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Explicit vs. Implicit Generative Models

* From now on, we study generative models with explicit data distribution:

max Z log pg(z'™), ™ : training samples
’ n=1 model
parameters

* Autoregressive models use conditional distributions
to express the target distribution sequentially.

* Flow-based models warp a simple distribution via invertible transformations
to match the target distribution.

» Variational auto-encoders model the target distribution
by maximizing its lower bound for the training dataset.

« Remember generative adversarial network (GAN) models implicit distribution.

Random noise ]_, What is p(x)?
i B ﬂl-
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Pixel-Recurrent Neural Network

* Autoregressive generation (e.g., pixel-by-pixel for images) [Oord et al., 2016]:

KQ
plw) = [T planles, - o) ol [ 11 o
k=1 EEEEEEN
K2 RN RN
= Hp(xk|$<k) |
k=1

Tn2

* For example, each RBG pixel is generated autoregressively:

p(p|T<r) = p(Tp,R, Tk, B, Tk, |T <)

= p(2k.r|T<k)p(Tr.B|T<k, Tk r)D(Tk G| T <k, Tk R, Tk, B)

* Each pixel is treated as discrete variables, sampled from softmax distributions:

L‘ | ‘ | ' %
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
e Simply treating *<x as one-dimensional (instead of two-dimensional) vector:

CNN-based
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
e Simply treating *<x as one-dimensional (instead of two-dimensional) vector:
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
e Simply treating *<x as one-dimensional (instead of two-dimensional) vector:
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
e Simply treating *<x as one-dimensional (instead of two-dimensional) vector:

CNN-based RNN-based
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
e Simply treating *<x as one-dimensional (instead of two-dimensional) vector:

CNN-based effective RNN-based

receptive field

Lk

effective
receptive field

* Image generation requires multiple forward passes for each pixel.

e Evaluating p() (at training time) requires single forward pass for CNN, but
multiple (sequential, non-parallelizable) LSTM pass are required for RNN (slow).

» Effective receptive field (context of pixel generation) is unbounded for RNN, but
bounded for CNN (constrained).

- _ Next, extending to two-dimensional data
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for &)

(hidden layer)
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Pixel CNN
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

O O O O O
©O O O OO
© O O O
O O OO

masked O O
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

O O O O O
lutional ti
© 0000 " for LSTM hidden states O / time sequence
O O O O n for LSTMs
O O O O
masked O O 1-dimensional O
convolution O O convolution O
o O (O}
@ @ © @ @ © @ @
masked O O&%O (row) masked é O(é & >
convolution O O convolution
O (0 Of e @ 0 @ @
®© o0 0 O @ o0 O Q
Pixel CNN Row LSTM

o _ Next, introducing column-wise dependencies using LSTMs
Algorithmic Intelligence Lab
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel.

masked

convolution O O

masked
convolution

Diagonal BiLSTM
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel.
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

e Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel.

bi-directional

LSTM “diagonal”

time sequence
for LSTMs

masked
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Pixel-Recurrent Neural Network

* Using CNN and RNN for modeling p(k|T <)
* Pixel CNN use masked convolutional layer (for «~)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel).

e Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel.
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Pixel-Recurrent Neural Network

* Image generation results from CIFAR-10 and ImageNet:

IIWIE Ilkli
e s TREA L
Taoen ~PEbR
= AU L7 e P

CIFAR-10 ImageNet

e Evaluation of negative log-likelihood (NLL) on MINIST and CIFAR-10 dataset:

Only explicit models (not GAN) can compute NLL.

Model NLL Test Model NLL Test (Train)
PixelCNN: 81.30
Row LSTM: 80.54 PixclCNN: 3.14 (3.08)
b : . Row LSTM: 3.07 (3.00)
iagonal BiLSTM (1 layer, h = 32): 80.75 Di al BILSTM: 3.00 (2.93
Diagonal BiLSTM (7 layers, h = 16): 79.20 tagona’ Bt : -00293)
MNIST CIFAR-10

* In general, pixel CNN is easiest to train and diagonal BiLSTM performs best.

