Domain Transfer and Adaptation

AI602: Recent Advances in Deep Learning

Lecture 11

Slide made by

Sangwoo Mo

KAIST Graduate School of AI

Table of Contents

1. Introduction

- What is domain transfer?
- What is domain adaptation?

2. Domain Transfer

- General approaches
- Neural style transfer
- Instance normalization
- GAN-based methods

3. Domain Adaptation

- General approaches
- Source/target feature matching
- Target data augmentation

Table of Contents

1. Introduction

- What is domain transfer?
- What is domain adaptation?
- 2. Domain Transfer
 - General approaches
 - Neural style transfer
 - Instance normalization
 - GAN-based methods
- 3. Domain Adaptation
 - General approaches
 - Source/target feature matching
 - Target data augmentation

What is Domain Transfer?

- Learning a mapping between two (or more) domains
 - Each domain is typically, described by a set of data samples.
 - Given X_S and X_T , learn a mapping $f: X_S \to X_T$

Colorization¹

Super-resolution²

Inpainting³

Machine Translation⁴

SourcePropoUne fusillade a eu lieu à
l'aéroport international de Los
Angeles.A shoo
geles ICette controverse croissante au-
tour de l'agence a provoqué
beaucoup de spéculations selon
lesquelles l'incident de ce soirThis gr

Proposed system (full)

A shooting occurred at Los Angeles International Airport.

This growing scandal around the agency has caused much speculation about how this incident was the outcome of a targeted cyber operation.

Music Style Transfer⁵

Algorithmic Intelligence Laboratory

opération ciblée.

était le résultat d'une cyber-

1. [Zhang et al., 2016]; 2. [Ledig et al., 2017]; 3. [Yeh et al., 2017]; 4. [Artetxe et al., 2018]; 5. [Mor et al., 2018] 4

What is Domain Adaptation?

- Learning a mapping between two (or more) domains with labels
 - A special case of transfer learning
 - Given (X_S, Y_S) and X_T , learn a mapping $f: X_T \to Y_T$

Table of Contents

1. Introduction

- What is domain transfer?
- What is domain adaptation?

2. Domain Transfer

- General approaches
- Neural style transfer
- Instance normalization
- GAN-based methods
- 3. Domain Adaptation
 - General approaches
 - Source/target feature matching
 - Target data augmentation

General Approaches for Domain Transfer

- Domain (or style) transfer aims to
 - Keep content of source data
 - Change style to match with target data (or domain)

- General optimizing objective for producing outputs: $\mathcal{L}_{content} + \lambda \mathcal{L}_{style}$
 - **Domain transfer** research is about designing **content & style** losses

- Idea: Use a well pretrained (e.g., by the ImageNet dataset) neural network for content & style losses
 - **Goal:** Given inputs x_c and x_s , generate \hat{x} having content of x_c and style of x_s
 - Content loss:
 - High layer of NN contains (abstract) content information
 - Match feature maps of high layers

$$\mathcal{L}_{\text{content}}(x_c, x) = \frac{1}{2} \sum_{i,k} (F_{ik}^l(x_c) - F_{ik}^l(x))^2$$

where F_{ijk}^{l} denotes feature of $l \in \{1, ..., L\}$ -th layer, $i \in \{1, ..., H^{l} \times W^{l}\}$ denotes spatial location, and $k \in \{1, ..., C^{l}\}$ denotes channel

- Idea: Use a well pretrained (e.g., by the ImageNet dataset) neural network for content & style losses
 - **Goal:** Given inputs x_c and x_s , generate \hat{x} having content of x_c and style of x_s
 - Style loss:
 - It has been observed that **feature statistics** contains style information
 - Feature statistics of $\mathbb{P}^l(z;x)$ where

$$z_{i;x} := (F_{i1}^l(x), \dots, F_{iC^l}^l(x)) \in \mathbb{R}^{C^l} \sim \mathbb{P}^l(z;x)$$

• Match features statistics (or underlying p.d.f.) of low layers

$$\mathcal{L}_{style}(x_s, x) = D(\mathbb{P}^l(z; x_s) || \mathbb{P}^l(z; x))$$

**D* is some function distance, e.g., maximum mean discrepancy (MMD) or moment matching Algorithmic Intelligence Laboratory

