Algorithmic Intelligence Lab

Generative Models (other than GANs)

Al602: Recent Advances in Deep Learning

Lecture 9

Slide made by

Sungsoo Ahn and Sejun Park
KAIST EE

Algorithmic Intelligence Lab

Table of Contents

1. Introduction
* Explicit vs. implicit generative models

2. Auto-Regressive Models
* Pixel recurrent neural network

3. Flow-based Models
» Real-valued non-volume preserving transformation

4. Variational Auto-Encoder
» Variational auto-encoder (VAE)
* Improving VAE with importance weighted samples
* Improving VAE with normalizing flows

Algorithmic Intelligence Lab

Table of Contents

1. Introduction
* Explicit vs. implicit generative models

Algorithmic Intelligence Lab

Explicit vs. Implicit Generative Models

* From now on, we study generative models with explicit data distribution:

max Z log pg(z'™), ™ : training samples
’ n=1 model
parameters

* Autoregressive models use conditional distributions
to express the target distribution sequentially.

* Flow-based models warp a simple distribution via invertible transformations
to match the target distribution.

» Variational auto-encoders model the target distribution
by maximizing its lower bound for the training dataset.

« Remember generative adversarial network (GAN) models implicit distribution.

Random noise]_, What is p(x)?
i B ﬂl-

Algorithmic Intelligence Lab

Table of Contents

1. Introduction
* Explicit vs. implicit generative models

2. Auto-Regressive Models
* Pixel recurrent neural network

Algorithmic Intelligence Lab

Pixel-Recurrent Neural Network

* Autoregressive generation (e.g., pixel-by-pixel for images) [Oord et al., 2016]:

KQ
plw) = [T planles, - o) ol [11 o
k=1 EEEEEEN
K2 RN RN
= Hp(xk|$<k) |
k=1

Tn2

* For example, each RBG pixel is generated autoregressively:

p(p|T<r) = p(Tp,R, Tk, B, Tk, |T <)

= p(2k.r|T<k)p(Tr.B|T<k, Tk r)D(Tk G| T <k, Tk R, Tk, B)

* Each pixel is treated as discrete variables, sampled from softmax distributions:

L‘ | ‘ | ' %

Algorithmic Intelligence Lab

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
e Simply treating *<x as one-dimensional (instead of two-dimensional) vector:

CNN-based

O
O

-

Lk >
-
_— _
(input) O~ // O
Ve
or O
() (hidden layer)
masked
convolution

Algorithmic Intelligence Lab

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
e Simply treating *<x as one-dimensional (instead of two-dimensional) vector:

CNN-based

Lk
(input)

Lk

‘ (hidden layer) (generation)

A 4

Algorithmic Intelligence Lab

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
e Simply treating *<x as one-dimensional (instead of two-dimensional) vector:

CNN-based

Lk

effective
receptive field

Algorithmic Intelligence Lab

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
e Simply treating *<x as one-dimensional (instead of two-dimensional) vector:

CNN-based RNN-based

Lk

effective
receptive field

Algorithmic Intelligence Lab

10

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
e Simply treating *<x as one-dimensional (instead of two-dimensional) vector:

CNN-based effective RNN-based

receptive field

Lk

effective
receptive field

* Image generation requires multiple forward passes for each pixel.

e Evaluating p() (at training time) requires single forward pass for CNN, but
multiple (sequential, non-parallelizable) LSTM pass are required for RNN (slow).

» Effective receptive field (context of pixel generation) is unbounded for RNN, but
bounded for CNN (constrained).

- _ Next, extending to two-dimensional data
Algorithmic Intelligence Lab 11

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for &)

(hidden layer)

masked O O
convolution O Q
O O
@ 0 6 66

Pixel CNN

Algorithmic Intelligence Lab

12

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)

O O O O C)(generation)
O O O O O
O O O O
O O OO0

masked O O
convolution O O
o O (O}

@ @ © @

masked Q O O
convolution O O

OO“.
®© o000

(input)
Pixel CNN

(hidden layer)

Algorithmic Intelligence Lab 13

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

O O O O O
©O O O OO
© O O O
O O OO

masked O O
convolution O O
o O (O}

@ @ © @

I\
masked Q O&%O (row) masked O ¢I \ O
convolution O O convolution O QI I
o (o e ® 0/6'éd @
© o000 @ 0 b6 6