Algorithmic Intelligence Lab
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Other Auto-Regressive Models

* Pixel CNN++ [Salimans et al., 2017] improves pixel CNN by replacement of the
softmax distribution with discretized logistic mixture likelihood.

 WaveNet [Oord et al., 2017] applies pixel CNN to speech data by introducing
dilated convolutional layer for scalability.

D [:l D D p Qutput
o0 0 }i" Hidden Layer

;‘_I { 1 i n Layer LA E-\ () J‘J L (8] L L} [ L) 3 n r
. J ) /“_} '}_, Hidden L i / Dilation =

X // 4 / o
922 N /l /l A AET
- 4 / /

. ‘ . Input ‘ Input

convolutional layer dilated convolutional layer

» Applications of pixelCNN to video [Kalchbrenner et al., 2016a] and machine
translation [Kalchbrenner et al., 2016b] have been investigated.

Algorithmic Intelligence Lab
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Flow-based Models

* Modifying data distribution by flow (sequence) of invertible transformations
[Rezende et al., 2015]:

=20 > zr=frofr_i10o-- fi(zo) z; € RM

* Final variable follows some specified prior pr(zr).

 Data distribution is explicitly modeled by change-of-variables formula:

det (aft(zt‘l)) |

Oz

T
logp(x) = log p(z0) = log pr(zr) + ) _log
t=1

& Log-likelihood log p(x) can be maximized directly.

0

0

. . . * source: Jang, https://blog.evjang.com/2018/01/nf1.html,
Algorithmic Intelligence Lab
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Flow-based Models

* Modifying data distribution by flow (sequence) of invertible transformations
[Rezende et al., 2015]:

t=20 > zr=frofr_i0- fi(2o) z € R®

* Final variable follows some specified prior pr(zr).

* Data distribution is explicitly modeled by change-of-variables formula:

det (aft(zt‘1)>|

Ozi_1

T
log p(x) = logp(20) = log pr(2r) + ) _log
t=1

* Log-likelihood log p(x) can be maximized directly.

* For training, important to design transformations with tractable computation

of log|det (fi(z¢—1)/0z¢—1)|, which takes O(K?) times.

[ Next, introducing a flexible and tractable form of invertible transformation]
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Real Valued Non-Volume Preserving Flow

* Coupling layer z;, = f;(z;_1) for flow with tractable inference [Dinh et al., 2017]:
1. Partition the variable into two parts:

d 5 K 4l
sl B ] aéﬂ
Zt—1 — [zt—l,l:dazt—l,d+1:K] _l s
| ]
spatial-partition channel-partition

2. Coupling law defines a simple invertible transformation of the first partition
given the second partition (9 and m are described later).

Zt,d+1: K = g(zt—l,d+1:K§ m(zt—l,lzd))

3. Second partition is left invariant ( 2¢,1:4 = Zt—1,1:4 ).

[ Next, specifying a particular effective form of the coupling layer ]
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Real Valued Non-Volume Preserving Flow

» Affine coupling layer was shown to be effective in practice:

2t d+1: K = g(zt—l,d+1:K; ’m(zt—l,l:d))

= Zt—1,d+1:xk © exp(m1(2z¢t—1,1:4)) + ma(2t—1.1:4)
element-wise product.J *\ k neural networks

 Jacobian of each transformation becomes a lower triangular matrix:

_ a1 0 -+ 0
Oft—1(zt-1) diag(exp(mz(z¢—1,1.4))) O a22 0
0z 1 - Oft—1(2e-1) I | ~~—> 0

- Oz _1 i afKK_’

* Inference for such transformations can be done in tractable time.
 Determinant of lower triangular matrix can be computed in O(K) time.

