Novelty and Uncertainty Estimation

Al602: Recent Advances in Deep Learning

Lecture 10

Slide made by

Kimin Lee

KAIST EE

Table of Contents

1. Introduction

- Problem definition
- Overview

2. Utilizing the Classifier

- Confidence from posterior distribution
- Confidence from hidden features

3. Utilizing the Generative Models

- Confidence from likelihood
- Hybrid Models

4. Other approaches

- Pre-training
- Self-supervised learning

Table of Contents

1. Introduction

- Problem definition
- Overview

2. Utilizing the Classifier

- Confidence from posterior distribution
- Confidence from hidden features

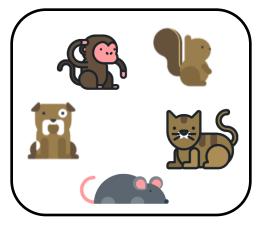
3. Utilizing the Generative Models

- Confidence from likelihood
- Hybrid Models

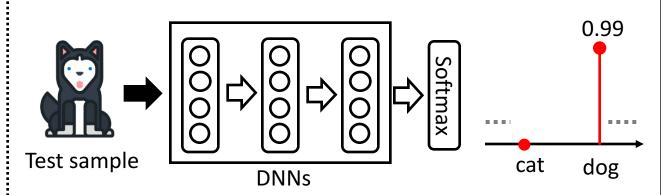
4. Other approaches

- Pre-training
- Self-supervised learning

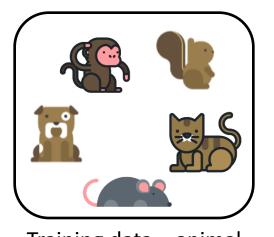
- Deep neural networks (DNNs) can be generalized well when the test samples are from similar distribution (i.e., in-distribution)
 - E.g., image classifier

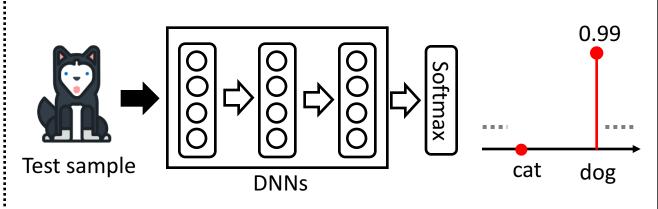


Training data = animal



- Deep neural networks (DNNs) can be generalized well when the test samples are from similar distribution (i.e., in-distribution)
 - E.g., image classifier



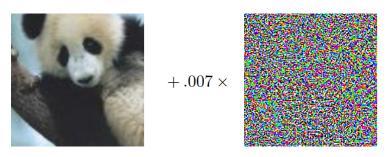


Training data = animal

However, in the real world, there are many unknown and unseen samples

Unseen sample, i.e., out-of-distribution (not animal)

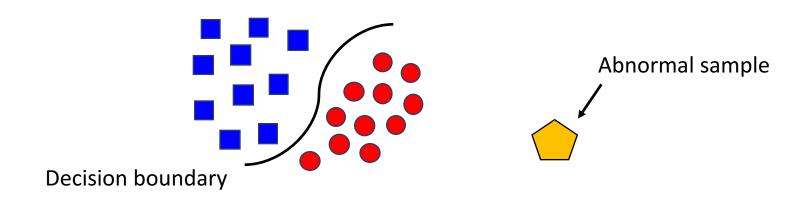
Unknown sample



Adversarial samples [Goodfellow et al., 2015]

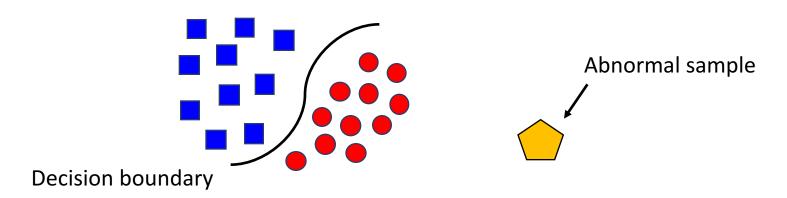
Novelty detection

• Detect whether a test sample is from in-distribution (i.e., training distribution by classifier) or not (e.g., out-of-distribution / adversarial samples)

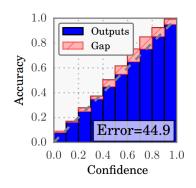


Novelty detection

 Detect whether a test sample is from in-distribution (i.e., training distribution by classifier) or not (e.g., out-of-distribution / adversarial samples)

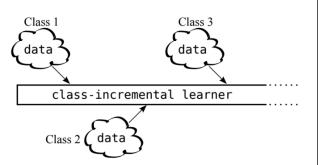


It can be useful for many machine learning problems:



Calibration [Guo et al., 2017]

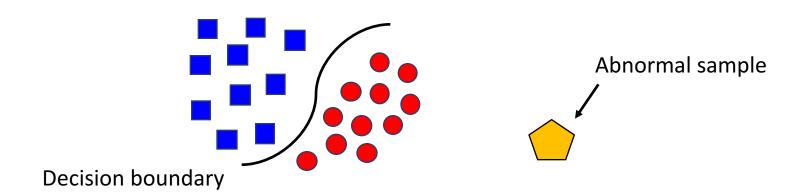
Ensemble learning [Lee et al., 2017]



Incremental learning [Rebuff et al., 2017]

Novelty detection

 Detect whether a test sample is from in-distribution (i.e., training distribution by classifier) or not (e.g., out-of-distribution / adversarial samples)

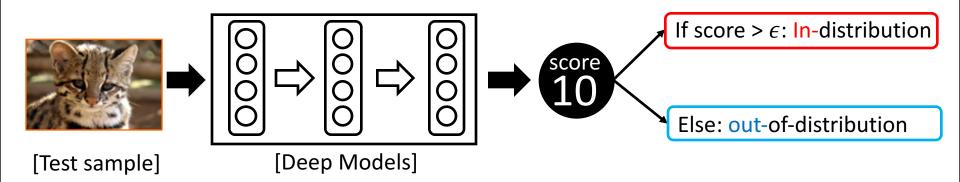


• It is also indispensable when deploying DNNs in real-world systems [Amodei et al., 2016]

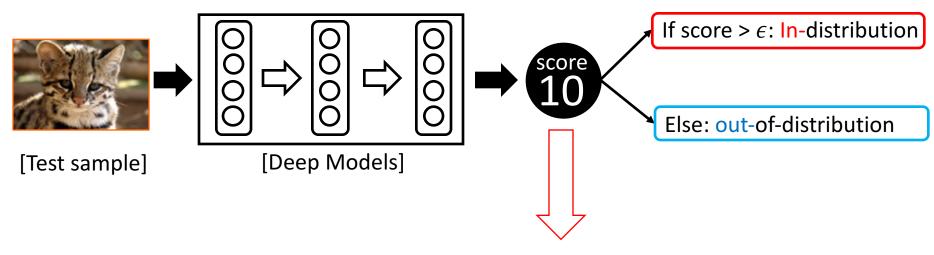
Autonomous drive

Secure authentication system

- How to solve this problem?
 - Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

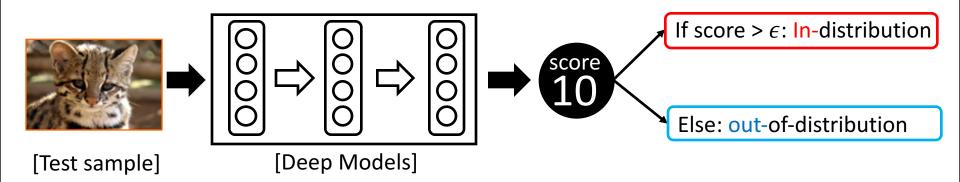


- How to solve this problem?
 - Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

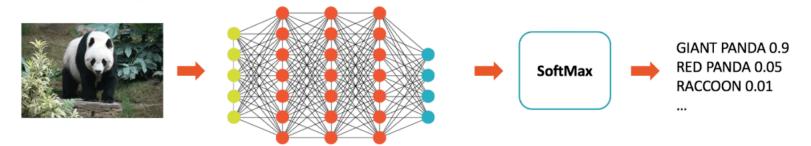


How to get confidence score

- How to solve this problem?
 - Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

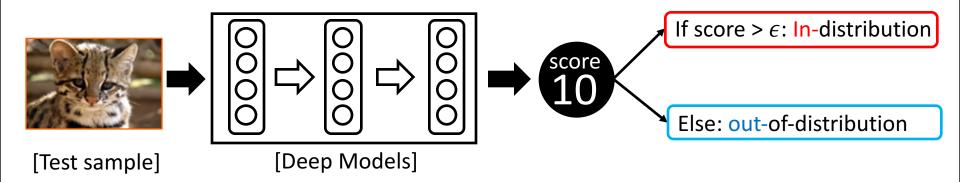


Part 1. utilizing image classifiers

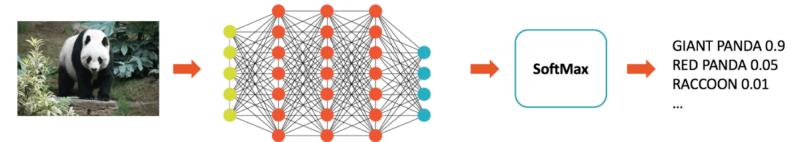


Algorithmic Intelligence Lab

- How to solve this problem?
 - Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]