Pixel CNN Row LSTM

Algorithmic Intelligence Lab

14

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

O O O O O
O O O O O
O O O O
O O O O
masked O O 1-dimensional O\ O O
convolution O O convolution O O
o O @
@ © @ @ @ © 0 @
masked Q Og%o (row) masked O 0O/0O O
convolution o/ O convolution O O
O (0 of @ © o0 0O
© o0 0 0 @ o0 @ O
Pixel CNN Row LSTM

Algorithmic Intelligence Lab

15

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

O O O O O
convolutional connections
O 00O0O0 for LSTM hidden states Ij%×equence
O O O O O O O for LSTMs

O O O O
masked O O 1-dimensional O\ O O
convolution O O convolution O O
o O @
@ © @ @ @ © 0 @
masked Q O&%O (row) masked O 0O/0O O
convolution o/ O convolution O O
O (0 of @ © o0 0O
© o0 0 0 @ o0 @ O
Pixel CNN Row LSTM

Algorithmic Intelligence Lab

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

O O O O O
lutional ti
© 0000 " for LSTM hidden states O / time sequence
O O O O n for LSTMs
O O O O
masked O O 1-dimensional O
convolution O O convolution O
o O (O}
@ @ © @ @ © @ @
masked O O&%O (row) masked é O(é & >
convolution O O convolution
O (0 Of e @ 0 @ @
®© o0 0 O @ o0 O Q
Pixel CNN Row LSTM

o _ Next, introducing column-wise dependencies using LSTMs
Algorithmic Intelligence Lab

17

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel.

masked

convolution O O

masked
convolution

Diagonal BiLSTM

Algorithmic Intelligence Lab

18

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel.

bi-directional
LSTM

masked
convolution

masked
convolution

Diagonal BiLSTM

Algorithmic Intelligence Lab

19

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

e Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel.

bi-directional

LSTM “diagonal”

time sequence
for LSTMs

masked
convolution

masked
convolution

Diagonal BiLSTM

Algorithmic Intelligence Lab

20

Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

e Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel.

bi-directional
i “diagonal”
= time sequence
for LSTMs
ked © O
maske
convolution O O
O O @
@ @ @ @
masked O O S . Rfeceptlve field now covers every
convolution O O pIXE|S generated DFEVIOUSW.
O O ® O
@ o @ 0O

Diagonal BiLSTM

Algorithmic Intelligence Lab

Pixel-Recurrent Neural Network

* Image generation results from CIFAR-10 and ImageNet:

IIWIE Ilkli
e s TREA L
Taoen ~PEbR
= AU L7 e P

CIFAR-10 ImageNet

e Evaluation of negative log-likelihood (NLL) on MINIST and CIFAR-10 dataset:

Only explicit models (not GAN) can compute NLL.

Model NLL Test Model NLL Test (Train)
PixelCNN: 81.30
Row LSTM: 80.54 PixclCNN: 3.14 (3.08)
b : . Row LSTM: 3.07 (3.00)
iagonal BiLSTM (1 layer, h = 32): 80.75 Di al BILSTM: 3.00 (2.93
Diagonal BiLSTM (7 layers, h = 16): 79.20 tagona’ Bt : -00293)
MNIST CIFAR-10

* In general, pixel CNN is easiest to train and diagonal BiLSTM performs best.

Algorithmic Intelligence Lab

22

Other Auto-Regressive Models

* Pixel CNN++ [Salimans et al., 2017] improves pixel CNN by replacement of the
softmax distribution with discretized logistic mixture likelihood.

 WaveNet [Oord et al., 2017] applies pixel CNN to speech data by introducing
dilated convolutional layer for scalability.

D [:l D D p Qutput
o0 0 }i" Hidden Layer

;‘_I { 1 i n Layer LA E-\ () J‘J L (8] L L} [L) 3 n r
. J) /“_} '}_, Hidden L i / Dilation =

X // 4 / o
922 N /l /l A AET
- 4 / /

. ‘ . Input ‘ Input

convolutional layer dilated convolutional layer

» Applications of pixelCNN to video [Kalchbrenner et al., 2016a] and machine
translation [Kalchbrenner et al., 2016b] have been investigated.

Algorithmic Intelligence Lab

23

Table of Contents

3. Flow-based Models
» Real-valued non-volume preserving transformation

Algorithmic Intelligence Lab

24

Flow-based Models

* Modifying data distribution by flow (sequence) of invertible transformations
[Rezende et al., 2015]:

=20 > zr=frofr_i10o-- fi(zo) z; € RM

* Final variable follows some specified prior pr(zr).