det (af*(zt‘l)) |

O0zi_1

T
log p(x) = log p(z0) = log pr(2zr) + ) _ log
t=1
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Real Valued Non-Volume Preserving Flow

* For each coupling layer, there exists asymmetry since the first partition zt—1,1:d
is left invariant.

e Two coupling layers are paired alternatively to overcome this issue.

e Multi-scale architectures are used.
* Half variables follow Gaussian distribution at each scale.

paired coupling layer

Algorithmic Intelligence Lab
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Real Valued Non-Volume Preserving Flow

e Test results for log-likelihood of test images:

Done by forward pass of functions & = 2o — ZT.

Dataset PixelRNN [46] | Real NVP | Conv DRAW IAF-VAE [34] |
CIFAR-10 3.00 3.49 <359 <328

Imagenet (32 x 32) 386 (3.83) | 4.28 (4.26) | < 4.40(4.35)

Imagenet (64 x 64) 363 (357) | 3.98(3.75) | <4.10 (4.04)
LSUN (bedroom) 2.72 (2.70)
LSUN (tower) 2.81 (2.78)
LSUN (church outdoor) 3.08 (2.94)
CelebA 3.02 (2.97)

e Synthetic image generation results:

Done by backward pass of functions 217 — 2o = .

Algorithmic Intelligence Lab
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Other Flow-based Models

* If one uses fully factorized prior distribution pr(27), then flow based models
can be interpreted as non-linear independent components estimation (NICE)

[Dinh et al., 2015].

t=3,..-,T
non-factorized pmn B o DAL XY ooy
. . . — <0 rd — .
data distribution _ factorized
. _ independent
non-linear transformations components

& 50

* Alternative pairing of coupling layers have been generalized to linear
transformations [Kingma et al., 2018].

\ 4
+

!
y
®

G 2 (0

N\
my

S
S
>

* More advanced flows specified for density estimation (not sampling) have been
proposed by using autoregressive transformations [Papamakarios et al., 2017].
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Variational Autoencoder

* Consider the following generative model:

EES

latent variable
z

* Fixed prior on random latent variable.
* e.g., standard Normal distribution

p(z) = N(2z;0,1)

“decoding”
distribution

* Parameterized likelihood (decoder) for generation:
* e.g., Normal distribution parameterized by neural network

po(®|2) = N(; faec(2), 1)

* Resulting generative distribution (to optimize):

log pg(x) = log / po(x|2)p(z)dz = log E,pz)[p(z|2)]

z

Algorithmic Intelligence Lab
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Variational Autoencoder

* Variational autoencoder (VAE) introduce an auxiliary distribution (encoder)
[Kingma et al., 2013].

p.
_ g RNat “encoding”
m => distributign => E Q¢(Z|a3) — N(z7 fenc,u(a?)a fenC,O'(aj))

representation

data

* Each log py(x)term is replaced by its lower bound:

log pe(x) > log pe(x) — min KL(gs(2|)||po(z|x))
= log pg(x) + m§XEz~q¢(z|w)[logp9(z|w) — log g4(2|)]

- mgXEz~q¢(z|m) [10gp9(33) + lngg (Z|33) o log ng(z‘fﬂ)]

— m§XEz~q¢(Z|m) [10gp9(.’13‘2)] - KL(Q¢(Z|.”B)||p(Z))

* Bound becomes equality when ¢4(z|) =~ po(z|x) .

Algorithmic Intelligence Lab
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Variational Autoencoder

* The training objective becomes:
tractable between two Gaussian distributions

N v
max > logpy(x™) > max max B, (z|) log pg(x|2)] — KL(g4(z|x)||p(2))
n=1
N N
~ max max D logpe(a™|zM) — KL(gg(2]2")||p(2))
n=1 k=1

(n,k)

where latent variables are sampled by =z ~ q¢(z|m(”)) .

