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Recall: Course Information

* Assignment: 2 paper summary + 1 presentation

e Each student should choose two deep learning papers published at NIPS, ICML or
ICLR, CVPR, ICCV, ECCV in last 3 years.

* You can use the authors’ codes, but you will receive better grades if (a) the
authors do not release their codes or (b) you modify the authors’ code for better
performance.

* | will help for deciding which papers to study (e.g., send emails to me or ask after
the class)

* Try reproducing the authors’ results (reported in their papers) and applying to
other datasets. Or, modify the authors’ code or algorithm for better performance.

* Send the report on the first paper by Oct. 25t and the report on the second
paper by Dec. 20t to TA. You also have to send your source-code files with the
reports.

* You have to present one of two papers at the end of this class.
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Announcement

* You have to present one of two papers at the end of this class.

* If you wish to present the first paper, you have to do it at Nov. 21" or 26t during
the class.

* If you wish to present the second paper, you have to do it at Dec. 10t or 12t
during the class.

* Email your choice to TAs in this week.
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Announcement

Yousung Jung (CBE/EEWS, KAIST) & KAIST CBE/EEWS &

° N o) C|ass on th iS Th u rsd ay’ NOV. 7th o ng (Head, Graduate School of Al, KAIST) Graduate School of Al

* Instead, please attend hemlcal
“International Symposium on Science
Meets AI

International Symposium

Chemical Science meets Al”, E9, KAIST

Date- Program

November 7,

2019 (THU.) 09:50-10:00 COPening Remarks
09:30~16:50 (Prof. Song Chong, Head, Graduate School of Al)

09:30~09:50 Registration

; Prof. Alexandre Tkatchenko | University of Luxembourg
Venue: 10:00~10:35 Towards Universal Machine-Learning/Physics Model
USH of Molecular Properties in Chemical Space

ClE23(
Q| E2|Z(2F), Prof. Johannes Hachmann | The State University of New York
KNST, 10:35~11:10 Machine Learning for Molecular Property Predictions
sStE231HE9) and Design

Prof. Michele Ceriotti | EPFL
Machine Learning for Atomic and Molecular Simulations

11:45-13:20 Lunch

Prof. Jaesik Choi | Graduate School of Al, KAIST
Explainable Artificial Intelligence: Recent Development

Prof. Jinwoo Shin | Graduate School of Al, KAIST
Reliable Deep Learning: Novelty Detection

Prof. Eunho Yang | Graduate School of Al, KAIST
Uncertainty modeling via (Bayesian) Deep Learning

15:05~15:30 Coffee Break

Contact: 11:10~11:45
042-350-8425,

13:20~13:55

13:55~14:30

14:30~15:05

Prof. Zachary Ulissi | Carnegie Mellon University
15:30~16:05 Challenges in Data Science Methods for Catalyst
Design and Discovery

Prof. Yousung Jung | CBE, KAIST

16:05-16:40 Solid-State Materials Design using Machine Learning
Closing Remarks

16:40-16:30 (b of. Yousung Jung, CBE, KAIST)
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What is Reinforcement Learning (RL)?

* Reinforcement learning is a sequential decision making problem

* Agent o

* Receives an observation of the current state /AT Y N

. observation /7 1A action
* Selects an action — [\ | Agent |/ )/
. _ 0, 7 = A,
* Receives a reward from the environment N\
_Q g
—

* Environment reward | R,

* Receives an action from the agent
* Gives a reward to the agent
* Changes the environment state

Goal: Find an optimal strategy (i.e. policy)

maximizing total future rewards

Algorithmic Intelligence Lab * source : UCL Course on RL (http://wwwoO.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html) 7



Example: Atari Game

* Reinforcement learning is a sequential decision making problem

e Agent (Player)
 Receives RGB screen

* Controls joystick

* Receives scores

* Environment (Machine)
e Receives the joystick input
* Gives scores to the player

* Changes the environment state
(e.g., memory, screen, ...)

Goal: Find an optimal strategy

maximizing game scores

Algorithmic Intelligence Lab



What is Reinforcement Learning (RL)?

* Reinforcement learning vs. Other machine learning tasks
* No supervisor to follow, only a scalar reward signal
* Feedback can be delayed makes difficult to learn
* Agent’s behavior affects the subsequent data

 If defining a reward function is difficult, one can learn from demonstrations

How to define reward?

