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Recall: Course Information

• Assignment: 2 paper summary + 1 presentation
• Each student should choose two deep learning papers published at NIPS, ICML or 

ICLR, CVPR, ICCV, ECCV in last 3 years.

• You can use the authors’ codes, but you will receive better grades if (a) the 
authors do not release their codes or (b) you modify the authors’ code for better 
performance.

• I will help for deciding which papers to study (e.g., send emails to me or ask after 
the class)

• Try reproducing the authors’ results (reported in their papers) and applying to 
other datasets. Or, modify the authors’ code or algorithm for better performance.

• Send the report on the first paper by Oct. 25th and the report on the second 
paper by Dec. 20th to TA. You also have to send your source-code files with the 
reports.

• You have to present one of two papers at the end of this class.
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Announcement

• You have to present one of two papers at the end of this class.
• If you wish to present the first paper, you have to do it at Nov. 21th or 26th during 

the class.

• If you wish to present the second paper, you have to do it at Dec. 10th or 12th

during the class.

• Email your choice to TAs in this week.
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Announcement

• No class on this Thursday, Nov. 7th

• Instead, please attend 
“International Symposium on 
Chemical Science meets AI”, E9, KAIST
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1. What is Reinforcement Learning?

2. Value-based Methods
• Q-learning

• Deep Q-network

• Rainbow DQN

3. Policy Gradient Methods
• REINFORCE

• Trust region policy optimization

• Proximal policy optimization algorithms
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1. What is Reinforcement Learning?
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• Reinforcement learning is a sequential decision making problem

• Agent
• Receives an observation of the current state

• Selects an action

• Receives a reward from the environment

• Environment 
• Receives an action from the agent

• Gives a reward to the agent

• Changes the environment state

Goal: Find an optimal strategy (i.e. policy) 

maximizing total future rewards

What is Reinforcement Learning (RL)?

7

Agent

Environment

* source : UCL Course on RL (http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)
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• Reinforcement learning is a sequential decision making problem

• Agent (Player)
• Receives RGB screen

• Controls joystick

• Receives scores

• Environment (Machine)
• Receives the joystick input

• Gives scores to the player

• Changes the environment state
(e.g., memory, screen, ...)

Goal: Find an optimal strategy 

maximizing game scores

Example: Atari Game

8

Environment

Agent
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• Reinforcement learning  vs. Other machine learning tasks
• No supervisor to follow, only a scalar reward signal

• Feedback can be delayed

• Agent’s behavior affects the subsequent data

• If defining a reward function is difficult, one can learn from demonstrations

• Imitation Learning: copying expert’s behavior

• Inverse RL: inferring rewards from expert’s behavior

• Unsupervised RL: reinforcement learning without rewards

• But, this lecture only covers the case when the reward oracle/function is available

What is Reinforcement Learning (RL)?

9* source : UC Berkeley Course on DeepRL (http://rail.eecs.berkeley.edu/deeprlcourse/)

How to define reward?

makes difficult to learn

http://rail.eecs.berkeley.edu/deeprlcourse/
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• RL can be formulated by Markov Decision Process
• : a set of states

• : a set of actions

• : a conditional state transition probability with Markov property, i.e.,

• : a reward function, i.e., 

• : a discount factor

• The agent chooses an action according to

• Goal: find optimal policy             maximizing total future reward

Markov Decision Process (MDP)

10

AgentEnvironment
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• Model-Free vs. Model-Based RL
• Whether the agent has access to (or learns) a model of the environment

• Value-based vs. policy-based algorithms
• Value-based methods approximate the expected total rewards from state

• Policy-based methods in this family represent a policy explicitly 

• Some methods, e.g., Actor Critic, use both value and policy functions

A Taxonomy of RL Algorithms

11* source: OpenAI Spinningup (https://spinningup.openai.com)

https://spinningup.openai.com/
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2. Value-based Methods
• Q-learning

• Deep Q-network

• Rainbow DQN
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• Value functions of a state    under a policy    :
• State-value function:

• Action-value function:

• Advantage function: 

• indicates which state is good /              indicate which action is good under 

• Optimal value functions: 

• The optimal policy can be derived from them:

Value Functions

13* source : Richard Sutton and Andrew Barto, Reinforcement Learning: An Introduction, 2nd edition, 2018
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Q-learning algorithm [Watkins, 1989] repeats 1-3 until convergence

1. Choose an action    from the current state    using the   -greedy policy
• -greedy chooses a random action with probability   , otherwise

2. Observe a reward   , a new state

3. Update

• Intuition: Q-learning updates the q-value incrementally
to satisfy the Bellman equation for the optimal action-value function:

• For high-dimensional state and/or action spaces, parameterize

• The update rule for    : 

Q-Learning with Function Approximation

14

Incremental
update

called by Temporal Difference (TD) errors
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• Q-learning is known to be unstable or even to diverge when using nonlinear 
function approximators such as neural networks

• Because even small updates to     may significantly change …

Deep Q-Network (DQN)