 Data distribution is explicitly modeled by change-of-variables formula:

det (aft(zt‘l)) |

Oz

T
logp(x) = log p(z0) = log pr(zr) +) _log
t=1

& Log-likelihood log p(x) can be maximized directly.

0

0

. . . * source: Jang, https://blog.evjang.com/2018/01/nf1.html,
Algorithmic Intelligence Lab

Mohamed et al., https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

Flow-based Models

* Modifying data distribution by flow (sequence) of invertible transformations
[Rezende et al., 2015]:

t=20 > zr=frofr_i0- fi(2o) z € R®

* Final variable follows some specified prior pr(zr).

* Data distribution is explicitly modeled by change-of-variables formula:

det (aft(zt‘1)>|

Ozi_1

T
log p(x) = logp(20) = log pr(2r) +) _log
t=1

* Log-likelihood log p(x) can be maximized directly.

* For training, important to design transformations with tractable computation

of log|det (fi(z¢—1)/0z¢—1)|, which takes O(K?) times.

[Next, introducing a flexible and tractable form of invertible transformation]

Algorithmic Intelligence Lab 26

Real Valued Non-Volume Preserving Flow

* Coupling layer z;, = f;(z;_1) for flow with tractable inference [Dinh et al., 2017]:
1. Partition the variable into two parts:

d 5 K 4l
sl B] aéﬂ
Zt—1 — [zt—l,l:dazt—l,d+1:K] _l s
|]
spatial-partition channel-partition

2. Coupling law defines a simple invertible transformation of the first partition
given the second partition (9 and m are described later).

Zt,d+1: K = g(zt—l,d+1:K§ m(zt—l,lzd))

3. Second partition is left invariant (2¢,1:4 = Zt—1,1:4).

[Next, specifying a particular effective form of the coupling layer]

Algorithmic Intelligence Lab 27

Real Valued Non-Volume Preserving Flow

» Affine coupling layer was shown to be effective in practice:

2t d+1: K = g(zt—l,d+1:K; ’m(zt—l,l:d))

= Zt—1,d+1:xk © exp(m1(2z¢t—1,1:4)) + ma(2t—1.1:4)
element-wise product.J *\ k neural networks

 Jacobian of each transformation becomes a lower triangular matrix:

_ a1 0 -+ 0
Oft—1(zt-1) diag(exp(mz(z¢—1,1.4))) O a22 0
0z 1 - Oft—1(2e-1) I | ~~—> 0

- Oz _1 i afKK_’

* Inference for such transformations can be done in tractable time.
 Determinant of lower triangular matrix can be computed in O(K) time.

det (af*(zt‘l)) |

O0zi_1

T
log p(x) = log p(z0) = log pr(2zr) +) _ log
t=1

Algorithmic Intelligence Lab

Real Valued Non-Volume Preserving Flow

* For each coupling layer, there exists asymmetry since the first partition zt—1,1:d
is left invariant.

e Two coupling layers are paired alternatively to overcome this issue.

e Multi-scale architectures are used.
* Half variables follow Gaussian distribution at each scale.

paired coupling layer

Algorithmic Intelligence Lab

29

Real Valued Non-Volume Preserving Flow

e Test results for log-likelihood of test images:

Done by forward pass of functions & = 2o — ZT.

Dataset PixelRNN [46] | Real NVP | Conv DRAW IAF-VAE [34] |
CIFAR-10 3.00 3.49 <359 <328

Imagenet (32 x 32) 386 (3.83) | 4.28 (4.26) | < 4.40(4.35)

Imagenet (64 x 64) 363 (357) | 3.98(3.75) | <4.10 (4.04)
LSUN (bedroom) 2.72 (2.70)
LSUN (tower) 2.81 (2.78)
LSUN (church outdoor) 3.08 (2.94)
CelebA 3.02 (2.97)

e Synthetic image generation results:

Done by backward pass of functions 217 — 2o = .

Algorithmic Intelligence Lab

30

Other Flow-based Models

* If one uses fully factorized prior distribution pr(27), then flow based models
can be interpreted as non-linear independent components estimation (NICE)

[Dinh et al., 2015].

t=3,..-,T
non-factorized pmn B o DAL XY ooy
. . . — <0 rd — .
data distribution _ factorized
. _ independent
non-linear transformations components

& 50

* Alternative pairing of coupling layers have been generalized to linear
transformations [Kingma et al., 2018].