Imitation Learning: copying expert’s behavior
Inverse RL: inferring rewards from expert’s behavior

* Unsupervised RL: reinforcement learning without rewards

But, this lecture only covers the case when the reward oracle/function is available

Algorithmic Intelligence Lab * source : UC Berkeley Course on DeepRL (http://rail.eecs.berkeley.edu/deepricourse/) 9



http://rail.eecs.berkeley.edu/deeprlcourse/

Markov Decision Process (MDP)

* RL can be formulated by Markov Decision Process (S, A, P, R,~)

e S:asetof states
e A:asetof actions

e ‘P :aconditional state transition probability with Markov property, i.e.,

P(St, at, 3t+1) = PT(St+1\St, Clt) = PI’(St+1\St, Aty St—1,0¢t—1, - -
R : a reward function, i.e., 7+ = R(s¢, a4)
v € [0,1] : a discount factor

* The agent chooses an action according to m(als)

/SB@M%

Environment

)

A 4

Agent

S~ rls)

* Goal: find optimal policy 7(a|s) maximizing total future reward E [> > ~'~'r,]

Algorithmic Intelligence Lab
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A Taxonomy of RL Algorithms

Policy Optimization

Policy Gradient <——
A2C / A3C <—

PPO —

TRPO i

RL Algorithms
{ |
Model-Free RL Model-Based RL
{ | { I}
Q-Learning Learn the Model Given the Model

DQN —'{ World Models | H AlphaZero
—>  DDPG <« P — B

cs1 —— 1A
> TD3 S

QR-DQN —»{ MBMF |

> SAC I

HER 4’{ MBVE |

* Model-Free vs. Model-Based RL
 Whether the agent has access to (or learns) a model of the environment

* Value-based vs. policy-based algorithms
* Value-based methods approximate the expected total rewards from state

* Policy-based methods in this family represent a policy explicitly

 Some methods, e.g., Actor Critic, use both value and policy functions

Algorithmic Intelligence Lab
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https://spinningup.openai.com/
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Value Functions

* Value functions of a state s under a policy T

* State-value function: Ur(s) = al, o [ Doy 7 Lrfs1 = s]
« Action-value function: ¢=(s,a) =Ea, .~ [D ooy v 1|51 = s,a1 =
U (8)

taken ‘\.’\.l“l
probability 7 (a| 1,
. ——ax(s.0)
(11 (12 (I,;

« Advantage function: A, (s,a) = ¢(s,a) — v (s)
* Ur indicates which state is good / qr, A indicate which action is good under

Optimal value functions: v.(s) = max, vx(s), ¢«($,a) = max, ¢-(s, a)

* The optimal policy can be derived from them: 7.(s) = argmax, g.(s, a)

Algorithmic Intelligence Lab * source : Richard Sutton and Andrew Barto, Reinforcement Learning: An Introduction, 2"® edition, 201813



Q-Learning with Function Approximation

Q-learning algorithm [Watkins, 1989] repeats 1-3 until convergence

1. Choose an action a from the current state s using the e-greedy policy
« c-greedy chooses a random action with probability £, otherwise a = arg max, q(s, a)

2. Observe a reward 7, a new state s’

3. Update ¢(s,a) < q(s,a) + « {r + Y max q(s',a") — q(s, a)} Incremental

update

* Intuition: Q-learning updates the g-value incrementally
to satisfy the Bellman equation for the optimal action-value function:

G(8,a) = Eg opr(|s,a) [7“ + 7 max q.(s’, a’)}
a

* For high-dimensional state and/or action spaces, parameterize q(s,a) ~ q(s, a;0)

* The update rule for 6 :

0+ 0+a [ff +ymaxq(s’,a’;0) — q(s, a; 9)} Voq(s,a;0)

called by Temporal Difference (TD) errors

Algorithmic Intelligence Lab 14



Deep Q-Network (DQN)

* Q-learning is known to be unstable or even to diverge when using nonlinear
function approximators such as neural networks

* Because even small updates to ¢ may significantly change ...

