Algorithmic Intelligence Lab

Deep Reinforcement Learning

Al602: Recent Advances in Deep Learning

Lecture 12
Slide made by

Hankook Lee and Kimin Lee
KAIST EE

Algorithmic Intelligence Lab

Recall: Course Information

* Assignment: 2 paper summary + 1 presentation

e Each student should choose two deep learning papers published at NIPS, ICML or
ICLR, CVPR, ICCV, ECCV in last 3 years.

* You can use the authors’ codes, but you will receive better grades if (a) the
authors do not release their codes or (b) you modify the authors’ code for better
performance.

* | will help for deciding which papers to study (e.g., send emails to me or ask after
the class)

* Try reproducing the authors’ results (reported in their papers) and applying to
other datasets. Or, modify the authors’ code or algorithm for better performance.

* Send the report on the first paper by Oct. 25t and the report on the second
paper by Dec. 20t to TA. You also have to send your source-code files with the
reports.

* You have to present one of two papers at the end of this class.

Algorithmic Intelligence Lab

Announcement

* You have to present one of two papers at the end of this class.

* If you wish to present the first paper, you have to do it at Nov. 21" or 26t during
the class.

* If you wish to present the second paper, you have to do it at Dec. 10t or 12t
during the class.

* Email your choice to TAs in this week.

Algorithmic Intelligence Lab

Announcement

Yousung Jung (CBE/EEWS, KAIST) & KAIST CBE/EEWS &

° N o) C|ass on th iS Th u rsd ay’ NOV. 7th o ng (Head, Graduate School of Al, KAIST) Graduate School of Al

* Instead, please attend hemlcal
“International Symposium on Science
Meets AI

International Symposium

Chemical Science meets Al”, E9, KAIST

Date- Program

November 7,

2019 (THU.) 09:50-10:00 COPening Remarks
09:30~16:50 (Prof. Song Chong, Head, Graduate School of Al)

09:30~09:50 Registration

; Prof. Alexandre Tkatchenko | University of Luxembourg
Venue: 10:00~10:35 Towards Universal Machine-Learning/Physics Model
USH of Molecular Properties in Chemical Space

ClE23(
Q| E2|Z(2F), Prof. Johannes Hachmann | The State University of New York
KNST, 10:35~11:10 Machine Learning for Molecular Property Predictions
sStE231HE9) and Design

Prof. Michele Ceriotti | EPFL
Machine Learning for Atomic and Molecular Simulations

11:45-13:20 Lunch

Prof. Jaesik Choi | Graduate School of Al, KAIST
Explainable Artificial Intelligence: Recent Development

Prof. Jinwoo Shin | Graduate School of Al, KAIST
Reliable Deep Learning: Novelty Detection

Prof. Eunho Yang | Graduate School of Al, KAIST
Uncertainty modeling via (Bayesian) Deep Learning

15:05~15:30 Coffee Break

Contact: 11:10~11:45
042-350-8425,

13:20~13:55

13:55~14:30

14:30~15:05

Prof. Zachary Ulissi | Carnegie Mellon University
15:30~16:05 Challenges in Data Science Methods for Catalyst
Design and Discovery

Prof. Yousung Jung | CBE, KAIST

16:05-16:40 Solid-State Materials Design using Machine Learning
Closing Remarks

16:40-16:30 (b of. Yousung Jung, CBE, KAIST)

Algorithmic Intelligence Lab

Table of Contents

1. What is Reinforcement Learning?

2. Value-based Methods
* Q-learning
* Deep Q-network
* Rainbow DQN

3. Policy Gradient Methods
* REINFORCE
* Trust region policy optimization
* Proximal policy optimization algorithms

Algorithmic Intelligence Lab

Table of Contents

1. What is Reinforcement Learning?

Algorithmic Intelligence Lab

What is Reinforcement Learning (RL)?

* Reinforcement learning is a sequential decision making problem

* Agent o

* Receives an observation of the current state /AT Y N

. observation /7 1A action
* Selects an action — [\ | Agent |/)/
. _ 0, 7 = A,
* Receives a reward from the environment N\
_Q g
—

* Environment reward | R,

* Receives an action from the agent
* Gives a reward to the agent
* Changes the environment state

Goal: Find an optimal strategy (i.e. policy)

maximizing total future rewards

Algorithmic Intelligence Lab * source : UCL Course on RL (http://wwwoO.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html) 7

Example: Atari Game

* Reinforcement learning is a sequential decision making problem

e Agent (Player)
 Receives RGB screen

* Controls joystick

* Receives scores

* Environment (Machine)
e Receives the joystick input
* Gives scores to the player

* Changes the environment state
(e.g., memory, screen, ...)

Goal: Find an optimal strategy

maximizing game scores

Algorithmic Intelligence Lab

What is Reinforcement Learning (RL)?