Part 1. utilizing image classifiers



Part 2. utilizing generative models

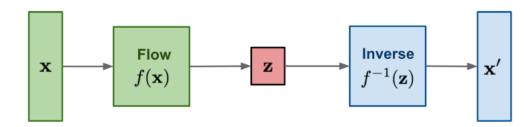


Table of Contents

1. Introduction

- Problem definition
- Overview

2. Utilizing the Classifier

- Confidence from posterior distribution
- Confidence from hidden features

3. Utilizing the Generative Models

- Confidence from likelihood
- Hybrid Models

4. Other approaches

- Pre-training
- Self-supervised learning

Utilizing the Classifier: Preliminaries

Remind that classification is finding an unknown posterior distribution, i.e., P(Y|X)

Input space
$$X$$
 — P — Y Output space

How to model our posterior distribution: Softmax classifier with DNNs

$$P(y = c|\mathbf{x}) = \frac{\exp(\mathbf{w}_c^{\top} f(\mathbf{x}) + b_c)}{\sum_{c'} \exp(\mathbf{w}_{c'}^{\top} f(\mathbf{x}) + b_{c'})}$$

• Where $f(\cdot)$ is hidden features from DNNs

Utilizing the Classifier: Preliminaries

Remind that classification is finding an unknown posterior distribution, i.e., P(Y|X)

Input space
$$X$$
 — P — Y Output space

How to model our posterior distribution: Softmax classifier with DNNs

$$P(y = c | \mathbf{x}) = \frac{\exp(\mathbf{w}_c^{\top} f(\mathbf{x}) + b_c)}{\sum_{c'} \exp(\mathbf{w}_{c'}^{\top} f(\mathbf{x}) + b_{c'})}$$

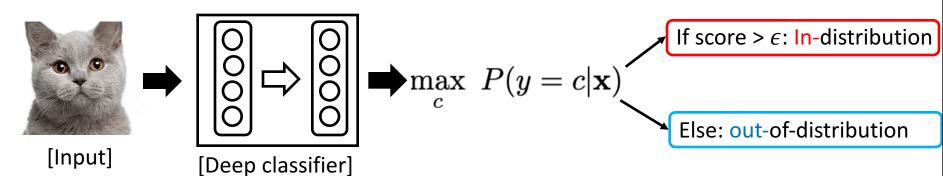
- Where $f(\cdot)$ is hidden features from DNNs
- Natural choice for confidence score
 - 1. maximum value of posterior distribution

$$\max_{c} P(y = c | \mathbf{x})$$

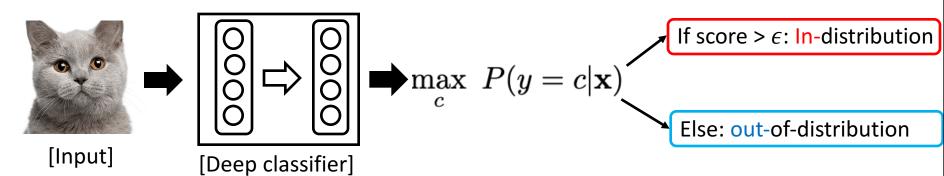
2. entropy of posterior distribution

$$H = \sum_{y} -P(y|\mathbf{x}) \log P(y|\mathbf{x})$$

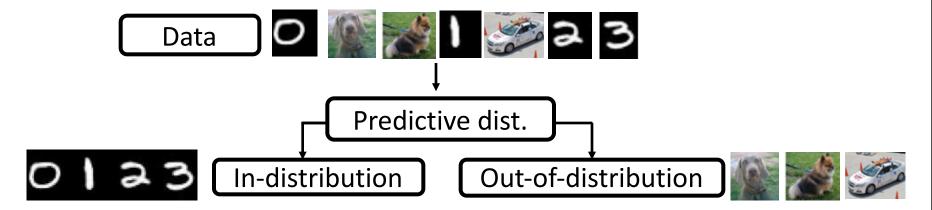
- Baseline detector [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution



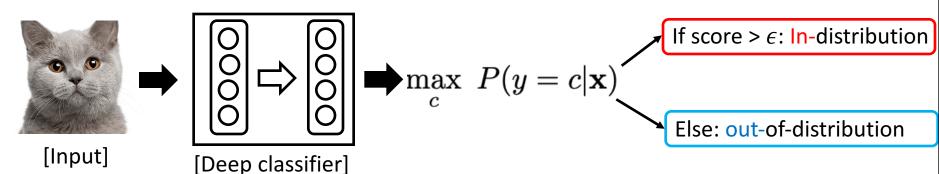
- Baseline detector [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution



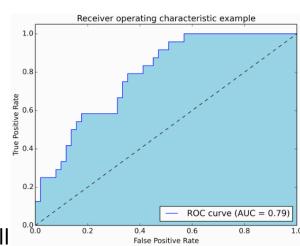
- Evaluation: detecting out-of-distribution
 - Assume that we have classifier trained on MNIST dataset
 - Detecting out-of-distribution for this classifier



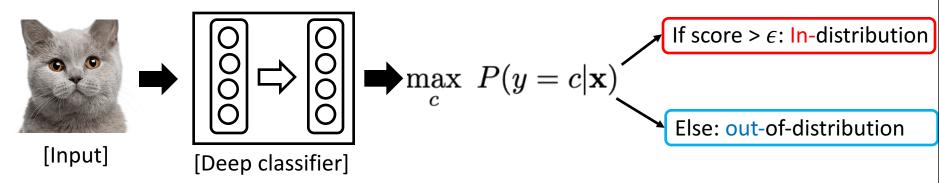
- Baseline detector [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution



- Evaluation: detecting out-of-distribution
 - TP = true positive / FN = false negative /TN = true negative / FP = false positive
 - AUROC
 - Area under ROC curve
 - ROC curve = relationship between TPR and FPR
 - AUPR (Area under the Precision-Recall curve)
 - Area under PR curve
 - PR curve = relationship between precision and recall



- Baseline detector [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution

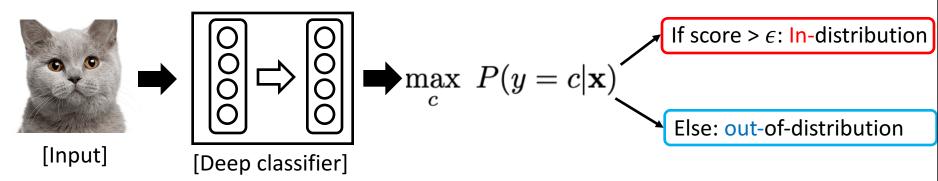


- Evaluation: detecting out-of-distribution
 - Image classification (computer vision)

In-Distribution /	AUROC	AUPR In	AUPR
Out-of-Distribution	/random	random	Out/random
CIFAR-10/SUN	95/50 89/33		97/67
CIFAR-10/Gaussian	97/50	98/49	95/51
CIFAR-10/All	96/50	88/24	98/76
CIFAR-100/SUN	91/50	83/27	96/73
CIFAR-100/Gaussian	88/50	92/43	80/57
CIFAR-100/All	90/50	81/21	96/79
MNIST/Omniglot	96/50	97/52	96/48
MNIST/notMNIST	85/50	86/50	88/50
MNIST/CIFAR-10bw	95/50	95/50	95/50
MNIST/Gaussian	90/50	90/50	91/50
MNIST/Uniform	99/50	99/50	98/50
MNIST/All	91/50	76/20	98/80

Baseline method is better than random detector

- Baseline detector [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution



- Evaluation: detecting out-of-distribution
 - Text categorization (NLP)

Dataset	AUROC	AUPR	AUPR
	/random	Succ/random	Err/random
15 Newsgroups	89/50	99/93	42/7.3
Reuters 6	89/50	100/98	35/2.5
Reuters 40	91/50	99/92	45/7.6

- Out-of-distribution
 - 5 Newsgroups for 15 Newsgroups
 - 2 Reuters for Reuters 6
 - 12 Reuters for 40 Reuters

- ODIN detector [Liang et al., 2018]
 - Calibrating the posterior distribution using post-processing
- Two techniques
 - Temperature scaling

Temperature scaling parameter

$$P(y = \widehat{y}|\mathbf{x}; T) = \frac{\exp(f_{\widehat{y}}(\mathbf{x})/T)}{\sum_{y} \exp(f_{y}(\mathbf{x})/T)},$$

 $\mathbf{f} = (f_1, \dots, f_K)$ is final feature vector of deep neural networks

• Relaxing the overconfidence by smoothing the posterior distribution

- ODIN detector [Liang et al., 2018]
 - Calibrating the posterior distribution using post-processing
- Two techniques
 - Temperature scaling

$$P(y = \widehat{y}|\mathbf{x}; T) = \frac{\exp(f_{\widehat{y}}(\mathbf{x})/T)}{\sum_{y} \exp(f_{y}(\mathbf{x})/T)},$$

Input preprocessing

$$\mathbf{x}' = \mathbf{x} - \varepsilon \operatorname{sign} \left(- \nabla_{\mathbf{x}} \log P_{\theta}(y = \widehat{y} | \mathbf{x}; T) \right),$$

$$\downarrow \qquad \qquad \downarrow$$
Magnitude of noise \widehat{y} is the predicted label

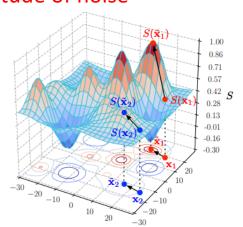


Figure 6: Illustration of effects of the input preprocessing.