Solution: DQN (Mnih et al., 2015)

2/
," «: 1. Experience replay buffer:
I \ .
Thew Told Vot - use previous samples
\
‘ Told,/ v " _smoothing data distribution
U4 Sa . .
) - remove sequential correlation
1. Data distribution
+ high-correlated sequential data
2. Slowly updated target network 09—
2. Correlations between q(s, a; 6) - -use  + ymaxy q(s’,a’;07)

and © + ymax, q(s’,a’; 0) - reducing correlations from target

Algorithmic Intelligence Lab 15



Deep Q-Network (DQN)

* Q-learning is known to be unstable or even to diverge when using nonlinear
function approximators such as neural networks

* Because even small updates to ¢ may significantly change ...

A Solution: DQN [Mnih et al., 2015]
)

il

Training Deep Q-Network [Minh et al., 2015]  ffer:

2
1 L= E(s,a,r,s’)NU(D) [(7“ + VmE}XQ(8/7 CL/; (9_) o Q(Sa a, 9)) ] o

tribution
replay buffer

target network

correlation
1 Add every observation (s, a, 7, s’) to replay buffer D
- Update deep Q-network 6 < 6 — aVyL
- Update target network 6~ < 6 at every C steps
. _ irk 60—
2. Correlations between q(s, a; 6) - -use  + ymaxy q(s’,a’;07)

and © + ymax, q(s’,a’; 0) - reducing correlations from target

Algorithmic Intelligence Lab 16



Deep Q-Network for Atari Games

* [Minh et al., 2015] use same architecture/hyper-parameters for all Atari games

= Robustness of DQN

* Training curve

2,200
2,000
1,800}
1,600
1,400}
1,200
1,000}
800
600 |
400 |
200

Avg score per episode

0
0 20 40 60 80 100 120 140 160 180 200
Training epochs

-h
o

Avg action value (Q)
o = N W s O~ e

0 20 40 60 80 100120 140 160 180 200

Training epochs

e DQN Breakout video
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Video Pinball
Boxing

Breakout

Star Gunner
Robotank
Atlantis

Crazy Climber
Gopher

Demon Attack
Name This Game

Road Runner
Kangaroo
James Bond
Tennis

Pong

Space Invaders
Beam Rider

Kung-Fu Master
Freeway
Time Pilot

Fishing Derby
Up and Down

H.E.R.O.

Asterix

Battle Zone

Wizard of Wor
Chopper Command
Centipede

Bank Heist

Venture

Seaquest

Double Dunk

Bowling

Ms. Pac-Man
Asteroids

Frostbite

Gravitar

Private Eye
Montezuma's Revenge

Minh et al., Human-level Control through Deep Reinforcement Learning, Nature 2015 17
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https://youtu.be/TmPfTpjtdgg

Rainbow DQN

* What is the state-of-the-art DQN???

* Examine six extensions to the DQN algorithm and integrate them into a single
integrated agent [Hessel et al., 2018]

DQN

— DDQN

— Prioritized DDQN \

— Dueling DDQN 1[

200% A3C l
Distributional DQN ) A

— Noisy DQN 2k

== Rainbow If

100%

Median human-normalized score

| |
44 100 200
Millions of frames

Figure. Median human-normalized performance across 57 Atari games
* In this lecture, DDQN, dueling and prioritized replay will be covered

Algorithmic Intelligence Lab * source : Hessel et al., Rainbow: Combining Improvements in Deep Reinforcement Learning, AAAI 2018 18



Advanced Deep Q-learning (1) Double Q-learning

* Q-learning is known to overestimate action values
0+ 0+a [7“ +ymaxq(s’,a’;0) — q(s, a; 9)} Voq(s,a;0)

because the max step max q(-, -) is used to update the same function q(-, -)
* In practice, overestimation errors will differ for actions = poor policy

Double Q-learning [van Hasselt, 2010] separates selection and evaluation:

01 + 01 + « [7“ +1iq(s",arg max q(s', a’; 01 ); 02)| — q(s, a; 01)} Vo, q(s,a;61)

* Double DQN [van Hasselt et al., 2015] uses §; = 6 and 6, = 6~ (target network)

Algorithmic Intelligence Lab 19
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Atlantis | ———— ]

Demon Attack |——————
Breakout F——————— ]
Assault e ———

Advanced Deep Q-learnir

Double Dunk
Robotank

* Value estimations of

Star Gunner | ——— ]
Road Runner F————— |
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Kangaroo Emm—m______]
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sk Phoenixoes L]
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0 50 100 150 200 0O