15

1. Data distribution
+ high-correlated sequential data

2. Correlations between
and

Solution: DQN (Mnih et al., 2015)

1. Experience replay buffer:
- use previous samples
- smoothing data distribution
- remove sequential correlation

2. Slowly updated target network
- use
- reducing correlations from target
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• Q-learning is known to be unstable or even to diverge when using nonlinear 
function approximators such as neural networks

• Because even small updates to     may significantly change …

Deep Q-Network (DQN)

16

1. Data distribution
+ high-correlated sequential data

2. Correlations between
and

Solution: DQN [Mnih et al., 2015]

1. Experience replay buffer:
- use previous samples
- smoothing data distribution
- remove sequential correlation

2. Slowly updated target network
- use
- reducing correlations from target

- Add every observation                     to replay buffer
- Update deep Q-network
- Update target network                 at every C steps

Training Deep Q-Network [Minh et al., 2015]

replay buffer target network



Algorithmic Intelligence Lab

• [Minh et al., 2015] use same architecture/hyper-parameters for all Atari games
⇒ Robustness of DQN

• Training curve 

• DQN Breakout video

Deep Q-Network for Atari Games

17

At human-level or above
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* source : Minh et al., Human-level Control through Deep Reinforcement Learning, Nature 2015

https://youtu.be/TmPfTpjtdgg
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• What is the state-of-the-art DQN???

• Examine six extensions to the DQN algorithm and integrate them into a single 
integrated agent [Hessel et al., 2018]

• In this lecture, DDQN, dueling and prioritized replay will be covered

Rainbow DQN

18

Figure. Median human-normalized performance across 57 Atari games

* source : Hessel et al., Rainbow: Combining Improvements in Deep Reinforcement Learning, AAAI 2018
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• Q-learning is known to overestimate action values

because the max step                     is used to update the same function

• In practice, overestimation errors will differ for actions ⟹ poor policy

Double Q-learning [van Hasselt, 2010] separates selection and evaluation:

• Double DQN [van Hasselt et al., 2015] uses              and                 (target network) 

Advanced Deep Q-learning (1) Double Q-learning

19
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• Value estimations of DQN and Double DQN on Atari Games

• Double DQN learns Atari Games stably

Advanced Deep Q-learning (1) Double Q-learning

20* source : van Hasselt et al., Deep Reinforcement Learning with Double Q-learning, AAAI 2016

Improve scores over almost games
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• DQN samples transitions                    uniformly from experience replay buffer

• Problem: Unimportant data (e.g., small TD error) might be used with same 
probability as important ones ⟹ sample inefficiency

• Solution [Schaul et al., 2016]: Prioritize data and sample them based on the 
priority

Q1) How to prioritize?

⇒ Use TD error 

Q2) How to sample?

• Greedy: sample transitions of maximum TD errors

• Stochastically sample with probability 
• Proportional:

• Rank-based:

Advanced Deep Q-learning (2) Prioritized Replay

21

measure how much update is required

some transitions are never selected

sampling probability of ith data



Algorithmic Intelligence Lab

• Prioritized replay           introduces bias
• Because original Q-learning with/without replay buffer uses uniform distribution:

• To correct this bias, use importance-sampling weights
• In practice, increase     linearly from       to 1 

DQN with prioritization [Schaul et al., 2016]

1. Update parameters using            where

2. Update priorities for sampled transitions

• Prioritized replay buffer can be combined with Double Q-learning            

Advanced Deep Q-learning (2) Prioritized Replay

22

where
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• Learning speed compared to uniform sampling

Advanced Deep Q-learning (2) Prioritized Replay

23

human uniform rank-based proportional

* source : Schaul et al., Prioritized Experience Replay, ICLR 2016
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• Comparison scores with Double DQN on Atari games

Advanced Deep Q-learning (2) Prioritized Replay

24

Improve scores over almost games

* source : Schaul et al., Prioritized Experience Replay, ICLR 2016



Algorithmic Intelligence Lab

Intuition from an example: driving car

• In many states, it is unnecessary to estimate
the value of each action choice
• State-value function pays attention to the road

• In some states, left/right actions should be taken
to avoid collision
• Advantage function pays attention to the front of car

when action selection is crucial

• Recall advantage function:

Idea [Wang et al., 2016] Decouple action-value     to state-value    and advantage 

Advanced Deep Q-learning (3) Dueling Architecture

25

learn which state is valuable without effect of action

* source: Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016
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• In                    ,     can be arbitrary given an action-value

Q) How to force     to be the (unique, correct) state-value?