- Idea: Use a well pretrained (e.g., by the ImageNet dataset) neural network for content & style losses
 - **Goal:** Given inputs x_c and x_s , generate \hat{x} having content of x_c and style of x_s
 - Style loss:
 - Match features statistics (or underlying p.d.f.) of **low** layers

$$\mathcal{L}_{style}(x_s, x) = D(\mathbb{P}^l(z; x_s) || \mathbb{P}^l(z; x))$$

• For example, one can minimize a Frobenius norm of **Gramian matrix** G^l , where (i, j)-th element of G^l is given by

$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l$$

hence,

$$\mathcal{L}_{\text{style}}(x_s, x) = \sum_{i,j} (G_{ij}^l(x_s) - G_{ij}^l(x))^2$$

*Frobenius norm of Gramian matrix identical to minimize MMD with kernel $k(x, y) = (x^T y)^2$ [Li et al., 2017] Algorithmic Intelligence Laboratory

- Idea: Use a well pretrained (e.g., by the ImageNet dataset) neural network for content & style losses
 - **Goal:** Given inputs x_c and x_s , generate \hat{x} having content of x_c and style of x_s
 - Used 4th layers for **content** loss and **[1-5]**th layers for **style** loss

• Inference: Solve the following optimization problem (for each (x_c, x_s))

$$\hat{x} = \min_{x} \mathcal{L}_{\text{content}}(x_c, x) + \lambda \mathcal{L}_{\text{style}}(x_s, x)$$

• Experimental results: Neural Style succeeds in translating styles of images

- Motivation: Inference of Neural Style is too slow!
 - Namely, one has to solve some optimization per each inference
 - Idea: Instead of solving optimization problems, train a neural network f_W which translates input x_c to have the style of x_s (style is fixed for a single network)
 - Now, inference is a **single forward step** $\hat{x} = f_W(x_c)$, which is **100x faster** than Neural Style (solving some optimization problems)
 - The loss function is identical to Neural Style (defined by a pretrained network)

• Experimental results: Fast Neural Style is often as good as Neural Style

Left: original Middle: Gatys et al., 2016 Right: Johnson et al., 2016

- **Motivation:** Can we design a **better network architecture** for domain transfer?
 - Idea: Removing the original style of x_c would make restyling easier

- More idea: As observed in Neural Style, feature statistics represents the style
- Hence, normalizing feature statistics will remove the original style

^{*}Original motivation of IN was to normalize contrast, but recent studies [Li et al., 2017] suggest the real reason of improvement is normalizing feature statistics Algorithmic Intelligence Laboratory

Instance Normalization [Ulyanov et al., 2016]

- **Motivation:** Can we design a **better network architecture** for domain transfer?
 - Idea: normalizing feature statistics to remove the original style
 - In particular, normalize 1st & 2nd moments (i.e., mean & variance)
 - Similar to batch normalization (BN), but for a single instance

Instance Normalization [Ulyanov et al., 2016]

- Motivation: Can we design a better network architecture for domain transfer?
 - Idea: normalizing feature statistics to remove the original style
 - In particular, normalize **1**st **& 2**nd **moments** (i.e., mean & variance)
 - Formally, for features $z_{ik} \in \mathbb{R}^{H^l imes W^l} imes \mathbb{R}^{C^l}$, Instance Normalization (IN) is

$$\operatorname{IN}(z_{ik}) = \gamma\left(\frac{z_{ik} - \mu_k}{\sigma_k}\right) + \beta$$

where

$$\mu_{k} = \frac{1}{H^{l} \times W^{l}} \sum_{i=1}^{H^{l} \times W^{l}} z_{ik}, \qquad \sigma_{k} = \frac{1}{H^{l} \times W^{l}} \sum_{i=1}^{H^{l} \times W^{l}} (z_{ik} - \mu_{k})^{2}$$

• One can also learn affine parameters **separately** for each domain (CIN [Dumoulin et al., 2017]) or **adaptively** from target style *y* (AdaIN [Huang et al., 2017])