* Reinforcement learning vs. Other machine learning tasks
* No supervisor to follow, only a scalar reward signal
* Feedback can be delayed makes difficult to learn
* Agent’s behavior affects the subsequent data

 If defining a reward function is difficult, one can learn from demonstrations

How to define reward?

Imitation Learning: copying expert’s behavior
Inverse RL: inferring rewards from expert’s behavior

* Unsupervised RL: reinforcement learning without rewards

But, this lecture only covers the case when the reward oracle/function is available

Algorithmic Intelligence Lab * source : UC Berkeley Course on DeepRL (http://rail.eecs.berkeley.edu/deepricourse/) 9

http://rail.eecs.berkeley.edu/deeprlcourse/

Markov Decision Process (MDP)

* RL can be formulated by Markov Decision Process (S, A, P, R,~)

e S:asetof states
e A:asetof actions

e ‘P :aconditional state transition probability with Markov property, i.e.,

P(St, at, 3t+1) = PT(St+1\St, Clt) = PI’(St+1\St, Aty St—1,0¢t—1, - -
R : a reward function, i.e., 7+ = R(s¢, a4)
v € [0,1] : a discount factor

* The agent chooses an action according to m(als)

/SB@M%

Environment

)

A 4

Agent

S~ rls)

* Goal: find optimal policy 7(a|s) maximizing total future reward E [> > ~'~'r,]

Algorithmic Intelligence Lab

'7817a1)

10

A Taxonomy of RL Algorithms

Policy Optimization

Policy Gradient <——
A2C / A3C <—

PPO —

TRPO i

RL Algorithms
{ |
Model-Free RL Model-Based RL
{ | { I}
Q-Learning Learn the Model Given the Model

DQN —'{ World Models | H AlphaZero
—> DDPG <« P — B

cs1 —— 1A
> TD3 S

QR-DQN —»{ MBMF |

> SAC I

HER 4’{ MBVE |

* Model-Free vs. Model-Based RL
 Whether the agent has access to (or learns) a model of the environment

* Value-based vs. policy-based algorithms
* Value-based methods approximate the expected total rewards from state

* Policy-based methods in this family represent a policy explicitly

 Some methods, e.g., Actor Critic, use both value and policy functions

Algorithmic Intelligence Lab

* source: OpenAl Spinningup (https://spinningup.openai.com) 11

https://spinningup.openai.com/

Table of Contents

2. Value-based Methods
* Q-learning
* Deep Q-network
* Rainbow DQN

Algorithmic Intelligence Lab

12

Value Functions

* Value functions of a state s under a policy T

* State-value function: Ur(s) = al, o [Doy 7 Lrfs1 = s]
« Action-value function: ¢=(s,a) =Ea, .~ [D ooy v 1|51 = s,a1 =
U (8)

taken ‘\.’\.l“l
probability 7 (a| 1,
. ——ax(s.0)
(11 (12 (I,;

« Advantage function: A, (s,a) = ¢(s,a) — v (s)
* Ur indicates which state is good / qr, A indicate which action is good under

Optimal value functions: v.(s) = max, vx(s), ¢«($,a) = max, ¢-(s, a)

* The optimal policy can be derived from them: 7.(s) = argmax, g.(s, a)

Algorithmic Intelligence Lab * source : Richard Sutton and Andrew Barto, Reinforcement Learning: An Introduction, 2"® edition, 201813

Q-Learning with Function Approximation

Q-learning algorithm [Watkins, 1989] repeats 1-3 until convergence

1. Choose an action a from the current state s using the e-greedy policy
« c-greedy chooses a random action with probability £, otherwise a = arg max, q(s, a)

2. Observe a reward 7, a new state s’

3. Update ¢(s,a) < q(s,a) + « {r + Y max q(s',a") — q(s, a)} Incremental

update

* Intuition: Q-learning updates the g-value incrementally
to satisfy the Bellman equation for the optimal action-value function:

G(8,a) = Eg opr(|s,a) [7“ + 7 max q.(s’, a’)}
a

* For high-dimensional state and/or action spaces, parameterize q(s,a) ~ q(s, a;0)

* The update rule for 6 :

0+ 0+a [ff +ymaxq(s’,a’;0) — q(s, a; 9)} Voq(s,a;0)

called by Temporal Difference (TD) errors

Algorithmic Intelligence Lab 14

Deep Q-Network (DQN)

* Q-learning is known to be unstable or even to diverge when using nonlinear
function approximators such as neural networks

* Because even small updates to ¢ may significantly change ...