In-distribution image

Out-of-distribution image

- ODIN detector [Liang et al., 2018]
 - Calibrating the posterior distribution using post-processing
- Two techniques
 - Temperature scaling

$$P(y = \widehat{y}|\mathbf{x}; T) = \frac{\exp(f_{\widehat{y}}(\mathbf{x})/T)}{\sum_{y} \exp(f_{y}(\mathbf{x})/T)},$$

Input preprocessing

$$\mathbf{x}' = \mathbf{x} - \varepsilon \operatorname{sign} \left(- \nabla_{\mathbf{x}} \log P_{\theta}(y = \widehat{y} | \mathbf{x}; T) \right),$$

Using two methods, the authors define confidence score as follows:

Confidence score =
$$\max_{y} P(y|\mathbf{x}';T)$$

- ODIN detector [Liang et al., 2018]
 - Calibrating the posterior distribution using post-processing
- Two techniques
 - Temperature scaling

$$P(y = \widehat{y}|\mathbf{x}; T) = \frac{\exp(f_{\widehat{y}}(\mathbf{x})/T)}{\sum_{y} \exp(f_{y}(\mathbf{x})/T)},$$

Input preprocessing

$$\mathbf{x}' = \mathbf{x} - \varepsilon \operatorname{sign} \left(- \nabla_{\mathbf{x}} \log P_{\theta}(y = \widehat{y} | \mathbf{x}; T) \right),$$

Using two methods, the authors define confidence score as follows:

Confidence score =
$$\max_{y} P(y|\mathbf{x}';T)$$

- How to select hyper-parameters
 - Validation
 - 1000 images from in-distribution (positive)
 - 1000 images from out-of-distribution (negative)

• Experimental results

	Out-of-distribution dataset	FPR (95% TPR)	Detection Error	AUROC	AUPR In	AUPR Out
		\downarrow	\downarrow	↑	↑	↑
		Baseline (Hendrycks & Gimpel, 2017) / ODIN				
Dense-BC	TinyImageNet (crop)	34.7/4.3	19.9/4.7	95.3/99.1	96.4/99.1	93.8/99.1
	TinyImageNet (resize)	40.8/7.5	22.9/6.3	94.1/98.5	95.1/98.6	92.4/98.5
CIFAR-10	LSUN (crop)	39.3/8.7	22.2/6.9	94.8/98.2	96.0/98.5	93.1/97.8
CIFAR-10	LSUN (resize)	33.6/3.8	19.3/4.4	95.4/99.2	96.4/99.3	94.0/99.2
	iSUN	37.2/6.3	21.1/5.7	94.8/98.8	95.9/98.9	93.1/98.8
	Uniform	23.5/0.0	14.3/2.5	96.5/99.9	97.8/100.0	93.0/99.9
	Gaussian	12.3/0.0	8.7/2.5	97.5/100.0	98.3/100.0	95.9/100.0
	TinyImageNet (crop)	67.8/17.3	36.4/11.2	83.0/97.1	85.3/97.4	80.8/96.8
	TinyImageNet (resize)	82.2/44.3	43.6/24.6	70.4/90.7	71.4/91.4	68.6/90.1
Dense-BC	LSUN (crop)	69.4/17.6	37.2/11.3	83.7/96.8	86.2/97.1	80.9/96.5
CIFAR-100	LSUN (resize)	83.3/44.0	44.1/24.5	70.6/91.5	72.5/92.4	68.0/90.6
CIFAR-100	iSUN	84.8/49.5	44.7/27.2	69.9/90.1	71.9/91.1	67.0/88.9
	Uniform	88.3/0.5	46.6/2.8	83.2/99.5	88.1/99.6	73.1/99.0
	Gaussian	95.4/0.2	50.2/2.6	81.8/99.6	87.6/99.7	70.1/99.1
	TinyImageNet (crop)	38.9/23.4	21.9/14.2	92.9/94.2	92.5/92.8	91.9/94.7
	TinyImageNet (resize)	45.6/25.5	25.3/15.2	91.0/92.1	89.7/89.0	89.9/93.6
WRN-28-10	LSUN (crop)	35.0/21.8	20.0/13.4	94.5/95.9	95.1/95.8	93.1/95.5
	LSUN (resize)	35.0/17.6	20.0/11.3	93.9/95.4	93.8/93.8	92.8/96.1
CIFAR-10	iSUN	40.6/21.3	22.8/13.2	92.5/93.7	91.7/91.2	91.5/94.9
	Uniform	1.6/0.0	3.3/2.5	99.2/100.0	99.3/100.0	98.9/100.0
	Gaussian	0.3/0.0	2.6/2.5	99.5/100.0	99.6/100.0	99.3/100.0
WRN-28-10 CIFAR-100	TinyImageNet (crop)	66.6/43.9	35.8/24.4	82.0/90.8	83.3/91.4	80.2/90.0
	TinyImageNet (resize)	79.2/55.9	42.1/30.4	72.2/84.0	70.4/82.8	70.8/84.4
	LSUN (crop)	74.0/39.6	39.5/22.3	80.3/92.0	83.4/92.4	77.0/91.6
	LSUN (resize)	82.2/56.5	43.6/30.8	73.9/86.0	75.7/86.2	70.1/84.9
	iSUN	82.7/57.3	43.9/31.1	72.8/85.6	74.2/85.9	69.2/84.8
	Uniform	98.2/0.1	51.6/2.5	84.1/99.1	89.9/99.4	71.0/97.5
	Gaussian	99.2/1.0	52.1/3.0	84.3/98.5	90.2/99.1	70.9/95.9

Table of Contents

1. Introduction

- Problem definition
- Overview

2. Utilizing the Classifier

- Confidence from posterior distribution
- Confidence from hidden features

3. Utilizing the Generative Models

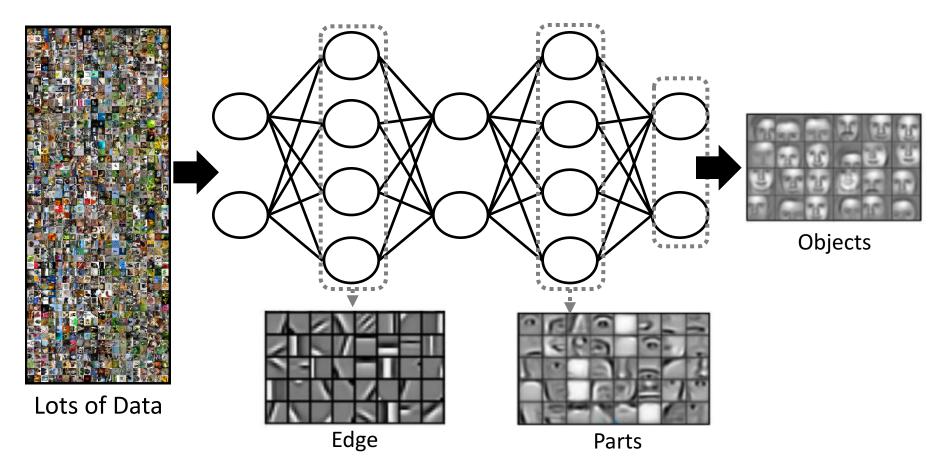
- Confidence from likelihood
- Hybrid Models

4. Other approaches

- Pre-training
- Self-supervised learning

Motivation

Hidden features from DNNs contain meaningful features from training data



They can be useful for detecting abnormal samples!

- Local Intrinsic Dimensionality (LID) [Ma et al., 2018]
 - Expansion dimension
 - Rate of growth in the number of data encountered as the distance from the reference sample increases (V is volume)

$$\frac{V_2}{V_1} = \left(\frac{r_2}{r_1}\right)^m \Rightarrow m = \frac{\ln(V_2/V_1)}{\ln(r_2/r_1)}.$$
 (1)

- Local Intrinsic Dimensionality (LID) [Ma et al., 2018]
 - Expansion dimension
 - Rate of growth in the number of data encountered as the distance from the reference sample increases (V is volume)

$$\frac{V_2}{V_1} = \left(\frac{r_2}{r_1}\right)^m \Rightarrow m = \frac{\ln(V_2/V_1)}{\ln(r_2/r_1)}.$$
 (1)

• LID = expansion dimension in the statistical setting

Definition 1 (Local Intrinsic Dimensionality).