* However, non-trivial to train with back propagation due to sampling procedure:
N N

Vol =) Y —vglogpe(x!™]z") + 74 KL(gs(z|z"")||p(2))
n=1 k=1 4}

Since z(™*) is fixed after being sampled, 4 logp(x™|2("*)) =07?

Algorithmic Intelligence Lab 35



Variational Autoencoder

* Reparameterization trick is based on the change-of-variables formula:
€2 NN(‘C:Q“L»O-) <:> €9 = [+ 00, €0 NN(€0|091)
N N
f! 81(-0'60(_/—\ Eo < €1+ U
=> =>

scaling shifting
g0 ~ N (g0/0,1) e1 ~ N(e1]0,0) g2 ~ N(ez2|p, o)

* Latent variable z("*) can be similarly parameterized by encoder network:

Z(n’k) ~ N(Z; fenc,#(m(n))ﬂ fenc,a(m(”)))

s

S (k) fenc#(w(n)) 4+ fenc’a(w(n)) o E(n,k)? (k) N(g|0,1)
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Variational Autoencoder

* Total loss of variational autoencoder:
N N

Vol =) Y —vglogpy(x!™]z") + 74 KL(gs(z|z")||p(2))

™™

VoL

* Recall that faec; fenc,u, fenc,o are parameterized by ¢ .

* Derivative of first part:

Veli = Ve log./\f(a:(”); fdeC(z(n’k))v 1)

Algorithmic Intelligence Lab
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Variational Autoencoder

* Total loss of variational autoencoder:
N N

Vol =) Y —vglogpy(x!™]z") + 74 KL(gs(z|z")||p(2))

Vel VoLlo

* Recall that faec; fenc,u, fenc,o are parameterized by ¢ .

e Derivative of second part:

VoL1 = VKLV (2; fone (™), fene.o (2™))[|IN (2;0,1))

Algorithmic Intelligence Lab
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Variational Autoencoder

* Based on the proposed scheme, variational autoencoder successfully
generates images:

Training on MNIST

* Interpolation of latent variables induce transitions in generated images:
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Towards Improving Variational Inference

* Recall: evidence lower bound (ELBO, also variational lower bound).

log pg(x) > max Ezq, (2|2 [log po(x|2)] — KL(gs(2|x)||p(2))

* Approximating the log-likelihood is also called variational inference.
* Considered to be a important topic in theory.
* However, gap in bound does not decrease no matter how many samples we use.

* Two ways of improving variational inference:
* Replace ELBO with a tighter bound: importance weighted samples

* Use more powerful parameterization of g4 : inverse auto-regressive flow

Algorithmic Intelligence Lab
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Importance Weighted Auto-Encoder

* Observe that ELBO can also be proved by the Jensen’s inequality:
p(x, 2) p(x, 2)
logp L) = log Ezw z|lx |:—] Z Ezw z|lx |:10g —]
() 94 (z|x) 1 (2|) a4 (z|x) 10 (2|)

* Based on convexity, interchange order of logarithm and summation.

e Importance weighted AE (IWAE) relax the inequality [Burda et al., 2018]:

(k)

p(x, z'")

logp( ) logEz(l) 2K gy (z|x) [E L :|
— qy(2W|z)

1 i p(m,z(’“))

> E ) 200 0g, (2] llog—
SERR 94 (2|2) Kk:l g0 (2P |x)

also called importance weights

IS

* Becomes original ELBO when K = 1 and becomes exact bound when K = oo.

b

(k)
w z
Ez( ) z(K)me z|;]3) |: Z j| p(w)

(k)
— qy(zW )
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Importance Weighted Auto-Encoder

* IWAE improves the ELBO, i.e., lower negative log-likelihood (NLL).

* It also alleviates the so-called posterior collapse problem:
hidden units become inactive (=invariant for all input).