Solution: DQN (Mnih et al., 2015)

2/
," «: 1. Experience replay buffer:
I \ .
Thew Told Vot - use previous samples
\
‘ Told,/ v " _smoothing data distribution
U4 Sa . .
) - remove sequential correlation
1. Data distribution
+ high-correlated sequential data
2. Slowly updated target network 09—
2. Correlations between q(s, a; 6) - -use + ymaxy q(s’,a’;07)

and © + ymax, q(s’,a’; 0) - reducing correlations from target

Algorithmic Intelligence Lab 15

Deep Q-Network (DQN)

* Q-learning is known to be unstable or even to diverge when using nonlinear
function approximators such as neural networks

* Because even small updates to ¢ may significantly change ...

A Solution: DQN [Mnih et al., 2015]
)

il

Training Deep Q-Network [Minh et al., 2015] ffer:

2
1 L= E(s,a,r,s’)NU(D) [(7“ + VmE}XQ(8/7 CL/; (9_) o Q(Sa a, 9))] o

tribution
replay buffer

target network

correlation
1 Add every observation (s, a, 7, s’) to replay buffer D
- Update deep Q-network 6 < 6 — aVyL
- Update target network 6~ < 6 at every C steps
. _ irk 60—
2. Correlations between q(s, a; 6) - -use + ymaxy q(s’,a’;07)

and © + ymax, q(s’,a’; 0) - reducing correlations from target

Algorithmic Intelligence Lab 16

Deep Q-Network for Atari Games

* [Minh et al., 2015] use same architecture/hyper-parameters for all Atari games

= Robustness of DQN

* Training curve

2,200
2,000
1,800}
1,600
1,400}
1,200
1,000}
800
600 |
400 |
200

Avg score per episode

0
0 20 40 60 80 100 120 140 160 180 200
Training epochs

-h
o

Avg action value (Q)
o = N W s O~ e

0 20 40 60 80 100120 140 160 180 200

Training epochs

e DQN Breakout video

Algorithmic Intelligence Lab

* source :

Video Pinball
Boxing

Breakout

Star Gunner
Robotank
Atlantis

Crazy Climber
Gopher

Demon Attack
Name This Game

Road Runner
Kangaroo
James Bond
Tennis

Pong

Space Invaders
Beam Rider

Kung-Fu Master
Freeway
Time Pilot

Fishing Derby
Up and Down

H.E.R.O.

Asterix

Battle Zone

Wizard of Wor
Chopper Command
Centipede

Bank Heist

Venture

Seaquest

Double Dunk

Bowling

Ms. Pac-Man
Asteroids

Frostbite

Gravitar

Private Eye
Montezuma's Revenge

Minh et al., Human-level Control through Deep Reinforcement Learning, Nature 2015 17

At human-level or above

q
)

—y

[]
8
2

B EFEE
£ 3

Below human-level

Best linear learner
1

[T I
200 300 400

o

100

4,500%

https://youtu.be/TmPfTpjtdgg

Rainbow DQN

* What is the state-of-the-art DQN???

* Examine six extensions to the DQN algorithm and integrate them into a single
integrated agent [Hessel et al., 2018]

DQN

— DDQN

— Prioritized DDQN \

— Dueling DDQN 1[

200% A3C l
Distributional DQN) A

— Noisy DQN 2k

== Rainbow If

100%

Median human-normalized score

| |
44 100 200
Millions of frames

Figure. Median human-normalized performance across 57 Atari games
* In this lecture, DDQN, dueling and prioritized replay will be covered

Algorithmic Intelligence Lab * source : Hessel et al., Rainbow: Combining Improvements in Deep Reinforcement Learning, AAAI 2018 18

Advanced Deep Q-learning (1) Double Q-learning

* Q-learning is known to overestimate action values
0+ 0+a [7“ +ymaxq(s’,a’;0) — q(s, a; 9)} Voq(s,a;0)

because the max step max q(-, -) is used to update the same function q(-, -)
* In practice, overestimation errors will differ for actions = poor policy

Double Q-learning [van Hasselt, 2010] separates selection and evaluation:

01 + 01 + « [7“ +1iq(s",arg max q(s', a’; 01); 02)| — q(s, a; 01)} Vo, q(s,a;61)

* Double DQN [van Hasselt et al., 2015] uses §; = 6 and 6, = 6~ (target network)

Algorithmic Intelligence Lab 19

Video Pinball

Atlantis | ————]

Demon Attack |——————
Breakout F———————]
Assault e ———

Advanced Deep Q-learnir

Double Dunk
Robotank

* Value estimations of

Star Gunner | ———]
Road Runner F————— |

Crazy Climber E—]
Kangaroo Emm—m______]
Asterix L]
wxDefendersx [
sk Phoenixoes L]
Up and Down E=J
8 Space Invaders
James Bond]
Enduro

Alien

%]
o

[
ot

—
o

Value estimates

4 Beam Rider
Freeway
Pong

0 50 100 150 200 0O

N

Aaxxon

QN estimate

ouble DQN estimate

ouble DQN true value
DQN true value

100 150 200
steps (in millions)