• Experimental results: Instance Normalization helps for Fast Neural Style

Fast Neural Style [Johnson et al., 2016]

baseline

+ zero padding

+ zero padding + IN

- Motivation: Neural Style shows good performance for *artistic styles*, but often fails to generate realistic outputs for more complex domain transfer
 - Idea: Use GAN (which known to produce realistic images) for style loss
 - **Goal:** Given source domain X_S and target domain X_T , learn a mapping $f: X_S \to X_T$
 - In prior terminology, generate x'_t with content of $x_s \in X_s$ and style of X_T
 - Style loss:
 - Generator G fools discriminator D which guesses if data is in target domain

$$\mathcal{L}_{\text{style}} = \mathbb{E}_{x_t}[\log D(x_t)] \\ + \mathbb{E}_{x_s}[\log(1 - D(G(x_s)))]$$

- Motivation: Neural Style shows good performance for *artistic styles*, but often fails to generate realistic outputs for more complex domain transfer
 - Idea: Use GAN (which known to produce realistic images) for style loss
 - **Goal:** Given source domain X_S and target domain X_T , learn a mapping $f: X_S \to X_T$
 - In prior terminology, generate x'_t with content of $x_s \in X_s$ and style of X_T
 - Content loss:
 - Similar to Neural Style, one can use neural network-defined content loss
 - However, if we have paired data (x_s, x_t) , we don't need such a network, but can simply apply L_1 loss

$$\mathcal{L}_{\text{content}} = \mathbb{E}_{x_s}[\|x_t - G(x_s)\|_1]$$

- Motivation: Neural Style shows good performance for *artistic styles*, but often fails to generate realistic outputs for more complex domain transfer
 - Idea: Use GAN (which known to produce realistic images) for style loss
 - **Goal:** Given source domain X_S and target domain X_T , learn a mapping $f: X_S \to X_T$
 - In prior terminology, generate x'_t with content of $x_s \in X_s$ and style of X_T
 - In addition, pix2pix propose novel architectures
 - Skip-connection generator (e.g., U-Net [Ronneberger et al., 2015])

• **PatchGAN discriminator** (output is $N \times N$ matrix rather than a single scalar)

Algorithmic Intelligence Laboratory *Source: https://www.groundai.com/project/patch-based-image-inpainting-with-generative-adversarial-networks/ 24

- Motivation: Neural Style shows good performance for *artistic styles*, but often fails to generate realistic outputs for more complex domain transfer
 - Idea: Use GAN (which known to produce realistic images) for style loss
 - **Goal:** Given source domain X_S and target domain X_T , learn a mapping $f: X_S \to X_T$
 - In prior terminology, generate x'_t with content of $x_s \in X_s$ and style of X_T
 - **Pros & Cons** (between GAN-based methods and Neural Style):
 - (+) Generates **realistic** images (neural style is mostly for *artistic* styles)
 - (+) Does not rely on a **pretrained network** (can be applied to non-images)
 - (+) Theoretically **sound** (neural style relies on feature statistics heuristic)
 - (-) Need a **dataset** of target style, not a single data
 - (-) Training is less stable (alternative optimization)

• Experimental results: pix2pix can do more complex domain transfer

CycleGAN [Zhu et al., 2017a]

- Motivation: pix2pix requires paired data of two domains in training (for content = L₁ loss). Can we extend it to unpaired (unsupervised setting)?
 - Idea: data translated from source domain to target domain, and translated back to source domain from target domain should be identical to the original image

Content loss:

• For source \rightarrow target generator G_{ST} and target \rightarrow source generator G_{TS} , give cycle-consistency loss, that

$$\mathcal{L}_{\text{content}} = \mathbb{E}_{x_s}[\|x_s - G_{TS}(G_{ST}(x_s))\|_1]$$

*There are other methods, e.g., isometry constraints [Benaim et al., 2017] or complexity constraints [Galanti et al., 2018] too Algorithmic Intelligence Laboratory

• Experimental results

CycleGAN [Zhu et al., 2017a]

- Results (Failure cases & Solutions)
 - CycleGAN suffers from **false positive/negative** problems
 - To relax this issue, one can use segmentation [Liang et al., 2017] or predicted attention [Mejjati et al., 2018] to hardly mask instances
 - Or train additional segmentors to provide shape-consistency loss [Zhang et al., 2018]