Given a data sample $x \in X$, let R > 0 be a random variable denoting the distance from x to other data samples. If the cumulative distribution function F(r) of R is positive and continuously differentiable at distance r > 0, the LID of x at distance r is given by:

$$LID_{F}(r) \triangleq \lim_{\epsilon \to 0} \frac{\ln \left(F((1+\epsilon) \cdot r) / F(r) \right)}{\ln(1+\epsilon)} = \frac{r \cdot F'(r)}{F(r)}, \tag{2}$$

whenever the limit exists.

Where F is analogous to the volume in equation (1)

- **Local Intrinsic Dimensionality (LID)** [Ma et al., 2018]
 - **Expansion dimension**
 - Rate of growth in the number of data encountered as the distance from the re ference sample increases (V is volume)

$$\frac{V_2}{V_1} = \left(\frac{r_2}{r_1}\right)^m \Rightarrow m = \frac{\ln(V_2/V_1)}{\ln(r_2/r_1)}.$$
 (1)

LID = expansion dimension in the statistical setting

Definition 1 (Local Intrinsic Dimensionality).

Given a data sample $x \in X$, let R > 0 be a random variable denoting the distance from x to other data samples. If the cumulative distribution function F(r) of R is positive and continuously differentiable at distance r > 0, the LID of x at distance r is given by:

$$LID_{F}(r) \triangleq \lim_{\epsilon \to 0} \frac{\ln \left(F((1+\epsilon) \cdot r) / F(r) \right)}{\ln(1+\epsilon)} = \frac{r \cdot F'(r)}{F(r)}, \tag{2}$$

whenever the limit exists.

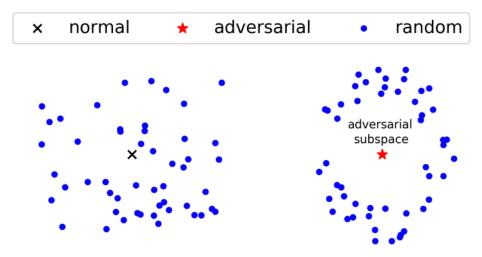
Algorithmic Intelligence Lab

- Where F is analogous to the volume in equation (1)
- Estimation of LID [Amsaleg et al., 2015]

distance between sample and its k-th nearest neighbor

Motivation of LID

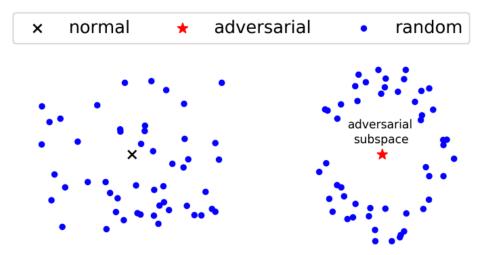
• Abnormal sample might be scattered compared to normal samples



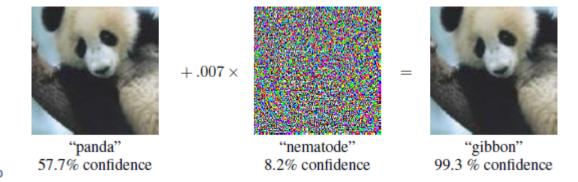
This implies that LID can be useful for detecting abnormal samples!

Motivation of LID

Abnormal sample might be scattered compared to normal samples

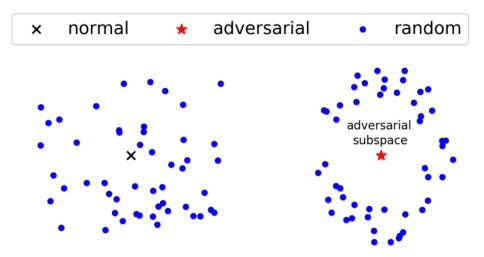


- This implies that LID can be useful for detecting abnormal samples!
- Evaluation: detecting adversarial samples [Szegedy, et al., 2013]
 - Misclassified examples that are only slightly different from original examples

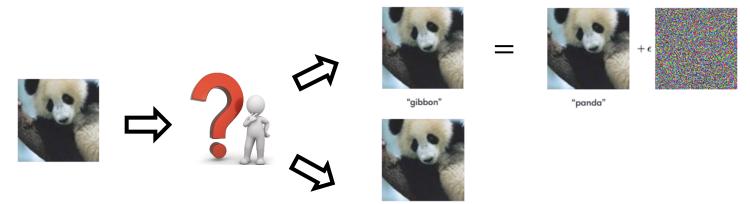


Motivation of LID

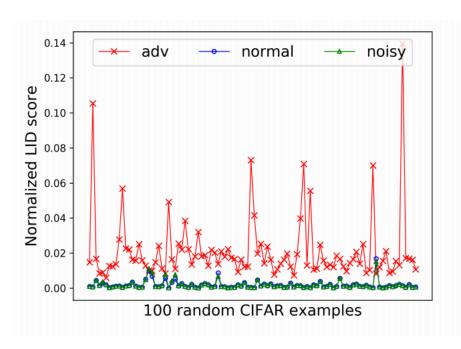
Abnormal sample might be scattered compared to normal samples

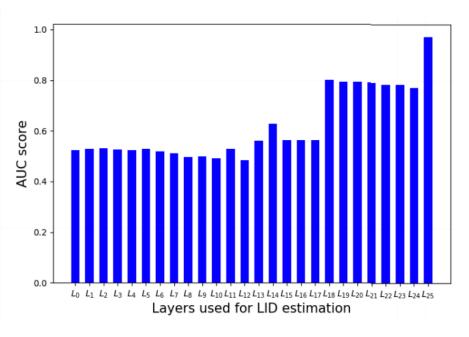


- This implies that LID can be useful for detecting abnormal samples!
- Evaluation: detecting adversarial samples [Szegedy, et al., 2013]



Empirical justification





- Adversarial samples (generated by OPT attack [Carlini et al., 2017]) can be distinguis hed using LID
- LIDs from low-level layers are also useful in detection

Main results on detecting adversarial attacks

- Tested method
 - Bayesian uncertainty (BU) and Density estimator (DE) [Feinman et al., 2017]

Table 1: A comparison of the discrimination power (AUC score (%) of a logistic regression classifier) among LID, KD, BU, and KD+BU. The AUC score is computed for each attack strategy on each dataset, and the best results are highlighted in **bold**.

Dataset	Feature	FGM	BIM-a	BIM-b	JSMA	Opt
MNIST	KD	78.12	98.14	98.61	68.77	95.15
	BU	32.37	91.55	25.46	88.74	71.30
	KD+BU	82.43	99.20	98.81	90.12	95.35
	LID	96.89	99.60	99.83	92.24	99.24
CIFAR-10	KD	64.92	68.38	98.70	85.77	91.35
	BU	70.53	81.60	97.32	87.36	91.39
	KD+BU	70.40	81.33	98.90	88.91	93.77
	LID	82.38	82.51	99.78	95.87	98.94
SVHN	KD	70.39	77.18	99.57	86.46	87.41
	BU	86.78	84.07	86.93	91.33	87.13
	KD+BU	86.86	83.63	99.52	93.19	90.66
	LID	97.61	87.55	99.72	95.07	97.60

LID outperforms all baseline methods

Mahalanobis distance-based confidence score [Lee et al., 2018b]

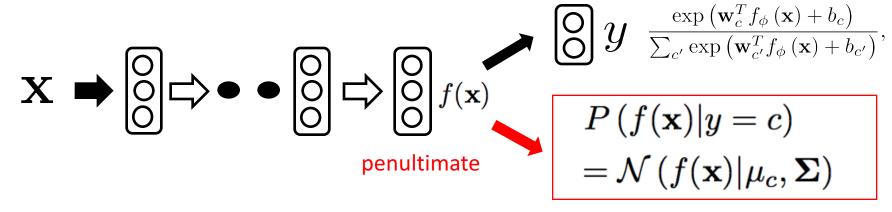
- Mahalanobis distance-based confidence score [Lee et al., 2018b]
 - Given pre-trained Softmax classifier with DNNs

$$P_{\theta}\left(y = c | \mathbf{x}\right) = \frac{\exp\left(\mathbf{w}_{c}^{T} f_{\phi}\left(\mathbf{x}\right) + b_{c}\right)}{\sum_{c'} \exp\left(\mathbf{w}_{c'}^{T} f_{\phi}\left(\mathbf{x}\right) + b_{c'}\right)},$$

- Mahalanobis distance-based confidence score [Lee et al., 2018b]
 - Given pre-trained Softmax classifier with DNNs

$$P_{\theta}\left(y = c | \mathbf{x}\right) = \frac{\exp\left(\mathbf{w}_{c}^{T} f_{\phi}\left(\mathbf{x}\right) + b_{c}\right)}{\sum_{c'} \exp\left(\mathbf{w}_{c'}^{T} f_{\phi}\left(\mathbf{x}\right) + b_{c'}\right)},$$

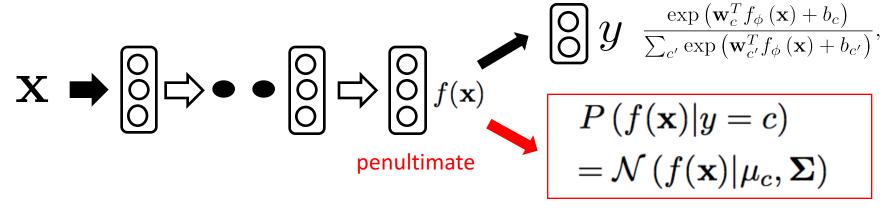
Inducing a generative classifier on hidden feature space



