the right ear of the cat for predicting locations

• Thus, high-level representations could be learned w/o human-annotation

Unsupervised Learning: Self-supervised Learning

22* source : 1[Doersch et al., 2015], 2[Gidaris et al., 2018]
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• Context Prediction [Doersch et al., 2015]
• From a natural image, extract 3x3 patches

• Patch1: The center patch & Patch2: Choose one of other patches randomly

• Task: Given Patch1-2, predict its label (1-8)

• Each patch’s embedding is computed by one shared embedding function

Unsupervised Learning: Self-supervised Learning
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• Solving Jigsaw Puzzles [Noroozi & Favaro, 2016]
• Extension from [Doersch et al., 2015]

• From (a) a natural image, extract 3x3 patches and (b) shuffle them

• Task: From (b) the shuffled patches, find which permutation is applied

Unsupervised Learning: Self-supervised Learning

24* source : [Noroozi & Favaro, 2016]
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• Solving Jigsaw Puzzles [Noroozi & Favaro, 2016]
• Extension from [Doersch et al., 2016]

• From a natural image, extract 3x3 patches and shuffle them

• Task: From the shuffled patches, find which permutation is applied

• Each patch’s embedding is computed by one shared embedding function

• There are too many permutations (9!=362k) ⇒ choose a subset of them

• Empirically, neither simple nor ambiguous tasks achieve better performance

Unsupervised Learning: Self-supervised Learning

25* source : [Noroozi & Favaro, 2016]
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• Solving Jigsaw Puzzles [Noroozi & Favaro, 2016]
• Extension 1: Completing Damaged Jigsaw Puzzles [Kim et al., 2018]

• Extension 2: Space-Time Cubic Puzzles [Kim et al., 2019] for video representation

Unsupervised Learning: Self-supervised Learning

26* source : [Kim et al., 2018], [Kim et al., 2019]
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• Feature Learning by Inpainting [Pathak et al., 2016]
• Task: Predict the masked region using its surrounding information

• The auto-encoder is trained via reconstruction loss

Unsupervised Learning: Self-supervised Learning

27* source : [Pathak et al., 2016]
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• Feature Learning by Inpainting [Pathak et al., 2016]
• Task: Predict the masked region using its surrounding information

• The auto-encoder is trained via reconstruction loss

• With adversarial loss, reconstruction quality is improved further

Unsupervised Learning: Self-supervised Learning
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• Feature Learning by Inpainting [Pathak et al., 2016]
• Task: Predict the masked region using its surrounding information

• The auto-encoder is trained via reconstruction loss

• With adversarial loss, reconstruction quality is improved further

• How to construct the masks?

Unsupervised Learning: Self-supervised Learning
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• Colorization [Larsson et al., 2017]
• Task: Predict color information for each pixel from gray images

• Dense prediction is required for colorization  ⇒ which type of architecture?
• Hypercolumn: for each pixel, concatenate all feature vectors in feature map

• After quantization, use classification loss for predicting colors instead of regression
• This can handle multimodal color distributions well

Unsupervised Learning: Self-supervised Learning

30* source : [Larsson et al., 2016]
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• Split-Brain Autoencoders [Zhang et al., 2017]
• Task: Cross-channel auto-encoding

• Split the input data:

• Examples: colors & depth,    L & ab (in Lab color space)

• Train multiple cross-channel auto-encoders

Unsupervised Learning: Self-supervised Learning

31* source : [Zhang et al., 2017]
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• Rotation [Gidaris et al., 2018]
• Task: Predict the rotation degree from a rotated image

• What is the optimal number of classes (rotations)?

• Empirically, using 4 rotations (0°, 90°, 180°, 270°) is best

Unsupervised Learning: Self-supervised Learning

32* source : [Gidaris et al., 2018]
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• Rotation [Gidaris et al., 2018]
• Task: Predict the rotation degree from a rotated image

• Due to its simplicity, this approach is widely used for other applications

• Semi-supervised Learning [Zhai et al., 2019]

• Training GAN [Chen et al., 2019]

Unsupervised Learning: Self-supervised Learning

33* source : [Zhai et al., 2019], [Chen et al., 2019]
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• How to measure the quality of self-supervision? (quantitative)
1. Self-supervised Learning on a large-scale dataset

2. Fine-tuning for a downstream task

3. Compare with 

• Without step 1, pre-training (lower bound)

• With supervised learning with labels in step 1 (upper bound)

• Other unsupervised learning methods

• Popular benchmark 1:

• Pretraining on ImageNet

• Fine-tuning on VOC Pascal tasks (Classification, Detection, Segmentation)

• Popular benchmark 2:

• Pretraining on ImageNet

• Training only classifiers on ImageNet/Places datasets with freezing embedding 
functions

Unsupervised Learning: Self-supervised Learning
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• How to measure the quality of self-supervision? (quantitative)
• Popular benchmark 1:

• Pretraining on ImageNet

• Fine-tuning on VOC Pascal tasks (Classification, Detection, Segmentation)

Unsupervised Learning: Self-supervised Learning
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• How to measure the quality of self-supervision? (quantitative)
• Popular benchmark 2:

• Pretraining on ImageNet

• Training only classifiers on ImageNet/Places datasets with freezing embedding 
functions

• It measures the quality of representations more directly

Unsupervised Learning: Self-supervised Learning

36* source : [Gidaris et al., 2018]
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• How to measure the quality of self-supervision? (qualitative)
• Find the nearest samples from a query on embedding space 

Unsupervised Learning: Self-supervised Learning

37* source : [Doersch et al., 2015]
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• Limitations on self-supervised learning
1. Domain-specific knowledge is required to design self-supervision

