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• From now on, we study generative models with explicit data distribution:

• Autoregressive models use conditional distributions
to express the target distribution sequentially.

• Flow-based models warp a simple distribution via invertible transformations
to match the target distribution.

• Variational auto-encoders model the target distribution 
by maximizing its lower bound for the training dataset.

• Remember generative adversarial network (GAN) models implicit distribution.

Explicit vs. Implicit Generative Models
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• Autoregressive generation (e.g., pixel-by-pixel for images) [Oord et al., 2016]:

• For example, each RBG pixel is generated autoregressively:

• Each pixel is treated as discrete variables, sampled from softmax distributions:

Pixel-Recurrent Neural Network

6



Algorithmic Intelligence Lab

• Using CNN and RNN for modeling
• Simply treating          as one-dimensional (instead of two-dimensional) vector:

Pixel-Recurrent Neural Network
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• Using CNN and RNN for modeling
• Simply treating          as one-dimensional (instead of two-dimensional) vector:

• Image generation requires multiple forward passes for each pixel.

• Evaluating           (at training time) requires single forward pass for CNN, but
multiple (sequential, non-parallelizable) LSTM pass are required for RNN (slow).

• Effective receptive field (context of pixel generation) is unbounded for RNN, but 
bounded for CNN (constrained).

Pixel-Recurrent Neural Network
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• Image generation results from CIFAR-10 and ImageNet:

• Evaluation of negative log-likelihood (NLL) on MNIST and CIFAR-10 dataset:

• In general, pixel CNN is easiest to train and diagonal BiLSTM performs best.

Pixel-Recurrent Neural Network
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• Pixel CNN++ [Salimans et al., 2017] improves pixel CNN by replacement of the 
softmax distribution with discretized logistic mixture likelihood.

• WaveNet [Oord et al., 2017] applies pixel CNN to speech data by introducing 
dilated convolutional layer for scalability.

• Applications of pixelCNN to video [Kalchbrenner et al., 2016a] and machine 
translation [Kalchbrenner et al., 2016b] have been investigated.

Other Auto-Regressive Models
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* source: Jang, https://blog.evjang.com/2018/01/nf1.html, 

Mohamed et al., https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

• Modifying data distribution by flow (sequence) of invertible transformations
[Rezende et al., 2015]:

• Final variable follows some specified prior                .

• Data distribution is explicitly modeled by change-of-variables formula: 

• Log-likelihood                 can be maximized directly.

Flow-based Models
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• Modifying data distribution by flow (sequence) of invertible transformations
[Rezende et al., 2015]:

• Final variable follows some specified prior                .

• Data distribution is explicitly modeled by change-of-variables formula: 

• Log-likelihood                 can be maximized directly.

• For training, important to design transformations with tractable computation

of , which takes times.

Flow-based Models
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• Coupling layer for flow with tractable inference [Dinh et al., 2017]:
1. Partition the variable into two parts:

2. Coupling law defines a simple invertible transformation of the first partition
given the second partition (    and      are described later).

3. Second partition is left invariant ( ).

Real Valued Non-Volume Preserving Flow
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Next, specifying a particular effective form of the coupling layer
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• Affine coupling layer was shown to be effective in practice:

• Jacobian of each transformation becomes a lower triangular matrix:

• Inference for such transformations can be done in tractable time.
• Determinant of lower triangular matrix can be computed in              time.  

Real Valued Non-Volume Preserving Flow
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• For each coupling layer, there exists asymmetry since the first partition                
is left invariant. 
• Two coupling layers are paired alternatively to overcome this issue.

• Multi-scale architectures are used.
• Half variables follow Gaussian distribution at each scale.

Real Valued Non-Volume Preserving Flow
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• Test results for log-likelihood of test images:

• Synthetic image generation results:

Real Valued Non-Volume Preserving Flow
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Done by forward pass of functions                                   .

Done by backward pass of functions                                   .
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• If one uses fully factorized prior distribution             , then flow based models 
can be interpreted as non-linear independent components estimation (NICE) 
[Dinh et al., 2015].