N

Aaxxon

QN estimate

ouble DQN estimate

ouble DQN true value
DQN true value

100 150 200
steps (in millions)

Ay

* Double DQN learns A
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#+xSolaris«*
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Advanced Deep Q-learning (2) Prioritized Replay

« DQN samples transitions (s, a, 7, s') uniformly from experience replay buffer

* Problem: Unimportant data (e.g., small TD error) might be used with same

probability as important ones = sample inefficiency

* Solution [Schaul et al., 2016]: Prioritize data and sample them based on the

priority

Q1) How to prioritize? 0 0+ a|r+ymaxq(s',a’;0) — q(s,a;0)

= Use TD error

Voq(s,a;0)

measure how much update is required

Q2) How to sample?

* Greedy: sample-transitions-of-maxitromm TDerTors some transitions are never selected

* Stochastically sample with probability P(i) = p*/ > . p%

* Proportional: pi = [0;] + € ‘
sampling probability of it data

e Rank-based: P:i = 1/rank(i)

Algorithmic Intelligence Lab
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Advanced Deep Q-learning (2) Prioritized Replay

* Prioritized replay P(D) introduces bias
* Because original Q-learning with/without replay buffer uses uniform distribution:

2 2
IEf‘(s,a,r,s’)NU(D) [5 ] 7£ E(s,a,r,s’)wP(D) [5 ]
where § = r + ymax, q(s',a";07) — q(s,a;0)
- . . : 1 1)
* To correct this bias, use importance-sampling weights w; = (W P(i))
* |n practice, increase (3 linearly from 5y to 1

DQN with prioritization [Schaul et al., 2016]
1. Update parameters using VoL where £ = ]E(S,amsz),\,p(m [w52]

2. Update priorities for sampled transitions pi < |9;

* Prioritized replay buffer can be combined with Double Q-learning

Algorithmic Intelligence Lab 22



Advanced Deep Q-learning (2) Prioritized Replay

* Learning speed compared to uniform sampling

8000 -

70001~

6000 41-

B000 s b R e R

reward

1111 1) (DD SRR
2000 sl

10004 4

717 aT )0 L. SYPOUNURPL SN ORRRRL: I 0

reward

45000 -

400004~

35000 e

30000 A

reward

150004 i
100004

50004« ssse0s4

SBO00 e smssmrssbusenesins Sy

20000 s an ety

Astgrix

reward
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training step (1e6)

40000 -

Battlezone
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171711 T T P PSR S

25000+t A Al
20000 -p A
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4000 A

20004
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training step (1e6)

human uniform rank-based proportional

* source : Schaul et al., Prioritized Experience Replay, ICLR 2016 23




Advanced Deep Q-learning (2) Prioritized Replay

Comparison scores with Double DQN on Atari games

200%

EEE rank-based
Em proportional

100%

normalized SCOre,gant — normalized scoreqg pie pon

Improve scores over almost games lil l||l‘

Road Runner
Phoenix

Assault

Space Invaders
Double Dunk
James Bond 007
Atlantis

Gopher

1r--l_:->m?w N c o5 oo c 5 2 0w c g ou > c o 2 S g oy 55 e ox
Lo 2855 2«8 a2 8 2 2 £ £ 5 S 25 ¢ 2 5 E S8 ES 3B 3F
SESE R AN EEE] EERELEN FREEE ENEE NN FREEEEEEESEEE
g3 &0 > 3 & 3 N E L 2 s o = £ 2N 29z : g F e ® = o <
=S T E L L £ g o < WO % ca S O p= > T 5 ; L v o U E
= O o w @ << 2 3 7 & ¢ € 0 () £ UV 5 ®
3% 3 3 w S o se%E @B 8 o (S Fl
359 g HEEN - g g 57
e 2 ® = 5 5 o e S g 5 °
§ 2 % 3 g = H 2 =
= - £ 8 £ T = ]
o c ¢ @ g M
@
2 0zs =
o (SIS g S
100% 5 R
100%
.
H DOQN Double DQN (tuned)
m
5 baseline rank-based | baseline rank-based proportional

Video Pinball
Demon Attack

Median
Mean

> baseline
> human
# games

48%
122%
15

49

106%
355%
41
25
49

111%
418%

30

57

113% 128%
454% 551%
38 42
33 33
57 57
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Advanced Deep Q-learning (3) Dueling Architecture