- Mahalanobis distance-based confidence score [Lee et al., 2018b]
 - Given pre-trained Softmax classifier with DNNs

$$P_{\theta}\left(y = c | \mathbf{x}\right) = \frac{\exp\left(\mathbf{w}_{c}^{T} f_{\phi}\left(\mathbf{x}\right) + b_{c}\right)}{\sum_{c'} \exp\left(\mathbf{w}_{c'}^{T} f_{\phi}\left(\mathbf{x}\right) + b_{c'}\right)},$$

Inducing a generative classifier on hidden feature space



Motivation: connection between softamx and generative classifier (LDA)

$$P_{\theta}(y = c|\mathbf{x}) = \frac{\exp(\mathbf{w}_{c}\mathbf{x} + b_{c})}{\sum_{c'} \exp(\mathbf{w}_{c'}\mathbf{x} + b_{c'})}$$

$$\mathbf{w}_{c} = \mathbf{\Sigma}^{-1}\mu_{c} \quad b_{c} = -0.5\mu_{c}^{T}\mathbf{\Sigma}^{-1}\mu_{c} + \log \pi_{c}$$

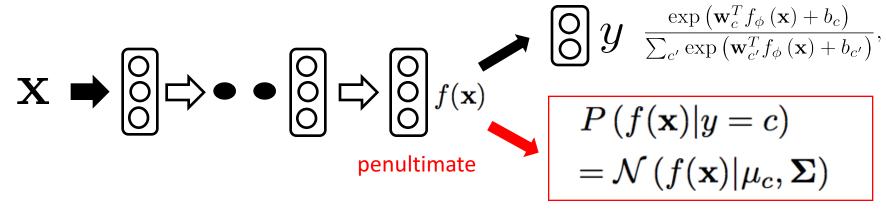
$$= P_{\theta}(y = c|\mathbf{x}) = \frac{P_{\theta}(\mathbf{x}|y = c)P_{\theta}(y = c)}{\sum_{c'} P_{\theta}(\mathbf{x}|y = c')P_{\theta}(y = c')}$$

$$P_{\theta}(\mathbf{x}|y = c) = \mathcal{N}(\mathbf{x}|\mu_{c}, \mathbf{\Sigma}), \quad P_{\theta}(y = c) = \frac{\pi_{c}}{\sum_{c'} \pi_{c'}}$$

- Mahalanobis distance-based confidence score [Lee et al., 2018b]
 - Given pre-trained Softmax classifier with DNNs

$$P_{\theta}\left(y = c | \mathbf{x}\right) = \frac{\exp\left(\mathbf{w}_{c}^{T} f_{\phi}\left(\mathbf{x}\right) + b_{c}\right)}{\sum_{c'} \exp\left(\mathbf{w}_{c'}^{T} f_{\phi}\left(\mathbf{x}\right) + b_{c'}\right)},$$

Inducing a generative classifier on hidden feature space



- The parameters of generative classifier = sample means and covariance
 - Given training data $\{(\mathbf{x}_1,y_1),\ldots,(\mathbf{x}_N,y_N)\}$

$$\widehat{\mu}_c = \frac{1}{N_c} \sum_{i:y_i = c} f(\mathbf{x}_i), \ \widehat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{c} \sum_{i:y_i = c} \left(f(\mathbf{x}_i) - \widehat{\mu}_c \right) \left(f(\mathbf{x}_i) - \widehat{\mu}_c \right)^{\top},$$

Using generative classifier, we define new confidence score:

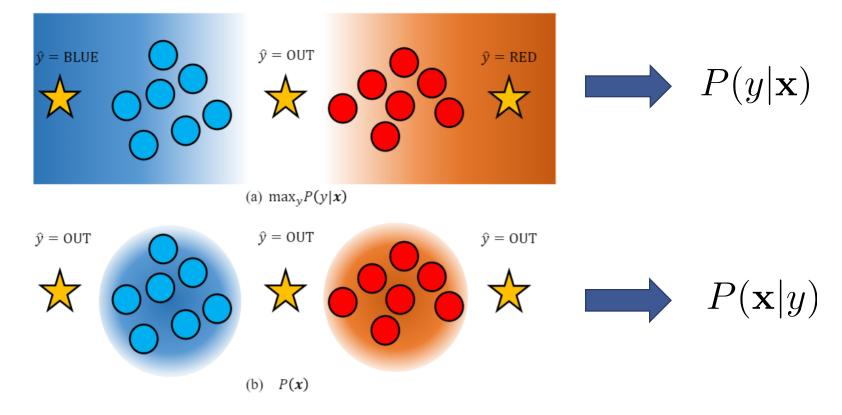
$$M(\mathbf{x}) = \max_{c} - (f(\mathbf{x}) - \widehat{\mu}_{c})^{\top} \widehat{\mathbf{\Sigma}}^{-1} (f(\mathbf{x}) - \widehat{\mu}_{c})$$

Measuring the log of the probability densities of the test sample

Using generative classifier, we define new confidence score:

$$M(\mathbf{x}) = \max_{c} \ - (f(\mathbf{x}) - \widehat{\mu}_{c})^{\top} \, \widehat{\mathbf{\Sigma}}^{-1} \, (f(\mathbf{x}) - \widehat{\mu}_{c})$$

- Measuring the log of the probability densities of the test sample
- Intuition



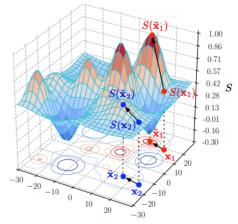
Using generative classifier, we define new confidence score:

$$M(\mathbf{x}) = \max_{c} - (f(\mathbf{x}) - \widehat{\mu}_{c})^{\top} \widehat{\mathbf{\Sigma}}^{-1} (f(\mathbf{x}) - \widehat{\mu}_{c})$$

- Measuring the log of the probability densities of the test sample
- Boosting the performance
 - Input pre-processing

$$\widehat{\mathbf{x}} = \mathbf{x} + \varepsilon \operatorname{sign}\left(\nabla_{\mathbf{x}} M(\mathbf{x})\right) = \mathbf{x} - \varepsilon \operatorname{sign}\left(\nabla_{\mathbf{x}} \left(f(\mathbf{x}) - \widehat{\mu}_{\widehat{c}}\right)^{\top} \widehat{\boldsymbol{\Sigma}}^{-1} \left(f(\mathbf{x}) - \widehat{\mu}_{\widehat{c}}\right)\right)$$

Motivated by ODIN [Liang et al., 2018]



- In-distribution image
- Out-of-distribution image

Algorithmic Intelligence Lab

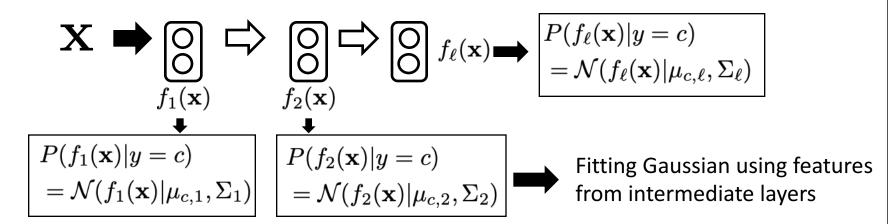
Using generative classifier, we define new confidence score:

$$M(\mathbf{x}) = \max_{c} - (f(\mathbf{x}) - \widehat{\mu}_{c})^{\top} \widehat{\mathbf{\Sigma}}^{-1} (f(\mathbf{x}) - \widehat{\mu}_{c})$$

- Measuring the log of the probability densities of the test sample
- Boosting the performance
 - Input pre-processing

$$\widehat{\mathbf{x}} = \mathbf{x} + \varepsilon \operatorname{sign}\left(\nabla_{\mathbf{x}} M(\mathbf{x})\right) = \mathbf{x} - \varepsilon \operatorname{sign}\left(\nabla_{\mathbf{x}} \left(f(\mathbf{x}) - \widehat{\mu}_{\widehat{c}}\right)^{\top} \widehat{\boldsymbol{\Sigma}}^{-1} \left(f(\mathbf{x}) - \widehat{\mu}_{\widehat{c}}\right)\right)$$

Feature ensemble



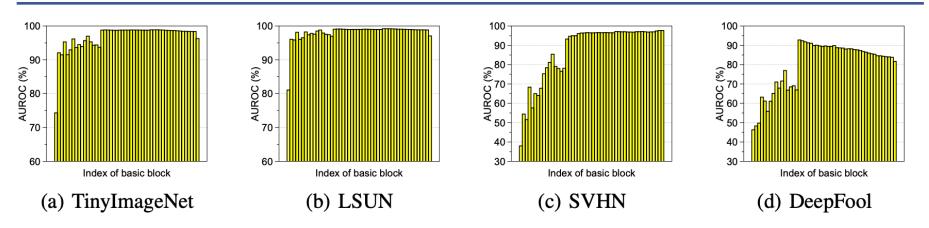
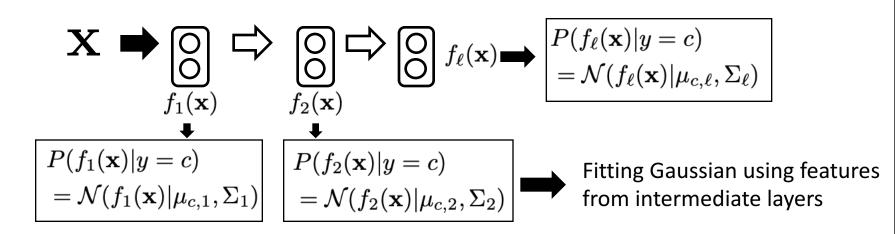


Figure 2: AUROC (%) of threshold-based detector using the confidence score in (2) computed at different basic blocks of DenseNet trained on CIFAR-10 dataset. We measure the detection performance using (a) TinyImageNet, (b) LSUN, (c) SVHN and (d) adversarial (DeepFool) samples.