• Alternative pairing of coupling layers have been generalized to linear 
transformations [Kingma et al., 2018].

• More advanced flows specified for density estimation (not sampling) have been 
proposed by using autoregressive transformations [Papamakarios et al., 2017].

Other Flow-based Models
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• Consider the following generative model:

• Fixed prior on random latent variable.           

• e.g., standard Normal distribution

• Parameterized likelihood (decoder) for generation: 

• e.g., Normal distribution parameterized by neural network

• Resulting generative distribution (to optimize):

Variational Autoencoder
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• Variational autoencoder (VAE) introduce an auxiliary distribution (encoder) 
[Kingma et al., 2013].

• Each                   term is replaced by its lower bound: 

• Bound becomes equality when .

Variational Autoencoder
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• The training objective becomes:

where latent variables are sampled by                                       . 

• However, non-trivial to train with back propagation due to sampling procedure:

Variational Autoencoder
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Since              is fixed after being sampled,                      ?

tractable between two Gaussian distributions
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• Reparameterization trick is based on the change-of-variables formula:

• Latent variable            can be similarly parameterized by encoder network:

Variational Autoencoder

36

scaling shifting



Algorithmic Intelligence Lab

• Total loss of variational autoencoder:

• Recall that are parameterized by     .

• Derivative of first part:

Variational Autoencoder
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• Total loss of variational autoencoder:

• Recall that are parameterized by     .

• Derivative of second part:

Variational Autoencoder
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element-wise factorization (                                )
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• Based on the proposed scheme, variational autoencoder successfully 
generates images:

• Interpolation of latent variables induce transitions in generated images:

Variational Autoencoder
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Training on MNIST
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• Recall: evidence lower bound (ELBO, also variational lower bound).

• Approximating the log-likelihood is also called variational inference.
• Considered to be a important topic in theory.

• However, gap in bound does not decrease no matter how many samples we use.

• Two ways of improving variational inference:
• Replace ELBO with a tighter bound: importance weighted samples

• Use more powerful parameterization of      : inverse auto-regressive flow

Towards Improving Variational Inference
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• Observe that ELBO can also be proved by the Jensen’s inequality:

• Based on convexity, interchange order of logarithm and summation.

• Importance weighted AE (IWAE) relax the inequality [Burda et al., 2018]:

• Becomes original ELBO when               and becomes exact bound when                . 

Importance Weighted Auto-Encoder
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also called importance weights
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• IWAE improves the ELBO, i.e., lower negative log-likelihood (NLL). 

• It also alleviates the so-called posterior collapse problem: 
hidden units become inactive (=invariant for all input).

Importance Weighted Auto-Encoder
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• Fully factorized Gaussian                often leads to poor approximation
of the true distribution              .

• This can be improved by introducing flow-based distribution as the flexible
parameterization of                .
• Recall: functions are invertible in order to allow tractable density estimation.

• Inverse autoregressive flow (IAF) for improving variational auto-encoder was 
proposed [Kingma et al., 2016] (details in the next slide).
• IAF is specialized for variational inference since its forward pass                   is fast, 

but its backward pass                   is slow (not needed for variational inference).

Improving Variational Inference with Inverse Auto-Regressive Flow
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• Inverse autoregressive flow (IAF) modifies each dimension of variable in 
auto-regressive manner [Kingma et al., 2016]:
• For each :

• Inference for corresponding normalizing flow is efficient:

Improving Variational Inference with Inverse Auto-Regressive Flow
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• Variational lower bound and estimated log likelihood for test dataset (MNIST):

• Average negative log likelihood for test dataset (CIFAR-10):

Improving Variational Inference with Inverse Auto-Regressive Flow
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• Overcoming the posterior collapse problem (hidden units becoming inactive) is 
an active topic of research [He et al., 2019].

• Latent variables can be disentangled, i.e., trained to be sensitive to only a single 
generative factor of dataset [Higgins et al., 2017]:

• Recent variational autoencoders were successfully applied to generating 
high-fidelity images [Razavi et al., 2019] :

Other Variational Autoencoders
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