VALUE ADVANTAGE

Intuition from an example: driving car

* |n many states, it is unnecessary to estimate
the value of each action choice

» State-value function pays attention to the road

ADVANTAGE

* |n some states, left/right actions should be taken
to avoid collision

* Advantage function pays attention to the front of car
when action selection is crucial

* Recall advantage function: A (s,a) = ¢ (s,a) — v (s)

Idea [Wang et al., 2016] Decouple action-value g to state-value v and advantage A

Q(Sv a, 97 ¢va ¢A> — ’U(S; 07 ¢v) T A(87 a, 67 ¢A)

L

Algorithmic Intelligence Lab * source: Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016 25
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Advanced Deep Q-learning (3) Dueling Architecture

* Ing=v+ A, vcan be arbitrary given an action-value ¢

Q) How to force v to be the (unique, correct) state-value?

A) Make the maximum of the advantage be zero

q(5,0;0, 00, 04) = v(s;0,0y) + (A(s,a;0,04) — max, A(s,a’;0,04))
° Then; Q(S,a*;9,¢v7¢A) — U(S;97¢’U)

this can be derived from 7(s) = arg max, q(s, a)

* In practice, use average instead of maximum for learning stability:

a(s,a;0, ¢y, 04) = v(s:0, d0) + (A(s,a;0, $a) — % > o Als,a’;0,6.))

(s:0, py)
* Dueling architecture / o
[Wang et al., 2016] @;Eﬁ?lfis | (5,00, by, da)

-/ A(s,a;0,04)

Algorithmic Intelligence Lab * source: Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016 26




Advanced Deep Q-learning (3) Dueling Architecture

* This dueling architecture also improves DQN performance

vs Double DQN vs Double DQN + Prioritized replay

Atlantis 296.67% Asterix 1097.02%
Tennis 180.00% Space Invaders 457.93%
Space Invaders I 164.11% Phoenix 281.56%
Up and Down I 07.90% Gopher 223.03%
Phoenix I ©4.33% Wizard Of Wor
Enduro I 86.35% Up and Down I, 113.47%
Chopper Command I, C2.20% Yars' Revenge I 113.16%
eaquest I 50.51% Star Gunner I 05.69%
Yars' Reven%e . 73.63% Berzerk I 53.91%
Frostbite I 70.02% Frostbite I 70.29%
Time Pilot I, 69.73% Video Pinball I 69.92%
Asterix I C3.17% Chopper Command . 52.87%
Road Runner I 57.57% Assault I 51.07%
Bank Heist I 57.19% Bank Heist - 13.11%
Krull I 55 .85% River Raid I 38.56%
Ms. Pac-Man I 53.76% Defender . 35.33%
Star Gunner I 48.92% Name This Game . 33.09%
Surround I 4 4.24% Zaxxon . 32.74%
Double Dunk I 42.75% Centipede . 32.48%
River Raid I 50.79% Beam Rider W 29.94%
Venture I 33.60% Amidar . 24.98%
. Amidar I 31.40% Kung-Fu Master B 22.36%
Fishing Derby B 28.82% gTutankharn B 21.38%
Q*Bert . 27 68% Crazy Climber W 16.16%
Zaxxon . 27.45% Q*Bert W 15.56%
Ice Hockey M 26.45% Battle Zone W 11.46%
Crazy Climber . 24.68% Atlantis W11.16%
entipede E 21.68% Enduro W 10.20%
Defender B 21.18% Krull 07.95%
Name This Game El 16.28% Road Runner 17.89%
Battle Zone B 15.65% Pitfall! 15.33%
Kung-Fu Master Bl 15.56% Boxing 13.46%
Kangaroo Il 14.39% Demon Attack | 1.44%
Alien . 10.34% Fishing Derby 11.37%
Berzerk M 9.86% Pong 10.73%
Boxing M 8.52% Private Eye 0.01%
Gopher W 6.02% Montezuma's Revenge 0.00%
~ Gravitar W 5.54% Tennis 0.00%
Wizard Of Wor N 5.24% Venture .519
Demon Attack N 4.78% Bowling
Asteroids N 4.51% Freewa
H.E.R.O. 1231% Breakou
Skiin | 1.29% Asteroids
Pitfall! 0.45% Alien
Robotank 0.32% H.E.R.O
Pon 0.24% Gravitar
Montezuma's Revenge 0.00% Ice Hockey
Private Eye -0.04% Time Pilot
Bowling | -1.89% Solaris
Tutankham 1-3.38% Surround
James Bond § -3.42% Ms. Pac-Man
Solaris W -7.37% Robotank
Beam Rider W 9.71% Seaquest i
Assault W -14.93% Skiing I -77.99%
Breakout I -17.56% Double Dunk S -83.56%
Video Pinball I 68.31% James Bond | -84.70%