\ 4
+

!
y
®

G 2 (0

N\
my

S
S
>

* More advanced flows specified for density estimation (not sampling) have been
proposed by using autoregressive transformations [Papamakarios et al., 2017].

S
:/
S
>
3
S

AUOD TXT
N
v
N
d

Algorithmic Intelligence Lab

31

Table of Contents

4. Variational Auto-Encoder
» Variational auto-encoder (VAE)
* Improving VAE with importance weighted samples
* Improving VAE with normalizing flows

Algorithmic Intelligence Lab

32

Variational Autoencoder

* Consider the following generative model:

EES

latent variable
z

* Fixed prior on random latent variable.
* e.g., standard Normal distribution

p(z) = N(2z;0,1)

“decoding”
distribution

* Parameterized likelihood (decoder) for generation:
* e.g., Normal distribution parameterized by neural network

po(®|2) = N(; faec(2), 1)

* Resulting generative distribution (to optimize):

log pg(x) = log / po(x|2)p(z)dz = log E,pz)[p(z|2)]

z

Algorithmic Intelligence Lab

33

Variational Autoencoder

* Variational autoencoder (VAE) introduce an auxiliary distribution (encoder)
[Kingma et al., 2013].

p.
_ g RNat “encoding”
m => distributign => E Q¢(Z|a3) — N(z7 fenc,u(a?)a fenC,O'(aj))

representation

data

* Each log py(x)term is replaced by its lower bound:

log pe(x) > log pe(x) — min KL(gs(2|)||po(z|x))
= log pg(x) + m§XEz~q¢(z|w)[logp9(z|w) — log g4(2|)]

- mgXEz~q¢(z|m) [10gp9(33) + lngg (Z|33) o log ng(z‘fﬂ)]

— m§XEz~q¢(Z|m) [10gp9(.’13‘2)] - KL(Q¢(Z|.”B)||p(Z))

* Bound becomes equality when ¢4(z|) =~ po(z|x) .

Algorithmic Intelligence Lab

34

Variational Autoencoder

* The training objective becomes:
tractable between two Gaussian distributions

N v
max > logpy(x™) > max max B, (z|) log pg(x|2)] — KL(g4(z|x)||p(2))
n=1
N N
~ max max D logpe(a™|zM) — KL(gg(2]2")||p(2))
n=1 k=1

(n,k)

where latent variables are sampled by =z ~ q¢(z|m(”)) .

* However, non-trivial to train with back propagation due to sampling procedure:
N N

Vol =) Y —vglogpe(x!™]z") + 74 KL(gs(z|z"")||p(2))
n=1 k=1 4}

Since z(™*) is fixed after being sampled, 4 logp(x™|2("*)) =07?

Algorithmic Intelligence Lab 35

Variational Autoencoder

* Reparameterization trick is based on the change-of-variables formula:
€2 NN(‘C:Q“L»O-) <:> €9 = [+ 00, €0 NN(€0|091)
N N
f! 81(-0'60(_/—\ Eo < €1+ U
=> =>

scaling shifting
g0 ~ N (g0/0,1) e1 ~ N(e1]0,0) g2 ~ N(ez2|p, o)

* Latent variable z("*) can be similarly parameterized by encoder network:

Z(n’k) ~ N(Z; fenc,#(m(n))ﬂ fenc,a(m(”)))

s

S (k) fenc#(w(n)) 4+ fenc’a(w(n)) o E(n,k)? (k) N(g|0,1)

Algorithmic Intelligence Lab 36

Variational Autoencoder

* Total loss of variational autoencoder:
N N

Vol =) Y —vglogpy(x!™]z") + 74 KL(gs(z|z")||p(2))

™™

VoL

* Recall that faec; fenc,u, fenc,o are parameterized by ¢ .