Ay

* Double DQN learns A

AY Tutankham E_]

Improve scores ov

er almost games

—
(=3
(=}

—
(=}

Frostbite

=+ Skiing*x]

Bowling

Centipede

Alien B

#*Yars Revengesx

Amidar

V Ms. Pacman
wxPitfallsr

Asteroids

Montezuma’s Revenge

Venture §

Gravitar

Private Eye
#+xSolaris«*

(log scale)

Value estimates

0 50

4000

ueungy

3000
BN Double DQN (tuned)

[Double DQN
 DON

2000

Score

1000

2
%

o

o, < 2
0 50 = %, 2.
= °

Traini: o o © o ©

Algorithmic Intelligence Lab Normalized score

DQN

=

ible DQN
150

w

200

Double DQN

DQN

150
ons)

2arning with Double Q-learning, AAAI 2016

200

20

Advanced Deep Q-learning (2) Prioritized Replay

« DQN samples transitions (s, a, 7, s') uniformly from experience replay buffer

* Problem: Unimportant data (e.g., small TD error) might be used with same

probability as important ones = sample inefficiency

* Solution [Schaul et al., 2016]: Prioritize data and sample them based on the

priority

Q1) How to prioritize? 0 0+ a|r+ymaxq(s',a’;0) — q(s,a;0)

= Use TD error

Voq(s,a;0)

measure how much update is required

Q2) How to sample?

* Greedy: sample-transitions-of-maxitromm TDerTors some transitions are never selected

* Stochastically sample with probability P(i) = p*/ > . p%

* Proportional: pi = [0;] + € ‘
sampling probability of it data

e Rank-based: P:i = 1/rank(i)

Algorithmic Intelligence Lab

21

Advanced Deep Q-learning (2) Prioritized Replay

* Prioritized replay P(D) introduces bias
* Because original Q-learning with/without replay buffer uses uniform distribution:

2 2
IEf‘(s,a,r,s’)NU(D) [5] 7£ E(s,a,r,s’)wP(D) [5]
where § = r + ymax, q(s',a";07) — q(s,a;0)
- . . : 1 1)
* To correct this bias, use importance-sampling weights w; = (W P(i))
* |n practice, increase (3 linearly from 5y to 1

DQN with prioritization [Schaul et al., 2016]
1. Update parameters using VoL where £ =]E(S,amsz),\,p(m [w52]

2. Update priorities for sampled transitions pi < |9;

* Prioritized replay buffer can be combined with Double Q-learning

Algorithmic Intelligence Lab 22

Advanced Deep Q-learning (2) Prioritized Replay

* Learning speed compared to uniform sampling

8000 -

70001~

6000 41-

B000 s b R e R

reward

1111 1) (DD SRR
2000 sl

10004 4

717 aT)0 L. SYPOUNURPL SN ORRRRL: I 0

reward

45000 -

400004~

35000 e

30000 A

reward

150004 i
100004

50004« ssse0s4

SBO00 e smssmrssbusenesins Sy

20000 s an ety

Astgrix

reward

Algorithmic Intelligence Lab

100

training step (1e6)

40000 -

Battlezone

BEGHO0 frsnsmnmsusibosanmmensiimnmanyaiasse oot ooy

171711 T T P PSR S

25000+t A Al
20000 -p A
150004

100004

50004 44

18000+

1600045 sunsmmmnnbinambanendaaandsnasndammadnem g

140001

12000+

TOD0D L sressmmesibimmmamssasony
8000 s sl

BOU0 s oecsnmeaibioansipa

4000 A

20004

80 100 120

training step (1e6)

human uniform rank-based proportional

* source : Schaul et al., Prioritized Experience Replay, ICLR 2016 23

Advanced Deep Q-learning (2) Prioritized Replay

Comparison scores with Double DQN on Atari games

200%

EEE rank-based
Em proportional

100%

normalized SCOre,gant — normalized scoreqg pie pon

Improve scores over almost games lil l||l‘

Road Runner
Phoenix

Assault

Space Invaders
Double Dunk
James Bond 007
Atlantis

Gopher

1r--l_:->m?w N c o5 oo c 5 2 0w c g ou > c o 2 S g oy 55 e ox
Lo 2855 2«8 a2 8 2 2 £ £ 5 S 25 ¢ 2 5 E S8 ES 3B 3F
SESE R AN EEE] EERELEN FREEE ENEE NN FREEEEEEESEEE
g3 &0 > 3 & 3 N E L 2 s o = £ 2N 29z : g F e ® = o <
=S T E L L £ g o < WO % ca S O p= > T 5 ; L v o U E
= O o w @ << 2 3 7 & ¢ € 0 () £ UV 5 ®
3% 3 3 w S o se%E @B 8 o (S Fl
359 g HEEN - g g 57
e 2 ® = 5 5 o e S g 5 °
§ 2 % 3 g = H 2 =
= - £ 8 £ T =]
o c ¢ @ g M
@
2 0zs =
o (SIS g S
100% 5 R
100%
.
H DOQN Double DQN (tuned)
m
5 baseline rank-based | baseline rank-based proportional