A) Make the maximum of the advantage be zero

• Then, 

• In practice, use average instead of maximum for learning stability:

• Dueling architecture
[Wang et al., 2016]

Advanced Deep Q-learning (3) Dueling Architecture

26

this can be derived from 

* source: Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016
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• This dueling architecture also improves DQN performance

Advanced Deep Q-learning (3) Dueling Architecture

27

vs Double DQN vs Double DQN + Prioritized replay

* source: Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016
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3. Policy Gradient Methods
• REINFORCE

• Trust region policy optimization

• Proximal policy optimization algorithms

Table of Contents
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• Value-based methods (e.g., Q-learning) optimize policies indirectly:

• Policy gradient methods (e.g., REINFORCE, Actor-Critic) optimize policies 
directly via maximizing total reward                            :

• Approximated value functions might be used with these methods to resolve 
optimization issues such as high variance

• Policy gradient theorem: If            is the above objective, then

• Simply, higher action-value                  increases action probability 

• Action evaluation & selection should be performed by same policy, i.e., on-policy

Policy Gradient Methods

29

where     is the policy parameters

Find ⇒
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REINFORCE [Willams, 1992] uses Monte-Carlo estimates of the policy gradient

1. Sample an episode

2. Compute

3. Update

• Issue: REINFORCE has high variance when estimating gradients

• Solution: Use any baseline function          not depending on actions 

Policy Gradient Methods: REINFORCE

30

Unbiased estimator of 
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REINFORCE [Willams, 1992] uses Monte-Carlo estimates of the policy gradient

1. Sample an episode

2. Compute

3. Update

• Issue: REINFORCE has high variance when estimating gradients

• Solution: Use any baseline function          not depending on actions 
•

•

• Which          should be used?
• One natural choice is                            since

• In practice, use                                              with parameters      and learn the function 
using TD errors such as Q-learning [Sutton et al., 2000]

Policy Gradient Methods: REINFORCE

31

Unbiased estimator of 

This can reduce the variance
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Issues in ”vanilla” policy gradient methods such as REINFORCE

• Hard to choose step-size    
• small changes in parameter space can cause poor policy

• Only one gradient step per each sample
• Sample inefficiency

Solution: formulate an optimization problem on generated data from old policy

• That allows small changes in policy space

• That guarantees improvement of policy performance

Trust Region Policy Optimization [Schulman et al., 2015]: for each iteration, solve

Trust Region Policy Optimization (TRPO)

32

is also
approximated by neural networks
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Derive TRPO

• Let                                                                           be the performance of a policy

• This performance can be written as

Trust Region Policy Optimization (TRPO)

33

where
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Derive TRPO

• Let                                                                           be the performance of a policy

• This performance can be written as

• Define 

• is a local approximation of         at                 :

• For fixed         , we can omit                :  

Trust Region Policy Optimization (TRPO)

34
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Theorem [Schulman et al., 2015]

•

• is some constant and

• Policy iteration guarantees non-decreasing performance:

• In practice,
• Theoretical guaranteed      updates

very small steps in policy

• Use a constraint instead of the penalty

• Use average instead of maximum

Trust Region Policy Optimization (TRPO)

35* source : Deep RL Bootcamp Lecture (https://youtu.be/xvRrgxcpaHY)
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• How to solve this optimization? Conjugate gradient algorithm
• (1) Compute search direction: making a linear approximation to the objective and a 

quadratic approximation to the constraint

• (2) Perform a line search in that direction

• Training curves (TRPO: vine & single path)

Trust Region Policy Optimization (TRPO)

36* source : Schulman et al., Trust Region Policy Optimization, ICML 2015

• TRPO agent video

https://youtu.be/KJ15iGGJFvQ
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Issues in TRPO

• To solve the optimization problem, quadratic approximation for the constraint 
is required

• In some cases, such approach is not possible

Adaptive KL Penalty Coefficient [Schulman et al., 2017]

• KL divergence is small/large  ⇒ decrease/increase    , respectively.

• For each iteration, do SGD on the above objective multiple times

• This needs only first-order derivatives

• Still, this has limitations:
• Hard to use multi-output architectures (e.g., policy & value functions)

due to the KL divergence term

• Empirically poor performance when using deep CNNs / RNNs

Proximal Policy Optimization Algorithms

37
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Clipped Surrogate Objective [Schulman et al., 2017]

where

• The objective suppresses changes in policy without KL divergence

• This figure simply shows how              works

• This objective can be used with multi-output architectures

Proximal Policy Optimization Algorithms

38

starting point

no updates

* source : Schulman et al., Proximal Policy Optimization Algorithms, 2017
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• On MuJoCo Environments, PPO (clip) outperforms other policy gradient 
methods

• PPO agent video

Proximal Policy Optimization Algorithms

39* source : Schulman et al., Proximal Policy Optimization Algorithms, 2017

https://blog.openai.com/openai-baselines-ppo/


Algorithmic Intelligence Lab

• Reinforcement learning is another field of machine learning
• RL agents learn the best strategy using only scalar rewards, no supervision

• There are many various algorithms: Q-learning, actor-critic, policy optimization

• Other interesting topics

Summary

40

Hierarchical RL [Nachum et al., 2018]
Unsupervised RL [Eysenbach et al., 2018]

Sim-to-Real Transfer [OpenAI et al., 2019]
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