* Derivative of first part:

Veli = Ve log./\f(a:(”); fdeC(z(n’k))v 1)

Algorithmic Intelligence Lab

VoL

37

Variational Autoencoder

* Total loss of variational autoencoder:
N N

Vol =) Y —vglogpy(x!™]z") + 74 KL(gs(z|z")||p(2))

Vel VoLlo

* Recall that faec; fenc,u, fenc,o are parameterized by ¢ .

e Derivative of second part:

VoL1 = VKLV (2; fone (™), fene.o (2™))[|IN (2;0,1))

Algorithmic Intelligence Lab

38

Variational Autoencoder

* Based on the proposed scheme, variational autoencoder successfully
generates images:

Training on MNIST

* Interpolation of latent variables induce transitions in generated images:

O0QQOQQUVNVQOVVVYs
000909QAQAQIIVI V9 v 9
n.bbb&&:.)i&éééé\
T888a8«¢ L«JJ.J 3NN D -

& P 1333J 0)) D - —
T O E @Ky e e~ —
T MmN in by by g sy =~ —

TT o oeeminign by tg g e~~~
oo oo oo by Oy B % S~~~
CorooererhL LN NS~-
CororrrrdPOLLYNNN~
eI IR L B NN
e ™R RRH NN
SISANAANANANNNANNNNNYN

M = < ™~ 1N W © O W YW n ~ & ~ m
000000000000000

39

Towards Improving Variational Inference

* Recall: evidence lower bound (ELBO, also variational lower bound).

log pg(x) > max Ezq, (2|2 [log po(x|2)] — KL(gs(2|x)||p(2))

* Approximating the log-likelihood is also called variational inference.
* Considered to be a important topic in theory.
* However, gap in bound does not decrease no matter how many samples we use.

* Two ways of improving variational inference:
* Replace ELBO with a tighter bound: importance weighted samples

* Use more powerful parameterization of g4 : inverse auto-regressive flow

Algorithmic Intelligence Lab

40

Importance Weighted Auto-Encoder

* Observe that ELBO can also be proved by the Jensen’s inequality:
p(x, 2) p(x, 2)
logp L) = log Ezw z|lx |:—] Z Ezw z|lx |:10g —]
() 94 (z|x) 1 (2|) a4 (z|x) 10 (2|)

* Based on convexity, interchange order of logarithm and summation.

e Importance weighted AE (IWAE) relax the inequality [Burda et al., 2018]:

(k)

p(x, z'")

logp() logEz(l) 2K gy (z|x) [E L :|
— qy(2W|z)

1 i p(m,z(’“))

> E) 200 0g, (2] llog—
SERR 94 (2|2) Kk:l g0 (2P |x)

also called importance weights

IS

* Becomes original ELBO when K = 1 and becomes exact bound when K = oo.

b

(k)
w z
Ez() z(K)me z|;]3) |: Z j| p(w)

(k)
— qy(zW)

Algorithmic Intelligence Lab 41

Importance Weighted Auto-Encoder

* IWAE improves the ELBO, i.e., lower negative log-likelihood (NLL).

* It also alleviates the so-called posterior collapse problem:
hidden units become inactive (=invariant for all input).

MMNIST OMMNIGLOT
VAE IWAE VAE I'WAE
aclhive achive aclive aclive
k NIIL. units NILL. umits NI umits MNLL. units
Bh. 76 19 R6. 76 19 108.11 28 108.11 28

1
3 8647 20 B5.54 22 107,62 28 106.12 34
50 BA3S 20 |E4.‘;‘E ?ﬁl 1077 80 28 10467 41

/

best performance

Algorithmic Intelligence Lab 42

Improving Variational Inference with Inverse Auto-Regressive Flow

* Fully factorized Gaussian 44(z|z) often leads to poor approximation
of the true distribution py(z|z).

* This can be improved by introducing flow-based distribution as the flexible
parameterization of ¢4(z|x).

» Recall: functions are invertible in order to allow tractable density estimation.

2 maplele) (= 0Nl os@)

z=frofr_i0---,0f1(z0)

* Inverse autoregressive flow (IAF) for improving variational auto-encoder was
proposed [Kingma et al., 2016] (details in the next slide).

* |AF is specialized for variational inference since its forward pass zo — 2z is fast,
but its backward pass 2z — 2z is slow (not needed for variational inference).