Video Pinball
Demon Attack

Median
Mean

> baseline
> human
games

48%
122%
15

49

106%
355%
41
25
49

111%
418%

30

57

113% 128%
454% 551%
38 42
33 33
57 57

Algorithmic Intelligence Lab

* source : Schaul et al., Prioritized Experience Replay, ICLR 2016 24

Advanced Deep Q-learning (3) Dueling Architecture

VALUE ADVANTAGE

Intuition from an example: driving car

* |n many states, it is unnecessary to estimate
the value of each action choice

» State-value function pays attention to the road

ADVANTAGE

* |n some states, left/right actions should be taken
to avoid collision

* Advantage function pays attention to the front of car
when action selection is crucial

* Recall advantage function: A (s,a) = ¢ (s,a) — v (s)

Idea [Wang et al., 2016] Decouple action-value g to state-value v and advantage A

Q(Sv a, 97 ¢va ¢A> — ’U(S; 07 ¢v) T A(87 a, 67 ¢A)

L

Algorithmic Intelligence Lab * source: Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016 25

learn which state is valuable without effect of action

Advanced Deep Q-learning (3) Dueling Architecture

* Ing=v+ A, vcan be arbitrary given an action-value ¢

Q) How to force v to be the (unique, correct) state-value?

A) Make the maximum of the advantage be zero

q(5,0;0, 00, 04) = v(s;0,0y) + (A(s,a;0,04) — max, A(s,a’;0,04))
° Then; Q(S,a*;9,¢v7¢A) — U(S;97¢’U)

this can be derived from 7(s) = arg max, q(s, a)

* In practice, use average instead of maximum for learning stability:

a(s,a;0, ¢y, 04) = v(s:0, d0) + (A(s,a;0, $a) — % > o Als,a’;0,6.))

(s:0, py)
* Dueling architecture / o
[Wang et al., 2016] @;Eﬁ?lfis | (5,00, by, da)

-/ A(s,a;0,04)

Algorithmic Intelligence Lab * source: Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016 26

Advanced Deep Q-learning (3) Dueling Architecture

* This dueling architecture also improves DQN performance

vs Double DQN vs Double DQN + Prioritized replay

Atlantis 296.67% Asterix 1097.02%
Tennis 180.00% Space Invaders 457.93%
Space Invaders I 164.11% Phoenix 281.56%
Up and Down I 07.90% Gopher 223.03%
Phoenix I ©4.33% Wizard Of Wor
Enduro I 86.35% Up and Down I, 113.47%
Chopper Command I, C2.20% Yars' Revenge I 113.16%
eaquest I 50.51% Star Gunner I 05.69%
Yars' Reven%e . 73.63% Berzerk I 53.91%
Frostbite I 70.02% Frostbite I 70.29%
Time Pilot I, 69.73% Video Pinball I 69.92%
Asterix I C3.17% Chopper Command . 52.87%
Road Runner I 57.57% Assault I 51.07%
Bank Heist I 57.19% Bank Heist - 13.11%
Krull I 55 .85% River Raid I 38.56%
Ms. Pac-Man I 53.76% Defender . 35.33%
Star Gunner I 48.92% Name This Game . 33.09%
Surround I 4 4.24% Zaxxon . 32.74%
Double Dunk I 42.75% Centipede . 32.48%
River Raid I 50.79% Beam Rider W 29.94%
Venture I 33.60% Amidar . 24.98%
. Amidar I 31.40% Kung-Fu Master B 22.36%
Fishing Derby B 28.82% gTutankharn B 21.38%
Q*Bert . 27 68% Crazy Climber W 16.16%
Zaxxon . 27.45% Q*Bert W 15.56%
Ice Hockey M 26.45% Battle Zone W 11.46%
Crazy Climber . 24.68% Atlantis W11.16%
entipede E 21.68% Enduro W 10.20%
Defender B 21.18% Krull 07.95%
Name This Game El 16.28% Road Runner 17.89%
Battle Zone B 15.65% Pitfall! 15.33%
Kung-Fu Master Bl 15.56% Boxing 13.46%
Kangaroo Il 14.39% Demon Attack | 1.44%
Alien . 10.34% Fishing Derby 11.37%
Berzerk M 9.86% Pong 10.73%
Boxing M 8.52% Private Eye 0.01%
Gopher W 6.02% Montezuma's Revenge 0.00%
~ Gravitar W 5.54% Tennis 0.00%
Wizard Of Wor N 5.24% Venture .519
Demon Attack N 4.78% Bowling
Asteroids N 4.51% Freewa
H.E.R.O. 1231% Breakou
Skiin | 1.29% Asteroids
Pitfall! 0.45% Alien
Robotank 0.32% H.E.R.O
Pon 0.24% Gravitar
Montezuma's Revenge 0.00% Ice Hockey
Private Eye -0.04% Time Pilot
Bowling | -1.89% Solaris
Tutankham 1-3.38% Surround
James Bond § -3.42% Ms. Pac-Man
Solaris W -7.37% Robotank
Beam Rider W 9.71% Seaquest i
Assault W -14.93% Skiing I -77.99%
Breakout I -17.56% Double Dunk S -83.56%
Video Pinball I 68.31% James Bond | -84.70%