*Source: Mejjati et al. "Unsupervised Attention-guided Image to Image Translation", NIPS 2018

Zhang et al. "Translating and Segmenting Multimodal Medical Volumes with Cycle- and Shape-Consistency Generative Adversarial Network", CVPR 2018 29

StarGAN [Choi et al., 2018]

- Motivation: Can we extend domain transfer to multi-domain settings?
 - Idea: Provide domain conditional vector *c* (one-hot encoded) as input
 - For translation, give target domain vector, and for reconstruction, give original domain vector, hence comes back to the original image
 - Discriminator classifies domain in addition to real/fake

- This idea also can be applied to multi-modal settings (e.g., BicycleGAN [Zhu et al., 2017b], AugCGAN [Almahairi et al., 2018]) by using random vector z
- In this case, one should maximize **mutual information** between $G(x_s, z)$ and z to avoid **mode collapse**, i.e., single output with regardless of z

• Experimental results

- Motivation: Can we do multi-modal domain transfer?
 - Idea: Disentangle content & style, and restyle with random style
 - To this end, train a content encoder $E_C: x \mapsto c$ and a style encoder $E_S: x \mapsto s$
 - Also, train a **decoder** $D: (c, s) \mapsto x$
 - In addition to the original reconstruction (= cycle-consistency) loss (Fig a), use cross-domain reconstruction loss (Fig b)
 - At inference, one can apply **arbitrary style** (randomly sampled) to the given content

Experimental results •

(a) house cats \rightarrow big cats

(d) dogs \rightarrow house cats

(e) big cats \rightarrow dogs

(f) dogs \rightarrow big cats

- Motivation: Can we extend domain transfer to video translation?
 - Issue: In video generation, one should consider temporal coherence, that successive images should be smoothly varied
 - Idea: design an additional recurrent structure in a model
 - Train a sequential generator $G: (x_{1:t+1}, y_{1:t}) \mapsto y_{t+1}$
 - In addition to image discriminator D_I, train a video discriminator D_V, which compares the *real* sequences and *generated* sequences
 - **Caveat:** We need paired source/target sequences for this approach

- Results
 - <u>https://www.youtube.com/watch?v=GrP_aOSXt5U</u>

Recycle-GAN [Bansal et al., 2018]

- Motivation: Can we extend domain transfer to unpaired video translation?
 - **Problem:** We don't have *real target* sequences
 - Idea: Train prediction models $P_X: x_{1:t} \mapsto x_{t+1}, P_Y: y_{1:t} \mapsto y_{t+1}$

Recycle-GAN [Bansal et al., 2018]

- Motivation: Can we extend domain transfer to unpaired video translation?
 - Idea: Train prediction models $P_X: x_{1:t} \mapsto x_{t+1}, P_Y: y_{1:t} \mapsto y_{t+1}$
 - In addition to GAN loss and cycle-consistency loss, use

• **Recurrent loss** (for training P_X , P_Y):

$$\mathcal{L}_{\text{recurrent}}(P_X) = \sum_t \|x_{t+1} - P_X(x_{1:t})\|^2$$

• **Recycle loss** (for training G_X , G_Y , using P_X , P_Y):

 $\mathcal{L}_{\text{recycle}}(G_X, G_Y, P_X) = \sum_t \|x_{t+1} - G_X(P_Y(G_Y(x_{1:t})))\|^2$

- Results
 - <u>https://www.youtube.com/watch?v=UXjWWy6iTVo</u>

Input Cycle-GAN Recycle-GAN

Barack Obama to Donald Trump

Table of Contents

1. Introduction

- What is domain transfer?
- What is domain adaptation?