Algorithmic Intelligence Lab

43

Improving Variational Inference with Inverse Auto-Regressive Flow

* Inverse autoregressive flow (IAF) modifies each dimension of variable in
auto-regressive manner [Kingma et al., 2016]:

* Foreachd=1,.--- ,K:

Zt,d — ﬂt,d(zt—l,lzd—l) + Ut,d(zt—l,lzd—l)zt—l,d

0l0] 10100,

000

caseof d =3 updates done in parallel

* Inference for corresponding normalizing flow is efficient:

B ot,1 0 --- 0 7
T .
0 _ 7t20 .
g a(x[e) = logan(zolz) + 3 1o det (251) e
t=1 - '
B Ot,K _

Algorithmic Intelligence Lab 44

Improving Variational Inference with Inverse Auto-Regressive Flow

» Variational lower bound and estimated log likelihood for test dataset (MNIST):

Model VLB log p(x) =2
Convolutional VAE + HVI [1] -83.49 -21.94

DLGM 2hl + IWAE [2] -82.90

LVAE [3] -21.74

DRAW + VGP [4] -79.88

Diagonal covariance -84.08 (= 0.100 -81.08 (= 0.08)

IAF (Depth = 2, Width = 3200 -82.02 (£ 0.08) -79.77 (= 0.06)
IAF (Depth = 2, Width = 1920) -81.17 (£ 0.08) -79.30 (= 0.08)
IAF (Depth = 4, Width = 1920) -80.93 (£ 0.09) -79.17 (= 0.08)
IAF (Depth = 8, Width = 1920) -80.80 (= 0.07) -79.10 (= 0.07)

* Average negative log likelihood for test dataset (CIFAR-10):

Method bits/dim =
Results with tractable likelihood models:

Uniform distribution (van den Qord et al., 2016b) 8.00
Multivariate Gaussian (van den Oord et al., 2016b) 4.70
NICE (Dinh et al., 2014) 4.48
Deep GMMs (van den Oord and Schrauwen, 2014) 4.00
Real NVP (Dinh et al., 2016) 3.49
PixelRNN (van den QOord et al., 2016b) 3.00
Gated PixelCNN (van den Oord et al., 2016c) 3.03
Results with variationally trained latent-variable models:

Deep Diffusion (Sohl-Dickstein et al., 2015) 5.40
Convolutional DRAW (Gregor et al., 2016) 3.58
ResNet VAE with IAF (Ours) 3.11

Algorithmic Intelligence Lab

Other Variational Autoencoders

e Overcoming the posterior collapse problem (hidden units becoming inactive) is
an active topic of research [He et al., 2019].

* Latent variables can be disentangled, i.e., trained to be sensitive to only a single
generative factor of dataset [Higgins et al., 2017]:

interpolation of single latent variables

rotation smiling-nes | hair
e Recent variational autoencoders were successfully applied to generating
high-fidelity images [Razavi et al., 2019] :

Algorithmic Intelligence Lab 46

References

[Kingma et al., 2013] Auto-Encoding Variational Bayes, ICLR 2013
link: https://arxiv.org/abs/1802.06455

[Dinh et al., 2015] NICE: Non-Linear Independent Components Estimation, ICLR 2015
link: https://arxiv.org/abs/1410.8516

[Rezende et al., 2015] Variational Inference with Normalizing Flows, ICML 2015
link: https://arxiv.org/abs/1705.08665

[Oord et al., 2016] Pixel Recurrent Neural Networks, ICML 2016
link: https://arxiv.org/pdf/1601.06759

[Burda et al., 2016] Importance Weighted Autoencoders, ICLR 2016
link: https://arxiv.org/abs/1509.00519

[Kingma et al., 2016] Improving Inference with Inverse Autoregressive Flows, NIPS 2016
link: https://arxiv.org/abs/1710.10628

[Oord et al., 2017] WaveNet: A Generative Model for Raw Audio, SSW 2017
link: https://arxiv.org/abs/1703.01961

[Dinh et al., 2017] Density Estimation using Real NVP, ICLR 2017
link: https://arxiv.org/abs/1605.08803

[Higgins et al., 2017] beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, ICLR 2017
link: https://openreview.net/pdf?id=Sy2fzU9gl|

[Papamakarios et al., 2017] Masked Autoregressive Flow for Density Estimation, NIPS 2017
link: https://arxiv.org/abs/1710.10628

[Kingma et al., 2018] Generative Flow with Invertible 1x1 Convolutions, NIPS 2018
link: https://arxiv.org/abs/1807.03039

[He et al., 2019] Lagging Inference Networks and Posterior Collapse in Variational Autoencoders, ICLR 2019
link: https://openreview.net/forum?id=rylDfnCqF7

Algorithmic Intelligence Lab

47

https://arxiv.org/pdf/1601.06759
https://arxiv.org/abs/1710.10628
https://arxiv.org/abs/1605.08803
https://openreview.net/pdf?id=Sy2fzU9gl
https://arxiv.org/abs/1807.03039