Freeway I -100.00%

Algorithmic Intelligence Lab

Kangaroo I -89.22%

* source: Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016 27

Table of Contents

3. Policy Gradient Methods
* REINFORCE
e Trust region policy optimization
* Proximal policy optimization algorithms

Algorithmic Intelligence Lab

28

Policy Gradient Methods

* Value-based methods (e.g., Q-learning) optimize policies indirectly:

Find q(s,a;0) =~ q«(s,a) = w(s;0)=argmax,q(s,a;0)

* Policy gradient methods (e.g., REINFORCE, Actor-Critic) optimize policies
directly via maximizing total rewardE >~ 7 1r]:

©.@)
arg m@ax Eatww(-lst;H) E q/t_l’rt where 0 is the policy parameters
t=1

* Approximated value functions might be used with these methods to resolve
optimization issues such as high variance

* Policy gradient theorem: If J(#) is the above objective, then
VQJ(Q) — EW@ [V@ 10g7T(CL|S; H)Qﬂ'e (Sv CL)}

« Simply, higher action-value ¢, (s, a) increases action probability 7(al|s; @)
* Action evaluation & selection should be performed by same policy, i.e., on-policy

29

Policy Gradient Methods: REINFORCE

REINFORCE [Willams, 1992] uses Monte-Carlo estimates of the policy gradient

1. Sample an episode {si,a1,71,...,S7,ar,r7} ~ o
2. Compute Af « Z;F:l Vo logm(as|ss;0) (Zit vs_trs)
3. Update 0 < 0 + a6 Unbiased estimator of G, (St, at)

* Issue: REINFORCE has high variance when estimating gradients

* Solution: Use any baseline function b(s) not depending on actions

E,, [Vlogm(als;0)b Z,LL ZW als; 6) Vwac‘tlsei) b(s)
:Zus SVZWCL|S;9
= Zu(s)b(s)Vl =

Algorithmic Intelligence Lab

30

Policy Gradient Methods: REINFORCE

REINFORCE [Willams, 1992] uses Monte-Carlo estimates of the policy gradient

1. Sample an episode {s1,a1,71,...,8T,ar,r7} ~ Ty

2. Compute Af +— Z;F:l Vo logm(as|ss;0) (Zfzt vs_trs)

3. Update 0 < 6 + a8

Unbiased estimator of 4=y <5t7 at)

* Issue: REINFORCE has high variance when estimating gradients

* Solution: Use any baseline function b(s) not depending on actions

» Eqr, [Viogm(als; 0)b(s)] = 0
e VoJ(0) =E,, [Vlogn(als;0)

e Which 6(s) should be used?

(9m (5, 0) — b(s))

This can reduce the variance

* One natural choice is b(s) = v, (5) since Eqor(.|s:0) [qrp(5,a) — Vry(5)] =0

* |In practice, use b(s) = v(s;w) ~ v, (s) with parameters w and learn the function
using TD errors such as Q-learning [Sutton et al., 2000]

Algorithmic Intelligence Lab

31

Trust Region Policy Optimization (TRPO)

Issues in “vanilla” policy gradient methods such as REINFORCE

* Hard to choose step-size @
* small changes in parameter space can cause poor policy

* Only one gradient step per each sample
* Sample inefficiency

Solution: formulate an optimization problem on generated data from old policy
* That allows small changes in policy space

* That guarantees improvement of policy performance

Trust Region Policy Optimization [Schulman et al., 2015]: for each iteration, solve

|
o (CL|S) l Ar(s,a) = qr(s,a) — vy (s) is also
EWQOld 014 (a‘s) Aﬂ-eold (S’ a) approximated by neural networks

subject to Er, [DKL(To,4 (+[5)|ma(-]5))] <0

maximize
0

Algorithmic Intelligence Lab 32

Trust Region Policy Optimization (TRPO)

Derive TRPO
e« Let N(m) = Ex[vr(s1)] = Ex[D o, 7" '] be the performance of a policy