2. Domain Transfer

- General approaches
- Neural style transfer
- Instance normalization
- GAN-based methods

3. Domain Adaptation

- General approaches
- Source/target feature matching
- Target data augmentation
• **Domain adaptation** aims to learn $f: X_T \to Y_T$ only using (X_S, Y_S) and X_T

- There are two general approaches:
 - Source/target feature matching: Make features of X_S and X_T be similar
 - Target data augmentation: Generate target data (X'_T, Y'_T) using domain transfer

• **Domain adaptation** aims to learn $f: X_T \to Y_T$ only using (X_S, Y_S) and X_T

- There are two general approaches:
 - Source/target feature matching: Make features of X_S and X_T be similar
 - Target data augmentation: Generate target data (X'_T, Y'_T) using domain transfer

Domain adversarial neural network (DANN) [Ganin et al., 2015]

- **Goal:** Make features of source data X_S and target data X_T be similar
 - Idea: Train discriminator D which classifies domain label, and adversarially train network to fool discriminator fail to distinguish source/target feature
 - To this end, gradient from domain classifier is **reversely applied** for the network

Adversarial discriminative domain adaptation (ADDA) [Tzeng et al., 2017]

- **Goal:** Make features of source data X_S and target data X_T be similar
 - Instead, one can alternatively update discriminator, similar to GAN scheme
 - Also, one can train separate feature extractors for source/target domain

• It is less stable for train, but shows better performance than gradient reversal

Method	$\begin{array}{c} \text{MNIST} \rightarrow \text{USPS} \\ \textbf{73} \rightarrow \textbf{05} \end{array}$	$\begin{array}{c} \text{USPS} \rightarrow \text{MNIST} \\ \textbf{05} \rightarrow \textbf{73} \end{array}$	$\begin{array}{c} \text{SVHN} \rightarrow \text{MNIST} \\ \hline 1 & 5 \\ \hline 5 & 5 \\ \hline 7 & 7 \\ \hline 7 & 3 \\ \hline \end{array}$
Source only	0.752 ± 0.016	0.571 ± 0.017	0.601 ± 0.011
Gradient reversal	0.771 ± 0.018	0.730 ± 0.020	0.739 [<mark>16</mark>]
Domain confusion	0.791 ± 0.005	0.665 ± 0.033	0.681 ± 0.003
CoGAN	0.912 ± 0.008	0.891 ± 0.008	did not converge
ADDA (Ours)	0.894 ± 0.002	0.901 ± 0.008	0.760 ± 0.018

Domain Separation Network (DSN) [Bousmalis et al., 2016]

- Motivation: Is it rational to exactly match features for source/target data?
 - Idea: Consider style of each domain in addition to the shared content
 - To this end, train shared content encoder E_C and private style encoders E_S^S , E_S^T
 - Classifier ignores styles but only use shared content as an input

Model	MNIST to MNIST-M	Synth Digits to SVHN	SVHN to MNIST	Synth Signs to GTSRB
Source-only	56.6 (52.2)	86.7 (86.7)	59.2 (54.9)	85.1 (79.0)
CORAL [26]	57.7	85.2	63.1	86.9
MMD [29, 17]	76.9	88.0	71.1	91.1
DANN [8]	77.4 (76.6)	90.3 (91.0)	70.7 (73.8)	92.9 (88.6)
DSN w/ MMD (ours)	80.5	88.5	72.2	92.6
DSN w/ DANN (ours)	83.2	91.2	82.7	93.1
Target-only	98.7	92.4	99.5	99.8

Algorithmic Intelligence Laboratory

- **Motivation:** Is it rational to exactly match classifiers for source/target data?
 - Idea: Define source classifier as a residual function of target classifier

$$f_S(x) = f_T(x) + \Delta f(x)$$
$$\Delta f(x) \parallel \ll |f_T(x)| \approx |f_S(x)|$$

- To ensure that f_T learns structure of target domain, minimize entropy for target data, which is popular method for semisupervised learning [Grandvalet & Bengio, 2004]
- Hence, in addition to (supervised) classification loss L and feature matching loss D(X_S, X_T) (e.g., GAN loss), use (unsupervised) entropy loss H on target dataset

 $\mathcal{L} = \mathbb{E}_{x_s}[L(f_S(x_s), y_s)] + \gamma \mathbb{E}_{x_t}[H(f_T(x_t))] + \lambda D(X_S, X_T)$

Domain Randomization [Tobin et al., 2017]

- Motivation: Source/target feature matching can be viewed as disentangling content and style (remove style of each domain but only keep common content)
 - Idea: In simulation-to-real (sim2real) setting, we can disentangle content by domain augmentation
 - Train NN on simulations with randomly generated styles
 ⇒ style sums up, and only content remains