Intuition: low-level feature also can be useful for detecting abnormal samples

Algorithmic Intelligence Lab

Main algorithm

Algorithm 1 Computing the Mahalanobis distance-based confidence score.

Input: Test sample \mathbf{x} , weights of logistic regression detector α_{ℓ} , noise ε and parameters of Gaussian distributions $\{\widehat{\mu}_{\ell,c},\widehat{\Sigma}_{\ell}: \forall \ell,c\}$

```
Initialize score vectors: \mathbf{M}(\mathbf{x}) = [M_{\ell} : \forall \ell]

for each layer \ell \in 1, \ldots, L do

Find the closest class: \widehat{c} = \arg\min_{c} \ (f_{\ell}(\mathbf{x}) - \widehat{\mu}_{\ell,c})^{\top} \widehat{\boldsymbol{\Sigma}}_{\ell}^{-1} (f_{\ell}(\mathbf{x}) - \widehat{\mu}_{\ell,c})

Add small noise to test sample: \widehat{\mathbf{x}} = \mathbf{x} - \varepsilon \mathrm{sign} \left( \nabla_{\mathbf{x}} \left( f_{\ell}(\mathbf{x}) - \widehat{\mu}_{\ell,\widehat{c}} \right)^{\top} \widehat{\boldsymbol{\Sigma}}_{\ell}^{-1} \left( f_{\ell}(\mathbf{x}) - \widehat{\mu}_{\ell,\widehat{c}} \right) \right)

Computing confidence score: M_{\ell} = \max_{c} - \left( f_{\ell}(\widehat{\mathbf{x}}) - \widehat{\mu}_{\ell,c} \right)^{\top} \widehat{\boldsymbol{\Sigma}}_{\ell}^{-1} \left( f_{\ell}(\widehat{\mathbf{x}}) - \widehat{\mu}_{\ell,c} \right)

end for

return Confidence score for test sample \sum_{\ell} \alpha_{\ell} M_{\ell}
```

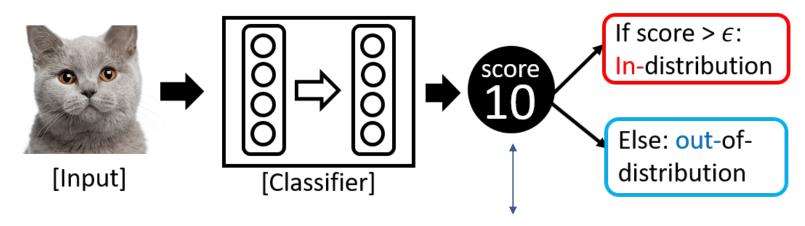
- Remark that
 - We combine the confidence scores from multiple layers using weighted ensemble

$$\sum_{\ell} \alpha^{\ell} M^{\ell}$$

Ensemble weights are selected by utilizing the validation set

- Experimental results on detecting out-of-distribution
 - Contribution by each technique

Method	Feature ensemble	Input pre-processing	TNR at TPR 95%	AUROC	Detection accuracy	AUPR in	AUPR out
Baseline [13]	-	-	32.47	89.88	85.06	85.40	93.96
ODIN [21]	-	-	86.55	96.65	91.08	92.54	98.52
Mahalanobis (ours)	- - - \(- √ - √	54.51 92.26 91.45 96.42	93.92 98.30 98.37 99.14	89.13 93.72 93.55 95.75	91.56 96.01 96.43 98.26	95.95 99.28 99.35 99.60



Baseline [13]: maximum value of posterior distribution
ODIN [21]: maximum value of posterior distribution after post-processing
Ours: the proposed Mahalanobis distance-based score

- Experimental results on detecting out-of-distribution
 - Main results

_							
In-dist	OOD	Validation on OOD samples TNR at TPR 95% AUROC Detection acc.		Validat TNR at TPR 95%	ion on adversarial sa AUROC	amples Detection acc.	
(model)	002		/ ODIN [21] / Maha			ODIN [21] / Maha	
CIFAR-10	SVHN	40.4 / 77.0 / 91.2	89.9 / 94.6 / 98.2	83.2 / 88.1 / 93.5	40.4 / 49.3 / 79.1	89.9 / 89.8 / 94.6	83.2 / 81.7 / 88.9
(DenseNet)	TinyImageNet LSUN	59.4 / 92.5 / 95.3 66.9 / 96.2 / 97.5	94.1 / 98.5 / 99.0 95.5 / 99.2 / 99.3	88.5 / 94.0 / 95.3 90.2 / 95.6 / 96.5	59.4 / 92.5 / 94.1 66.9 / 96.2 / 96.9	94.1 / 98.5 / 98.4 95.5 / 99.2 / 99.1	88.5 / 93.9 / 94.6 90.2 / 95.6 / 96.1
CIFAR-100	SVHN	26.2 / 56.8 / 82.1	82.6 / 92.5 / 97.2	75.5 / 86.0 / 91.4	26.2 / 39.5 / 50.8	82.6 / 88.2 / 90.7	75.5 / 80.7 / 83.8
(DenseNet)	TinyImageNet LSUN	17.3 / 43.1 / 86.6 16.4 / 41.5 / 91.2	71.6 / 85.5 / 97.3 70.8 / 85.8 / 97.8	65.7 / 77.3 / 92.0 65.0 / 77.5 / 93.8	17.3 / 43.1 / 86.3 16.4 / 41.5 / 89.6	71.6 / 85.3 / 97.3 70.8 / 85.7 / 97.8	65.7 / 77.2 / 91.5 65.0 / 77.4 / 93.1
SVHN	CIFAR-10	69.1 / 69.1 / 97.9	91.8 / 91.8 / 99.1	86.5 / 86.5 / 96.5	69.1 / 53.0 / 91.1	91.8 / 82.0 / 97.4	86.5 / 76.4 / 93.7
(DenseNet)	TinyImageNet LSUN	79.7 / 84.0 / 99.9 77.1 / 81.2 / 99.9	94.8 / 95.1 / 99.9 94.1 / 94.5 / 99.9	90.2 / 90.3 / 99.0 89.2 / 89.2 / 99.3	79.7 / 74.4 / 99.7 77.1 / 73.4 / 99.9	94.8 / 90.7 / 99.7 94.1 / 90.5 / 99.9	90.2 / 85.3 / 98.6 89.2 / 84.8 / 99.1
CIFAR-10	SVHN	32.2 / 81.9 / 97.4	89.9 / 95.8 / 99.2	85.1 / 89.1 / 96.2	32.2 / 40.4 / 87.8	89.9 / 86.5 / 97.7	85.1 / 77.8 / 92.6
(ResNet)	TinyImageNet LSUN	44.1 / 71.9 / 97.8 45.1 / 73.8 / 99.3	91.0 / 93.9 / 99.5 91.1 / 94.1 / 99.8	84.9 / 86.3 / 96.8 85.3 / 86.6 / 98.2	44.1 / 69.5 / 97.1 45.1 / 70.1 / 98.8	91.0 / 93.8 / 99.4 91.1 / 93.7 / 99.7	84.9 / 85.9 / 96.3 85.3 / 85.7 / 97.5
CIFAR-100	SVHN	19.9 / 68.1 / 92.5	79.3 / 92.1 / 98.5	73.2 / 85.1 / 93.9	19.9 / 18.3 / 80.1	79.3 / 72.0 / 96.2	73.2 / 66.7 / 90.3
(ResNet)	TinyImageNet LSUN	20.2 / 49.3 / 90.9 18.4 / 45.3 / 91.9	77.1 / 87.6 / 98.2 75.6 / 85.0 / 98.3	70.8 / 80.0 / 93.4 69.8 / 77.8 / 93.9	20.2 / 46.5 / 88.0 18.4 / 43.2 / 85.1	77.1 / 86.8 / 96.5 75.6 / 84.4 / 95.4	70.8 / 78.9 / 91.9 69.8 / 77.0 / 91.0
SVHN	CIFAR-10	78.3 / 78.3 / 98.6	92.9 / 92.9 / 99.3	90.1 / 90.1 / 97.0	78.3 / 78.3 / 96.0	92.9 / 92.9 / 98.3	90.1 / 90.1 / 95.6
(ResNet)	TinyImageNet LSUN	79.1 / 79.1 / 99.9 74.5 / 74.5 / 99.9	93.5 / 93.5 / 99.9 91.5 / 91.5 / 99.9	90.4 / 90.4 / 99.1 88.9 / 88.9 / 99.5	79.1 / 79.1 / 99.3 74.5 / 74.5 / 99.9	93.5 / 93.5 / 99.3 91.5 / 91.5 / 99.9	90.4 / 90.4 / 98.9 88.9 / 88.9 / 99.5