Freeway I -100.00%

Algorithmic Intelligence Lab
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* source: Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016 27
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Policy Gradient Methods

* Value-based methods (e.g., Q-learning) optimize policies indirectly:

Find q(s,a;0) =~ q«(s,a) = w(s;0)=argmax,q(s,a;0)

* Policy gradient methods (e.g., REINFORCE, Actor-Critic) optimize policies
directly via maximizing total rewardE >~ 7 1r]:

©.@)
arg m@ax Eatww(-lst;H) E q/t_l’rt where 0 is the policy parameters
t=1

* Approximated value functions might be used with these methods to resolve
optimization issues such as high variance

* Policy gradient theorem: If J(#) is the above objective, then
VQJ(Q) — EW@ [V@ 10g7T(CL|S; H)Qﬂ'e (Sv CL)}

« Simply, higher action-value ¢, (s, a) increases action probability 7(al|s; @)
* Action evaluation & selection should be performed by same policy, i.e., on-policy

29



Policy Gradient Methods: REINFORCE

REINFORCE [Willams, 1992] uses Monte-Carlo estimates of the policy gradient

1. Sample an episode {si,a1,71,...,S7,ar,r7} ~ o
2. Compute Af « Z;F:l Vo logm(as|ss;0) (Zit vs_trs)
3. Update 0 < 0 + a6 Unbiased estimator of G, (St, at)

* Issue: REINFORCE has high variance when estimating gradients

* Solution: Use any baseline function b(s) not depending on actions

E,, [Vlogm(als;0)b Z,LL ZW als; 6) Vwac‘tlsei) b(s)
:Zus SVZWCL|S;9
= Zu(s)b(s)Vl =

Algorithmic Intelligence Lab
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Policy Gradient Methods: REINFORCE

REINFORCE [Willams, 1992] uses Monte-Carlo estimates of the policy gradient

1. Sample an episode {s1,a1,71,...,8T,ar,r7} ~ Ty

2. Compute Af +— Z;F:l Vo logm(as|ss;0) (Zfzt vs_trs)

3. Update 0 < 6 + a8

Unbiased estimator of 4=y <5t7 at)

* Issue: REINFORCE has high variance when estimating gradients

* Solution: Use any baseline function b(s) not depending on actions

» Eqr, [Viogm(als; 0)b(s)] = 0
e VoJ(0) =E,, [Vlogn(als;0)

e Which 6(s) should be used?

(9m (5, 0) — b(s))

This can reduce the variance

* One natural choice is b(s) = v, (5) since Eqor(.|s:0) [qrp(5,a) — Vry(5)] =0

* |In practice, use b(s) = v(s;w) ~ v, (s) with parameters w and learn the function
using TD errors such as Q-learning [Sutton et al., 2000]
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Trust Region Policy Optimization (TRPO)

Issues in “vanilla” policy gradient methods such as REINFORCE

* Hard to choose step-size @
* small changes in parameter space can cause poor policy

* Only one gradient step per each sample
* Sample inefficiency

Solution: formulate an optimization problem on generated data from old policy
* That allows small changes in policy space

* That guarantees improvement of policy performance

Trust Region Policy Optimization [Schulman et al., 2015]: for each iteration, solve

|
o (CL|S) l Ar(s,a) = qr(s,a) — vy (s) is also
EWQOld 014 (a‘s) Aﬂ-eold (S’ a) approximated by neural networks

subject to Er, [DKL(To,4 (+[5)|ma(-]5))] <0

maximize
0

Algorithmic Intelligence Lab 32



Trust Region Policy Optimization (TRPO)

Derive TRPO
e« Let N(m) = Ex[vr(s1)] = Ex[D o, 7" '] be the performance of a policy