- Results
 - <u>https://blog.openai.com/generalizing-from-simulation/</u>

• **Domain adaptation** aims to learn $f: X_T \to Y_T$ only using (X_S, Y_S) and X_T

- There are two general approaches:
 - Source/target feature matching: Make features of X_S and X_T be similar
 - Target data augmentation: Generate target data (X'_T, Y'_T) using domain transfer

- Idea: Generate target data with domain transfer model $G: X_S \rightarrow X_T$
 - Given source data (x_s, y_s) and transfer model G, we can generate **labeled target** data $(x'_t, y'_t) = (G(x_s), y_s)$, and use it to train target network
 - Popular application is **augmenting real images** from **synthetic** images

Unlabeled Real Images

Simulated images

Training data	% of images within d	
Synthetic Data	69.7	
Refined Synthetic Data	72.4	
Real Data	74.5	
Synthetic Data 3x	77.7	
Refined Synthetic Data 3x	83.3	

- Motivation: Bridging gap between two approaches: source/target feature matching and target data augmentation?
 - Combine ADDA (feature matching via GAN) and CycleGAN (domain transfer)

50

Algorithmic Intelligence Laboratory

Conclusion

- **Domain transfer** is about **generating data** match with given content and style
 - Hence, we should design two losses: **content** loss and **style** loss
- **Domain adaptation** is about **transferring knowledge** for different domains
 - To match source/target features, we apply **adversarial** or **randomization** schemes
 - We can also apply **domain transfer** algorithms to generate target data
- The research is still ongoing
 - Dozens of papers exist.
 - Lots of variants not covered in this slide
 - There would be many interesting research directions

Introduction

- [Zhang et al., 2016] Colorful Image Colorization. ECCV 2016. link : <u>https://arxiv.org/abs/1603.08511</u>
- [Ledig et al., 2017] Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial... CVPR 2017. link : <u>https://arxiv.org/abs/1609.04802</u>
- [Yeh et al., 2017] Semantic Image Inpainting with Deep Generative Models. CVPR 2017. link : <u>https://arxiv.org/abs/1607.07539</u>
- [Artetxe et al., 2018] Unsupervised Neural Machine Translation. ICLR 2018. link : <u>https://arxiv.org/abs/1710.11041</u>
- [Mor et al., 2018] A Universal Music Translation Network. arXiv 2018. link : <u>https://arxiv.org/abs/1805.07848</u>

Network Architecture

- [Ronneberger et al., 2015] U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2015. link : <u>https://arxiv.org/abs/1505.04597</u>
- [He et al., 2016] Deep Residual Learning for Image Recognition. CVPR 2016. link : <u>https://arxiv.org/abs/1512.03385</u>

Domain Transfer

- [Gatys et al., 2016] Image Style Transfer Using Convolutional Neural Networks. CVPR 2016. link : <u>https://ieeexplore.ieee.org/document/7780634/</u>
- [Johnson et al., 2016] Perceptual Losses for Real-Time Style Transfer and Super-Resolution. ECCV 2016. link : <u>https://arxiv.org/abs/1603.08155</u>
- [Li et al., 2017] Demystifying Neural Style Transfer. ICJAI 2017. link : <u>https://arxiv.org/abs/1701.01036</u>
- [Taigman et al., 2017] Unsupervised Cross-Domain Image Generation. ICLR 2017. link : <u>https://arxiv.org/abs/1611.02200</u>
- [Dumoulin et al., 2017] A Learned Representation For Artistic Style. ICLR 2017. link : <u>https://arxiv.org/abs/1610.07629</u>
- [Isola et al., 2017] Image-to-Image Translation with Conditional Adversarial Networks. CVPR 2017. link : <u>https://arxiv.org/abs/1611.07004</u>
- [Zhu et al., 2017a] Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial... ICCV 2017. link : <u>https://arxiv.org/abs/1703.10593</u>
- [Liu et al., 2017] Unsupervised Image-to-Image Translation Networks. NIPS 2017. link : <u>https://arxiv.org/abs/1703.00848</u>
- [Benaim et al., 2017] One-Sided Unsupervised Domain Mapping. NIPS 2017. link : <u>https://arxiv.org/abs/1706.00826</u>
- [Galanti et al., 2018] The Role of Minimal Complexity Functions in Unsupervised Learning of... ICLR 2018. link : <u>https://arxiv.org/abs/1709.00074</u>