- For all cases, ours outperforms ODIN and baseline method
- Validation consists of 1K data from each in- and out-of-distribution pair
- Validation consists of 1K data from each in- and corresponding FGSM data
 - No information about out-of-distribution

- Experimental results on detecting adversarial attacks
 - Main results

Model	Dataset	Score			f known attac				nown attack	
	(model)		FGSM	BIM	DeepFool	CW	FGSM (seen)	BIM	DeepFool	CW
		KD+PU [7]	84.30	98.08	77.23	74.92	84.30	75.69	76.95	72.48
	CIFAR-10	LID [22]	98.48	100.0	83.36	79.23	98.48	99.50	68.96	65.85
		Mahalanobis (ours)	99.97	100.0	83.73	85.28	99.97	99.57	83.58	84.18
		KD+PU [7]	68.24	84.80	67.60	47.80	68.24	14.91	67.58	52.08
DenseNet	CIFAR-100	LID [22]	99.67	99.88	88.37	68.52	99.67	52.38	86.95	64.98
		Mahalanobis (ours)	99.89	100.0	91.47	80.31	99.89	100.0	90.24	76.38
		KD+PU [7]	89.57	98.33	90.94	90.20	89.57	92.08	91.05	90.22
	SVHN	LID [22]	99.48	99.37	93.42	93.75	99.48	98.50	88.60	84.90
		Mahalanobis (ours)	99.91	99.95	96.36	96.19	99.91	99.82	94.43	95.07
		KD+PU [7]	84.67	99.66	80.92	70.38	84.67	82.37	80.85	70.41
	CIFAR-10	LID [22]	99.77	99.88	88.94	80.74	99.77	98.65	87.48	73.12
		Mahalanobis (ours)	99.99	99.99	94.21	93.33	99.99	99.95	93.58	92.58
		KD+PU [7]	73.41	90.55	78.41	67.32	73.41	50.36	78.85	67.36
ResNet	CIFAR-100	LID [22]	99.01	99.80	88.88	74.96	99.01	36.46	87.06	69.83
		Mahalanobis (ours)	99.85	99.48	93.84	86.24	99.85	99.16	60.25	82.87
		KD+PU [7]	86.76	96.16	91.45	84.22	86.76	93.38	91.44	84.37
	SVHN	LID [22]	97.18	96.39	95.88	86.81	97.18	93.45	93.05	71.92
		Mahalanobis (ours)	99.24	99.40	97.17	91.06	99.24	99.10	95.60	86.09

- For all tested cases, our method outperforms LID and KD estimator
- For unseen attacks, our method is still working well
 - FGSM samples denoted by "seen" are used for validation

Table of Contents

1. Introduction

- Problem definition
- Overview

2. Utilizing the Classifier

- Confidence from posterior distribution
- Confidence from hidden features

3. Utilizing the Generative Models

- Confidence from likelihood
- Hybrid Models

4. Other approaches

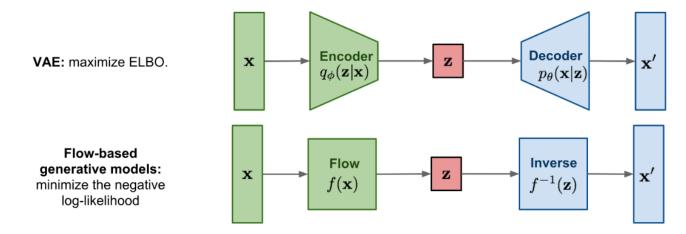
- Pre-training
- Self-supervised learning

Utilizing the Generative Models: Likelihood

- Generative models such as VAE [Kingma et al., 2014] and GLOW [Kingma et al., 2018] directly model the data distribution
 - They have achieved the state-of-the-art performances on image generation

GLOW [Kingma et al., 2018]

VQ-VAE-2 [Razavi et al., 2019]



Utilizing the Generative Models: Likelihood

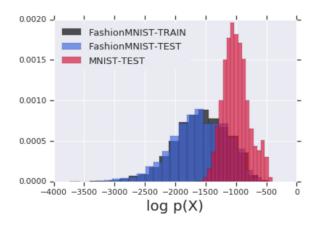
- Generative models such as VAE [Kingma et al., 2014] and GLOW [Kingma et al., 2018] directly model the data distribution
 - They have achieved the state-of-the-art performances on image generation

GLOW [Kingma et al., 2018]

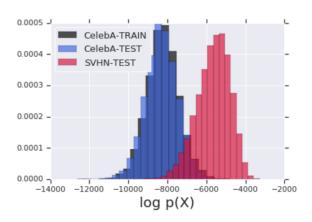
VQ-VAE-2 [Razavi et al., 2019]

- Questions
 - Are they really capture the data distribution?
 - Are they robust to out-of-distributions?

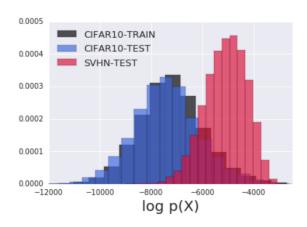
Generative models are overconfident to out-of-distribution [Nalisnick et al., 2019b]



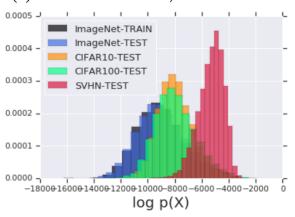
(a) Train on FashionMNIST, Test on MNIST



(c) Train on CelebA, Test on SVHN



(b) Train on CIFAR-10, Test on SVHN



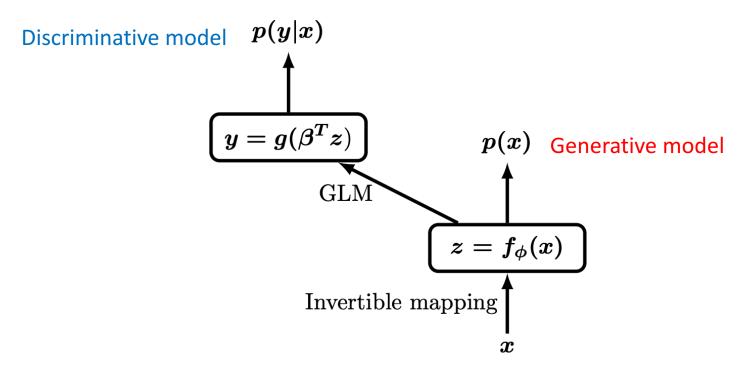
(d) Train on ImageNet, Test on CIFAR-10 / CIFAR-100 / SVHN

Figure 2: Histogram of Glow log-likelihoods for FashionMNIST vs MNIST (a), CIFAR-10 vs SVHN (b), CelebA vs SVHN (c), and ImageNet vs CIFAR-10 / CIFAR-100 / SVHN (d).

Algorithmic Intelligence Lab

Utilizing the Generative Models: Hybrid Model

- Deep invertible generalized linear model (DIGLM) [Nalisnick et al., 2019a]
 - Hybrid model of generative and discriminative models



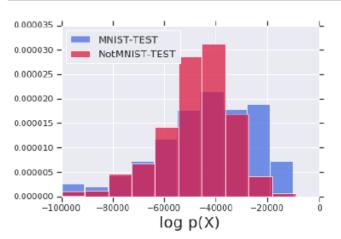
Weighted objective

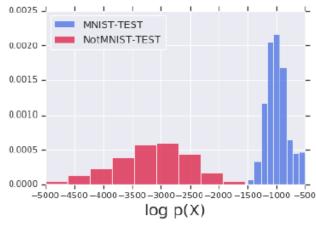
$$\mathcal{J}_{\lambda}(oldsymbol{ heta}) = \sum_{n=1}^{N} \Bigl(\underbrace{\log p(y_{n}|oldsymbol{x}_{n};oldsymbol{eta},oldsymbol{\phi})} + \lambda \underbrace{\log p(oldsymbol{x}_{n};oldsymbol{\phi})} \Bigr)$$

Bits-per-dimension (BPD), error and negative log likelihood (NLL)

Model		MNIST		NotMNIST		
Model	BPD ↓	error ↓	NLL↓	BPD ↑	NLL ↓	Entropy ↑
Discriminative $(\lambda = 0)$	81.80*	0.67%	0.082	87.74*	29.27	0.130
Hybrid ($\lambda = 0.01/D$)	1.83	0.73%	0.035	5.84	2.36	2.300
Hybrid ($\lambda = 1.0/D$)	1.26	2.22%	0.081	6.13	2.30	2.300
Hybrid ($\lambda = 10.0/D$)	1.25	4.01%	0.145	6.17	2.30	2.300