* This performance can be written as
oo
t=1

= 0(Tota) + Er | Y 771 — vwold(sl)]
| t=1

n(m) = Ex

— 77(770101) + Ex Z f)/t_l(rt + YVroia (St-l-l) — Urnoia (St))
| t=1

Groia (5,)]

— 77(7T01d) + EW Z/yt_lAT"old (St7 at)]

| =1

=1)(To1a) +) px(5) Y m(als)Ar,u(s,a)

where pr(s) = Zfil Wt_l Pr(s; = s|m)

Algorithmic Intelligence Lab 33

Trust Region Policy Optimization (TRPO)

Derive TRPO
e« Let N(m) = Ex[vr(s1)] = Ex[D o, 7" '] be the performance of a policy

This performance can be written as

Z ryt_lAﬁold (8t7 a’t)]

t=1

— 77(7T01d) + Zpﬂ Zﬂ- CL‘ 7T ld)

|

Define L 1d(77(7T01d) + prold Z?T CL\ ™ 1d)

n(m) = n(moa) + Ex

* Ly, (+)isalocal approximation of 7)(-) at 6 = 6,14:

o

Eﬂeold (7T901d> — 77(7‘-901d)

ve‘cﬂ'e d(7T0)|9:901d o V@U o }9 Oo1a

ol

e For fixed 014, we can omit 7(7a,,4): ﬁﬂeold (m9) = Em)old {%Aﬂ-eold (s,a)

Algorithmic Intelligence Lab 34

Trust Region Policy Optimization (TRPO)

Theorem [Schulman et al., 2015]
° 77(7T9) > £7Te () CDmaX(old77T9)

« C'is some constant and DR (7o, To) = maxs Dkr,(ma_ . (-|$)||me(+]5))

* Policy iteration guarantees non-decreasing performance:
Onew < argmaxg L, (mg) — CDRE* (79,4, T0)

* |n practice,

* Theoretical guaranteed C updates
very small steps in policy

e Use a constraint instead of the penalty
* Use average instead of maximum

maximize L mo(als)
0 T0o1a (CL‘S)

subject to B, [DKr(To., (+|5)[[me(+[5))] <

(7-(-9) —]Eﬂ-eold

Ary (s,a)

7I-eold

Algorithmic Intelligence Lab * source : Deep RL Bootcamp Lecture (https://youtu.be/xvRrgxcpaHY) 35

Trust Region Policy Optimization (TRPO)

* How to solve this optimization? Conjugate gradient algorithm

* (1) Compute search direction: making a linear approximation to the objective and a
guadratic approximation to the constraint

* (2) Perform a line search in that direction

* Training curves (TRPO: vine & single path)

Cartpole

Swimmer

e TRPO agent video

-
¥
E > [1§ NSRS SRR -~ ~ SECIVRSTENn (Gatroves oy
2 -
= v
w
- =
v
B
Vin
- - Single Path
s ~— Natura 1 Gragient
6 — Empirical FII
b Cen
oA
— R
18 28 38 48 : 18 20 3 ac
number of policy iterations number of policy iterations
Hopper R Walker
- b
L) Led
= =
o [z
A= v

number of policy iterations number of policy iterations

Algorithmic Intelligence Lab * source : Schulman et al., Trust Region Policy Optimization, ICML 2015 36

https://youtu.be/KJ15iGGJFvQ

Proximal Policy Optimization Algorithms

Issues in TRPO

* To solve the optimization problem, quadratic approximation for the constraint
is required

* In some cases, such approach is not possible

Adaptive KL Penalty Coefficient [Schulman et al., 2017]

argmaxy Er, | 7495 A(s, 0)| = BEx,, [KL (70,1, (15)]7o(|5))]

T4 (als

» KL divergence is small/large = decrease/increase 3, respectively.
* For each iteration, do SGD on the above objective multiple times
* This needs only first-order derivatives

 Still, this has limitations:

* Hard to use multi-output architectures (e.g., policy & value functions)
due to the KL divergence term

* Empirically poor performance when using deep CNNs / RNNs

Algorithmic Intelligence Lab 37

Proximal Policy Optimization Algorithms

Clipped Surrogate Objective [Schulman et al., 2017]
LOYP (1) = o, [min(r(0) A, clip(r(6), 1 — ¢, 1 + €)4)]

o514

o (als)

where 7(0) = o (als)

* The objective suppresses changes in policy without KL divergence
* This figure simply shows how £CMP works

A<0
L('L.(‘() 4";1 > (] <
. r no updates L—el .
: starting point 7 :
= oy |
0 1 1+e€ LELH

* This objective can be used with multi-output architectures

Algorithmic Intelligence Lab * source : Schulman et al., Proximal Policy Optimization Algorithms, 2017 38