Domain Transfer - Extensions

- [Zhu et al., 2017b] Toward Multimodal Image-to-Image Translation. NIPS 2017. link : <u>https://arxiv.org/abs/1711.11586</u>
- [Liang et al., 2017] Generative Semantic Manipulation with Contrasting GAN. arXiv 2017. link : <u>https://arxiv.org/abs/1708.00315</u>
- [Choi et al., 2018] StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image... CVPR 2018. link : <u>https://arxiv.org/abs/1711.09020</u>
- [Zhang et al., 2018] Translating and Segmenting Multimodal Medical Volumes with Cycle- and... CVPR 2018. link : <u>https://arxiv.org/abs/1802.09655</u>
- [Almahairi et al., 2018] Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired... ICML 2018. link : <u>https://arxiv.org/abs/1802.10151</u>
- [Huang et al., 2018] Multimodal Unsupervised Image-to-Image Translation. ECCV 2018. link : <u>https://arxiv.org/abs/1804.04732</u>
- [Bansal et al., 2018] Recycle-GAN: Unsupervised Video Retargeting. ECCV 2018. link : <u>https://arxiv.org/abs/1808.05174</u>
- [Wang et al., 2018] Video-to-Video Synthesis. NIPS 2018. link : <u>https://arxiv.org/abs/1808.06601</u>
- [Mejjati et al., 2018] Unsupervised Attention-guided Image to Image Translation. NIPS 2018. link : <u>https://arxiv.org/abs/1806.02311</u>
- [Chan et al., 2018] Everybody Dance Now. arXiv 2018. link : <u>https://arxiv.org/abs/1808.07371</u>

Instance Normalization

- [loffe et al., 2016] Batch Normalization: Accelerating Deep Network Training by Reducing Internal... ICML 2015. link : <u>https://arxiv.org/abs/1502.03167</u>
- [Ulyanov et al., 2016] Instance Normalization: The Missing Ingredient for Fast Stylization. arXiv 2016. link : <u>https://arxiv.org/abs/1607.08022</u>
- [Dumoulin et al., 2017] A Learned Representation For Artistic Style. ICLR 2017. link : <u>https://arxiv.org/abs/1610.07629</u>
- [Huang et al., 2017] Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. ICCV 2017. link : <u>https://arxiv.org/abs/1703.06868</u>
- [Wu et al., 2018] Group Normalization. ECCV 2018. link : <u>https://arxiv.org/abs/1803.08494</u>
- [Nam et al., 2018] Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks. NIPS 2018. link : <u>https://arxiv.org/abs/1805.07925</u>

Domain Adaptation

- [Grandvalet & Bengio, 2004] Semi-supervised Learning by Entropy Minimization. NIPS 2004. link : <u>https://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization</u>
- [Ganin et al., 2015] Unsupervised Domain Adaptation by Backpropagation. ICML 2015. link : <u>http://proceedings.mlr.press/v37/ganin15.html</u>
- [Bousmalis et al., 2016] Domain Separation Networks. NIPS 2016. link : <u>https://arxiv.org/abs/1608.06019</u>
- [Long et al., 2016] Unsupervised Domain Adaptation with Residual Transfer Networks. NIPS 2016. link : <u>https://arxiv.org/abs/1602.04433</u>
- [Tzeng et al., 2017] Adversarial Discriminative Domain Adaptation. CVPR 2017. link : <u>https://arxiv.org/abs/1702.05464</u>
- [Shrivastava et al., 2017] Learning from Simulated and Unsupervised Images through Adversarial... CVPR 2017. link : <u>https://arxiv.org/abs/1612.07828</u>
- [Bousmalis et al., 2017] Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial... CVPR 2017. link : <u>https://arxiv.org/abs/1612.05424</u>
- [Tobin et al., 2017] Domain Randomization for Transferring Deep Neural Networks from Simulation... IROS 2017. link : <u>https://arxiv.org/abs/1703.06907</u>
- [Hoffman et al., 2018] CyCADA: Cycle-Consistent Adversarial Domain Adaptation. ICML 2018. link : <u>https://arxiv.org/abs/1711.03213</u>