Model		SVHN		CIFAR-10			
Model	BPD ↓	error ↓	NLL↓	BPD ↑	NLL ↓	Entropy ↑	
Discriminative ($\lambda = 0$)	15.40*	4.26%	0.225	15.20*	4.60	0.998	
Hybrid ($\lambda = 0.1/D$)	3.35	4.86%	0.260	7.06	5.06	1.153	
Hybrid ($\lambda = 1.0/D$)	2.40	5.23%	0.253	6.16	4.23	1.677	
Hybrid ($\lambda = 10.0/D$)	2.23	7.27%	0.268	7.03	2.69	2.143	





(a) Discriminative Model ($\lambda = 0$)

(b) Hybrid Model

Table of Contents

1. Introduction

- Problem definition
- Overview

2. Utilizing the Classifier

- Confidence from posterior distribution
- Confidence from hidden features

3. Utilizing the Generative Models

- Confidence from likelihood
- Hybrid Models

4. Other Approaches

- Pre-training
- Self-supervised learning

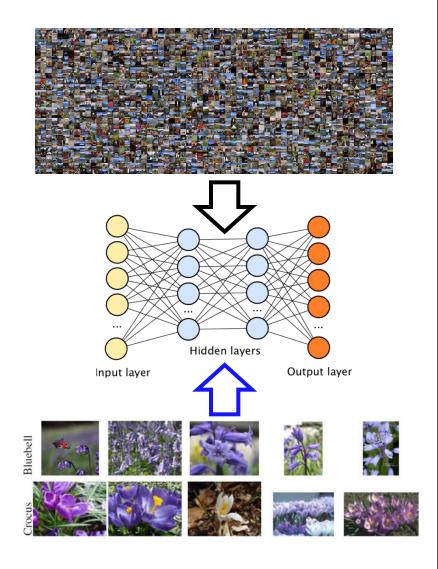
Other Approaches: Pre-training

- Pre-training
 - Transfer the knowledge from related tasks

1. Pre-train the networks on a large-scale source datasets

2. Use pre-trained weights as initial parameters

3. Fine-tune the networks on a target dataset



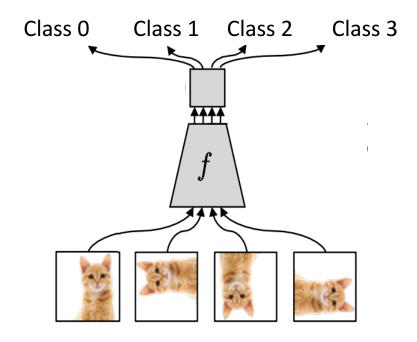
Other Approaches: Pre-training

- Question: Can pre-training provide large benefits to model robustness and uncertainty? [Hendrycks et al., 2019b]
- Experimental setup
 - Pre-trained model
 - Wide ResNets trained on Down-sampled ImageNet
 - In-distribution
 - CIFAR-10, CIFAR-100 and TinylmageNet
 - Out-of-distribution
 - Gaussian noise, textures, Places365 scene images
- Experimental results on a baseline detector

	AU	ROC	AUPR		
	Normal	Pre-Train	Normal	Pre-Train	
CIFAR-10	91.5	94.5	63.4	73.5	
CIFAR-100	69.4	83.1	29.7	52.7	
Tiny ImageNet	71.8	73.9	30.8	31.0	

Other Approaches: Self-Supervised Learning

- Self-supervised learning [Doersch et al., 2015]
 - Supervised learning with automatically generated labels



 Self-supervised learning can improve uncertainty estimation [Hendrycks et al., 2019c]

Other Approaches: Self-Supervised Learning

- Problem setup
 - Given a dataset consisting in k classes, train a model on one class and use remainin g K-1 classes as out-of-distribution
 - 30 classes from ImageNet

Experimental results

Method	AUROC
Supervised (OE)	56.1
RotNet	$-65.\bar{3}$
RotNet + Translation	77.9
RotNet + Self-Attention	81.6
RotNet + Translation + Self-Attention	84.8
RotNet + Translation + Self-Attention + Resize	85.7

Supervised: one class (positive) vs ImageNet 22K (negative)

Summary

- In this lecture, we cover various methods for detecting abnormal samples like o ut-of-distribution and adversarial samples
 - Posterior distribution-based methods
 - Hidden feature-based methods
- There are also training methods for obtaining more calibrated scores
 - Ensemble of classifier [Balaji et al., 2017]
 - Bayesian deep models [Li et al., 2017]
 - Calibration loss with GAN [Lee et al., 2018a]
 - Calibration loss for generative models [Hendrycks' 19a]
- Such methods can be useful for many machine learning applications
 - Active learning [Gal et al., 2017]
 - Incremental learning [Rebuff et al., 2017]
 - Ensemble learning [Lee et al., 2017]
 - Network calibration [Guo et al., 2017]

Algorithmic Intelligence Lab

References

[Hendrycks et al., 2017] A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR 2017. https://arxiv.org/abs/1610.02136

[Ma et al., 2018] Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality. In ICLR, 2018. https://openreview.net/pdf?id=B1gJ1L2aW

[Feinman et al., 2017] Detecting adversarial samples from artifacts. *arXiv preprint*, 2017. https://arxiv.org/abs/1703.00410

[Lee, et al., 2018a] Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples, In ICLR, 2018. https://arxiv.org/abs/1711.09325

[Lee, et al., 2018b] A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks, In NeurIPS, 2018. https://arxiv.org/abs/1807.03888

[Liang, et al., 2018] Principled Detection of Out-of-Distribution Examples in Neural Networks. In ICLR, 2018. https://arxiv.org/abs/1706.02690

[Goodfellow et al., 2015] Explaining and harnessing adversarial examples. In ICLR, 2015. https://arxiv.org/pdf/1412.6572.pdf

[Amodei, et al., 2016] Concrete problems in ai safety. *arXiv* preprint, 2016. https://arxiv.org/abs/1606.06565

[Guo et al., 2017] On Calibration of Modern Neural Networks. In ICML, 2017. https://arxiv.org/abs/1706.04599

[Lee et al., 2017] Confident Multiple Choice Learning. In ICML, 2017. https://arxiv.org/abs/1706.03475

[Balaji et al., 2017] Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, In NeurIPS, 2017. https://arxiv.org/pdf/1612.01474.pdf

References

[Rebuff et al., 2017] iCaRL: Incremental Classifier and Representation Learning. In CVPR, 2017.

https://arxiv.org/pdf/1611.07725.pdf

[Huang et al., 2017] Densely connected convolutional networks, In CVPR, 2017.

https://arxiv.org/abs/1608.06993

[Zagoruyko et al., 2016] Wide residual networks, In BMVC 2016.

https://arxiv.org/pdf/1605.07146.pdf

[Amsaleg et al., 2015] Estimating local intrinsic dimensionality. In SIGKDD, 2015.

http://mistis.inrialpes.fr/~girard/Fichiers/p29-amsaleg.pdf

[Szegedy et al., 2013] Intriguing properties of neural networks. arXiv preprint, 2013.

https://arxiv.org/abs/1312.6199

[Li et al., 2017] Dropout Inference in Bayesian Neural Networks with Alpha-divergences, In ICML, 2017.

https://arxiv.org/abs/1703.02914

[Gal et al., 2017] Deep Bayesian Active Learning with Image Data, In ICML, 2017.

https://arxiv.org/abs/1703.02910

[Carlini et al., 2017] Towards evaluating the robustness of neural networks. In IEEE SP, 2017.

https://arxiv.org/abs/1608.04644

[Nalisnick et al., 2019a] Hybrid Models with Deep and Invertible Features. In ICML 2019.

https://arxiv.org/pdf/1902.02767

[Nalisnick et al., 2019b] Do Deep Generative Models Know What They Don't Know. In ICLR 2019.

https://arxiv.org/pdf/1906.02994

[Hendrycks' 19a] Deep Anomaly Detection with Outlier Exposure In ICLR, 2019a.

https://arxiv.org/pdf/1812.04606

References

[Kingma et al., 2018] Glow: Generative Flow with Invertible 1×1 Convolutions. In NeurIPS, 2018. https://arxiv.org/pdf/1807.03039

[Kingma et al., 2014] Auto-Encoding Variational Bayes. In ICLR, 2014. https://arxiv.org/pdf/1807.03039

[Razavi et al., 2019] Generating Diverse High-Fidelity Images with VQ-VAE-2. *arXiv preprint*, 2019. https://arxiv.org/abs/1906.00446

[Hendrycks et al., 2019b] Using Pre-training Can Improve Model Robustness and Uncertainty. In ICML, 2019b. https://arxiv.org/abs/1901.09960

[Hendrycks et al., 2019c] Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty. In NeurIPS, 2019c. https://arxiv.org/abs/1901.09960

[Doersch et al., 2015] Unsupervised visual representation learning by context prediction. In ICCV, 2015. https://arxiv.org/abs/1505.05192