• For different domains (e.g., audio), existing methods might be not working

2. The use of self-supervision is limited

• Patch-based tasks for small-sized datasets, e.g., CIFAR

• Colorization-based tasks for single-channel inputs, e.g., gray images

3. Pre-processing is important to avoid trivial solutions

• In some cameras, one color channel (commonly green) is shrunk toward the 
image center relative to the others

• CNN can capture the difference, so predicting location is available without 
high-level understanding

• Next: more general approaches, Clustering & Mutual Information-based  

Unsupervised Learning: Self-supervised Learning
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• Noise As Target [Bojanowski & Joulin, 2017]
• Idea: Assume that (oracle) representation vectors lies on the unit sphere uniformly

• It is similar that each image belongs to a unique class

• : the predicted representation vectors

• : the fixed true representation vectors

• : Assignment matrix, i.e.,  if              , then we aim to learn 

Unsupervised Learning: Clustering-based 

39* source : [Bojanowski & Joulin, 2017]
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• Noise As Target [Bojanowski & Joulin, 2017]
• Idea: Assume that (oracle) representation vectors lies on the unit sphere uniformly

• It is similar that each image belongs to an unique class

• If     is given, then the optimization is written as

• Which     is optimal?

• Given    , optimal     can be found in 𝑂 𝑛3 ⇒ inefficient for large datasets

• Stochastic update on      with each mini-batch

• Maintain      during training

• For each mini-batch, compute             and its corressponding targets

• Find

• Update     minimizing 

• For each epoch, the update can be done in 

Unsupervised Learning: Clustering-based 
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• Noise As Target [Bojanowski & Joulin, 2017]

Unsupervised Learning: Clustering-based 
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• Instance Discrimination [Wu et al., 2018]
• Idea: Each image belongs to an unique class

• Non-parameteric classifier

• Each class has only one instance ⇒ can be used directly as a class prototype

Unsupervised Learning: Clustering-based 

42* source : [Wu et al., 2017]
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• Instance Discrimination [Wu et al., 2018]
• Idea: Each image belongs to an unique class

• Non-parameteric classifier

• Computing               is inefficient because it requires all                        and

• Solution 1: Memory bank

• Store all       in memory and update them for each mini-batch

• Solution 2: Noise-Contrastive Estimation [Gutmann & Hyvarinen, 2010]

• It casts multi-class classification into a set of binary classification problems 

Unsupervised Learning: Clustering-based 
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• Instance Discrimination [Wu et al., 2018]
• Ablation Study

• Non-parametric sofmatx is better than the parametric version

• NCE with many negative samples appraoches to the no-approximation version

• Large embedding size increases the performance, but it is saturated at 256

Unsupervised Learning: Clustering-based 

44* source : [Wu et al., 2017]
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• DeepCluster [Caron et al., 2018]
• Idea: Clustering on embedding space provides pseudo-labels

• Simple method: Alternate between

1. Clustering the features to produce pseudo-labels

2. Updating parameters by predicting these pseudo-labels

• What are trivial solutions? and how to avoide them?

• Empty cluster  ⇐ feature quantization (it reassigns empty clusters)

• Imbalanced sizes of clusters  ⇐ over-sampling

Unsupervised Learning: Clustering-based 

45* source : [Caron et al., 2018]
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• DeepCluster [Caron et al., 2018]
• Is the clustering quality improved during training?

a. Clustering overlap between DeepCluster and ImageNet

b. Clustering overlap between the current and previous epochs

c. Influence of the number of clusters

• Which images activate the target filters in the last convolutional layer?

Unsupervised Learning: Clustering-based 

46* source : [Caron et al., 2018]
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• Deep InfoMax [Hjelm et al., 2019]
• Idea: Maximizing mutual information between inputs and features

• is the feature vector of input     where       is an embedding function

• How to optimize mutual information? [Donsker & Varadhan, 1983]

• Optimize the embedding function       and discriminator       simultaneously

Unsupervised Learning: Maximizing mutual information

47* source : [Hjelm et al., 2019]
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• Deep InfoMax [Hjelm et al., 2019]
• Idea: Maximizing mutual information between inputs and features

• is the feature vector of input     where       is an embedding function

• Instead of (left) maximizing MI between global features, (right) doing MI between 
global and local features achieves better performance

Unsupervised Learning: Maximizing mutual information

48* source : [Hjelm et al., 2019]
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• Contrastive Predictive Coding [Oord et al., 2018]
• Idea: Predicting future information with discarding low-level information

• : data at time t

• : high-level latent representation of 

• : context latent representation summarizing all 

Unsupervised Learning: Maximizing mutual information

49* source : [Oord et al., 2018]
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• Contrastive Predictive Coding [Oord et al., 2018]
• Idea: Predicting future information with discarding low-level information

• : data at time t

• : high-level latent representation of 

• : context latent representation summarizing all 

Unsupervised Learning: Maximizing mutual information
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• Contrastive Predictive Coding [Oord et al., 2018]
• Idea: Predicting future information with discarding low-level information

• How to maximize mutual information between          and    ?

• Randomly choose one positive sample           and N-1 negative samples 

• Minimize the following NCE-based loss:

where 

• and it bocomes tighter as N becomes larger

Unsupervised Learning: Maximizing mutual information
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• Contrastive Predictive Coding [Oord et al., 2018]
• This framework is working on Audio, Vision, NLP and RL

Unsupervised Learning: Maximizing mutual information
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Image patches that activate a certain neuron t-SNE of audio representations for 10 speakers

Contrastive loss improves agents on RL environments (red)

* source : [Oord et al., 2018]
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