Proximal Policy Optimization Algorithms

* On MuloCo Environments, PPO (clip) outperforms other policy gradient

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1 InvertedPendulum-v1
1000
2000 2500 8000
800
1500
2000 6000
1000 1500 600
4000
500 1000 400
0 500 2000 200
-500 1
0 0 0
0 1000000 0 1000000 0 1000000 0 1000000
Reacher-v1 Swimmer-v1 Walker2d-v1
— A2C
120 %
-20 —— A2C + Trust Region
100 3000 — CEM
~60 60 ’ = 2000 Vanilla PG, Adaptive
—— TRPO
-80 40 4 3 =
20 = 1000
-100
0
=120 0
0 1000000 0 1000000 0 1000000

e PPO agent video

Algorithmic Intelligence Lab * source : Schulman et al., Proximal Policy Optimization Algorithms, 2017 39

https://blog.openai.com/openai-baselines-ppo/

Summary

e Reinforcement learning is another field of machine learning
* RL agents learn the best strategy using only scalar rewards, no supervision
* There are many various algorithms: Q-learning, actor-critic, policy optimization

e Other interesting topics

Sim-to-Real Transfer [OpenAl et al., 2019]

Algorithmic Intelligence Lab

40

References

[Watkins, 1989] Learning from Delayed Rewards, Ph.D. thesis, University of Cambridge, 1989
link: http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

[Watkins, 1992] Q-learning, Machine Learning, 1992
link: https://link.springer.com/article/10.1007/BF00992698

[Willams, 1992] Simple Statistical Gradient-following Algorithms for Connectionist Reinforcement Learning, Machine
Learning, 1992
link: https://link.springer.com/article/10.1007/BF00992696

[Sutton et al., 2000] Policy gradient methods for reinforcement learning with function approximation: actor-critic
algorithms with value function approximation, NIPS 2000

link: https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-
approximation.pdf

[Minh et al., 2015] Human-level Control through Deep Reinforcement Learning, Nature 2015
link: https://www.nature.com/articles/nature14236

[van Hasselt et al., 2016] Deep Reinforcement Learning with Double Q-learning, AAAI 2016
link: https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847

[van Hasselt, 2010] Double Q-learning, NIPS 2010
link: https://papers.nips.cc/paper/3964-double-g-learning

[Schaul et al., 2016] Prioritized Experience Replay, ICLR 2016
link: https://arxiv.org/abs/1511.05952

[Wang et al., 2016] Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016
link: http://proceedings.mlr.press/v48/wangf16.pdf

Algorithmic Intelligence Lab

41

http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://link.springer.com/article/10.1007/BF00992698
https://link.springer.com/article/10.1007/BF00992696
https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
https://www.nature.com/articles/nature14236
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://papers.nips.cc/paper/3964-double-q-learning
https://arxiv.org/abs/1511.05952
http://proceedings.mlr.press/v48/wangf16.pdf

References

[Schulman et al., 2015] Trust Region Policy Optimization, ICML 2015
link: http://proceedings.mlr.press/v37/schulmanl5.pdf

[Schulman et al., 2017] Proximal Policy Optimization Algorithms, 2017
link: https://arxiv.org/abs/1707.06347

[Hessel et al., 2018] Rainbow: Combining Improvements in Deep Reinforcement Learning, AAAI 2018
link: https://arxiv.org/abs/1710.02298

[Nachum et al., 2018] Data-efficient hierarchical reinforcement learning, NeurIPS 2018
link: http://papers.nips.cc/paper/7591-data-efficient-hierarchical-reinforcement-learning

[Eysenbach et al., 2018] Diversity is All You Need: Learning Diverse Skills without a Reward Function, ICLR 2018
link: https://arxiv.org/pdf/1802.06070

[OpenAl et al., 2019] Solving Rubik's Cube with a Robot Hand, 2019
link: https://arxiv.org/abs/1910.07113

Books

Sutton and Barto, Reinforcement Learning: An Introduction, 2nd edition, 2018
link: http://incompleteideas.net/book/the-book-2nd.html

Lectures

UCL Course on Reinforcement Learning
link: http://wwwa0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

UC Berkeley Course on Deep Reinforcement Learning
link: http://rail.eecs.berkeley.edu/deepricourse/

Deep RL Bootcamp Lectures
link: https://youtu.be/xvRrgxcpaHY

Algorithmic Intelligence Lab

42

http://proceedings.mlr.press/v37/schulman15.pdf
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1710.02298
http://papers.nips.cc/paper/7591-data-efficient-hierarchical-reinforcement-learning
https://arxiv.org/pdf/1802.06070
https://arxiv.org/abs/1910.07113
http://incompleteideas.net/book/the-book-2nd.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://rail.eecs.berkeley.edu/deeprlcourse/
https://youtu.be/xvRrgxcpaHY