* This performance can be written as
oo
t=1

= 0(Tota) + Er | Y 771 — vwold(sl)]
| t=1

n(m) = Ex

— 77(770101) + Ex Z f)/t_l(rt + YVroia (St-l-l) — Urnoia (St))
| t=1

Groia (5, ) ]

— 77(7T01d) + EW Z/yt_lAT"old (St7 at)]

| =1

=1)(To1a) + ) px(5) Y m(als)Ar,u(s,a)

where pr(s) = Zfil Wt_l Pr(s; = s|m)
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Trust Region Policy Optimization (TRPO)

Derive TRPO
e« Let N(m) = Ex[vr(s1)] = Ex[D o, 7" '] be the performance of a policy

This performance can be written as

Z ryt_lAﬁold (8t7 a’t)]

t=1

— 77(7T01d) + Zpﬂ Zﬂ- CL‘ 7T ld )

|

Define L 1d( 77(7T01d) + prold Z?T CL\ ™ 1d )

n(m) = n(moa) + Ex

* Ly, (+)isalocal approximation of 7)(-) at 6 = 6,14:

o

Eﬂeold (7T901d> — 77(7‘-901d)

ve‘cﬂ'e d(7T0)|9:901d o V@U o }9 Oo1a

ol

e For fixed 014, we can omit 7(7a,,4): ﬁﬂeold (m9) = Em)old {%Aﬂ-eold (s,a)
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Trust Region Policy Optimization (TRPO)

Theorem [Schulman et al., 2015]
° 77(7T9) > £7Te ( ) CDmaX( old77T9)

« C'is some constant and DR (7o, To) = maxs Dkr,(ma_ . (-|$)||me(+]5))

* Policy iteration guarantees non-decreasing performance:
Onew < argmaxg L, (mg) — CDRE* (79,4, T0)

* |n practice,

* Theoretical guaranteed C updates
very small steps in policy

e Use a constraint instead of the penalty
* Use average instead of maximum

maximize L mo(als)
0 T0o1a (CL‘S)

subject to B, [DKr(To., (+|5)[[me(+[5))] <

(7-(-9 ) — ]Eﬂ-eold

Ary (s,a)

7I-eold
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Trust Region Policy Optimization (TRPO)

* How to solve this optimization? Conjugate gradient algorithm

* (1) Compute search direction: making a linear approximation to the objective and a
guadratic approximation to the constraint

* (2) Perform a line search in that direction

* Training curves (TRPO: vine & single path)

Cartpole

Swimmer

e TRPO agent video
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https://youtu.be/KJ15iGGJFvQ

Proximal Policy Optimization Algorithms

Issues in TRPO

* To solve the optimization problem, quadratic approximation for the constraint
is required

* In some cases, such approach is not possible

Adaptive KL Penalty Coefficient [Schulman et al., 2017]

argmaxy Er, | 7495 A(s, 0)| = BEx,, [KL (70,1, (15)]7o(|5))]

T4 (als

» KL divergence is small/large = decrease/increase 3, respectively.
* For each iteration, do SGD on the above objective multiple times
* This needs only first-order derivatives

 Still, this has limitations:

* Hard to use multi-output architectures (e.g., policy & value functions)
due to the KL divergence term

* Empirically poor performance when using deep CNNs / RNNs
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Proximal Policy Optimization Algorithms

Clipped Surrogate Objective [Schulman et al., 2017]
LOYP (1) = o, [min(r(0) A, clip(r(6), 1 — ¢, 1 + €)4)]

o514

o (als)

where 7(0) = o (als)

* The objective suppresses changes in policy without KL divergence
* This figure simply shows how £CMP works

A<0
L('L.(‘() 4";1 > (] <
. r no updates L—el .
: starting point 7 :
= oy |
0 1 1+e€ LELH

* This objective can be used with multi-output architectures
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Proximal Policy Optimization Algorithms

* On MuloCo Environments, PPO (clip) outperforms other policy gradient

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1 InvertedPendulum-v1
1000
2000 2500 8000
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e PPO agent video
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https://blog.openai.com/openai-baselines-ppo/

Summary

e Reinforcement learning is another field of machine learning
* RL agents learn the best strategy using only scalar rewards, no supervision
* There are many various algorithms: Q-learning, actor-critic, policy optimization

e Other interesting topics

Sim-to-Real Transfer [OpenAl et al., 2019]
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