MMNIST OMMNIGLOT
VAE IWAE VAE I'WAE
aclhive achive aclive aclive
k NIIL.  units NILL. umits NI umits MNLL. units
Bh. 76 19 R6. 76 19 108.11 28 108.11 28

1
3 8647 20 B5.54 22 107,62 28 106.12 34
50 BA3S 20 |E4.‘;‘E ?ﬁl 1077 80 28 10467 41

/

best performance
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Improving Variational Inference with Inverse Auto-Regressive Flow

* Fully factorized Gaussian 44(z|z) often leads to poor approximation
of the true distribution py(z|z).

* This can be improved by introducing flow-based distribution as the flexible
parameterization of ¢4(z|x).

» Recall: functions are invertible in order to allow tractable density estimation.

2 maplele) (= 0Nl os@)

z=frofr_i0---,0f1(z0)

* Inverse autoregressive flow (IAF) for improving variational auto-encoder was
proposed [Kingma et al., 2016] (details in the next slide).

* |AF is specialized for variational inference since its forward pass zo — 2z is fast,
but its backward pass 2z — 2z is slow (not needed for variational inference).

Algorithmic Intelligence Lab
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Improving Variational Inference with Inverse Auto-Regressive Flow

* Inverse autoregressive flow (IAF) modifies each dimension of variable in
auto-regressive manner [Kingma et al., 2016]:

* Foreachd=1,.--- ,K:

Zt,d — ﬂt,d(zt—l,lzd—l) + Ut,d(zt—l,lzd—l)zt—l,d

0l0] 10100,

000

caseof d =3 updates done in parallel

* Inference for corresponding normalizing flow is efficient:

B ot,1 0 --- 0 7
T .
0 _ 7t20 .
g a(x[e) = logan(zolz) + 3 1o det (251 ) e
t=1 - '
B Ot,K _
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Improving Variational Inference with Inverse Auto-Regressive Flow

» Variational lower bound and estimated log likelihood for test dataset (MNIST):

Model VLB log p(x) =2
Convolutional VAE + HVI [1] -83.49 -21.94

DLGM 2hl + IWAE [2] -82.90

LVAE [3] -21.74

DRAW + VGP [4] -79.88

Diagonal covariance -84.08 (= 0.100 -81.08 (= 0.08)

IAF (Depth = 2, Width = 3200  -82.02 (£ 0.08) -79.77 (= 0.06)
IAF (Depth = 2, Width = 1920) -81.17 (£ 0.08) -79.30 (= 0.08)
IAF (Depth = 4, Width = 1920) -80.93 (£ 0.09) -79.17 (= 0.08)
IAF (Depth = 8, Width = 1920) -80.80 (= 0.07) -79.10 (= 0.07)

* Average negative log likelihood for test dataset (CIFAR-10):

Method bits/dim =
Results with tractable likelihood models:

Uniform distribution (van den Qord et al., 2016b) 8.00
Multivariate Gaussian (van den Oord et al., 2016b) 4.70
NICE (Dinh et al., 2014) 4.48
Deep GMMs (van den Oord and Schrauwen, 2014) 4.00
Real NVP (Dinh et al., 2016) 3.49
PixelRNN (van den QOord et al., 2016b) 3.00
Gated PixelCNN (van den Oord et al., 2016c) 3.03
Results with variationally trained latent-variable models:

Deep Diffusion (Sohl-Dickstein et al., 2015) 5.40
Convolutional DRAW (Gregor et al., 2016) 3.58
ResNet VAE with IAF (Ours) 3.11
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Other Variational Autoencoders

e Overcoming the posterior collapse problem (hidden units becoming inactive) is
an active topic of research [He et al., 2019].

* Latent variables can be disentangled, i.e., trained to be sensitive to only a single
generative factor of dataset [Higgins et al., 2017]:

interpolation of single latent variables

rotation smiling-nes | hair
e Recent variational autoencoders were successfully applied to generating
high-fidelity images [Razavi et al., 2019] :
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