# **Generative Models (other than GANs)**

AI602: Recent Advances in Deep Learning

Lecture 9

Slide made by

Sungsoo Ahn and Sejun Park

**KAIST EE** 

### 1. Introduction

• Explicit vs. implicit generative models

### 2. Auto-Regressive Models

• Pixel recurrent neural network

### 3. Flow-based Models

• Real-valued non-volume preserving transformation

### 4. Variational Auto-Encoder

- Variational auto-encoder (VAE)
- Improving VAE with importance weighted samples
- Improving VAE with normalizing flows

### **Table of Contents**

### 1. Introduction

- Explicit vs. implicit generative models
- **2.** Auto-Regressive Models
  - Pixel recurrent neural network
- 3. Flow-based Models
  - Real-valued non-volume preserving transformation
- 4. Variational Auto-Encoder
  - Variational auto-encoder (VAE)
  - Improving VAE with importance weighted samples
  - Improving VAE with normalizing flows

• From now on, we study generative models with <u>explicit</u> data distribution:

$$\max_{\theta} \sum_{n=1}^{N} \log p_{\theta}(\boldsymbol{x}^{(n)}), \qquad \boldsymbol{x}^{(n)}: \text{ training samples}$$

Autoregressive models use <u>conditional distributions</u>

to express the target distribution sequentially.

- Flow-based models warp a simple distribution via <u>invertible transformations</u> to match the target distribution.
- Variational auto-encoders model the target distribution by <u>maximizing its lower bound</u> for the training dataset.
- Remember generative adversarial network (GAN) models implicit distribution.

Random noise 
$$\mathbf{z} \sim p(\mathbf{z})$$
  $\mathbf{x} = G(\mathbf{z})$   $\mathbf{x} = G(\mathbf{z})$  What is  $p(\mathbf{x})$ ?

### **Table of Contents**

### 1. Introduction

• Explicit vs. implicit generative models

### 2. Auto-Regressive Models

• Pixel recurrent neural network

### 3. Flow-based Models

Real-valued non-volume preserving transformation

### 4. Variational Auto-Encoder

- Variational auto-encoder (VAE)
- Improving VAE with importance weighted samples
- Improving VAE with normalizing flows

• Autoregressive generation (e.g., pixel-by-pixel for images) [Oord et al., 2016]:

$$p(\boldsymbol{x}) = \prod_{k=1}^{K^2} p(x_k | x_1, \cdots, x_{k-1})$$
$$= \prod_{k=1}^{K^2} p(x_k | \boldsymbol{x}_{< k})$$



• For example, each RBG pixel is generated autoregressively:

$$p(x_k | \boldsymbol{x}_{< k}) = p(x_{k,R}, x_{k,B}, x_{k,G} | \boldsymbol{x}_{< k})$$
  
=  $p(x_{k,R} | \boldsymbol{x}_{< k}) p(x_{k,B} | \boldsymbol{x}_{< k}, x_{k,R}) p(x_{k,G} | \boldsymbol{x}_{< k}, x_{k,R}, x_{k,B})$ 

• Each pixel is treated as discrete variables, sampled from softmax distributions:



- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Simply treating  $x_{< k}$  as <u>one-dimensional</u> (instead of two-dimensional) vector:



CNN-based

- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Simply treating  $x_{< k}$  as <u>one-dimensional</u> (instead of two-dimensional) vector:



CNN-based

- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Simply treating  $x_{< k}$  as <u>one-dimensional</u> (instead of two-dimensional) vector:



CNN-based

- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Simply treating  $\boldsymbol{x}_{< k}$  as <u>one-dimensional</u> (instead of two-dimensional) vector:







- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Simply treating  $x_{< k}$  as <u>one-dimensional</u> (instead of two-dimensional) vector:



- Image generation requires multiple forward passes for each pixel.
- Evaluating p(x) (at training time) requires single forward pass for CNN, but multiple (sequential, non-parallelizable) LSTM pass are required for RNN (slow).
- Effective receptive field (context of pixel generation) is unbounded for RNN, but bounded for CNN (constrained).

**Algorithmic Intelligence Lab** 

Next, extending to two-dimensional data

- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Pixel CNN use masked convolutional layer (for  $oldsymbol{x}_{>k}$ )



- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Pixel CNN use masked convolutional layer (for  $oldsymbol{x}_{>k}$ )



- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Pixel CNN use masked convolutional layer (for  $oldsymbol{x}_{>k}$ )
  - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel).



- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Pixel CNN use masked convolutional layer (for  $oldsymbol{x}_{>k}$ )
  - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel).



- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Pixel CNN use masked convolutional layer (for  $oldsymbol{x}_{>k}$ )
  - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel).



- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Pixel CNN use masked convolutional layer (for  $oldsymbol{x}_{>k}$ )
  - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel).



- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Pixel CNN use masked convolutional layer (for  $oldsymbol{x}_{>k}$ )
  - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel).
  - Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel.



## Diagonal BiLSTM

- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Pixel CNN use masked convolutional layer (for  $oldsymbol{x}_{>k}$ )
  - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel).
  - Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel.



#### Diagonal BiLSTM Algorithmic Intelligence Lab

19

- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Pixel CNN use masked convolutional layer (for  $oldsymbol{x}_{>k}$ )
  - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel).
  - Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel.



### Diagonal BiLSTM

- Using CNN and RNN for modeling  $p(x_k | \boldsymbol{x}_{< k})$ 
  - Pixel CNN use masked convolutional layer (for  $oldsymbol{x}_{>k}$ )
  - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel).
  - Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel.



• Image generation results from CIFAR-10 and ImageNet:





ImageNet

• Evaluation of <u>negative log-likelihood (NLL)</u> on MNIST and CIFAR-10 dataset:

Only explicit models (not GAN) can compute NLL.

| Model                                  | NLL Test       | Model            | NLL Test (Train) |
|----------------------------------------|----------------|------------------|------------------|
| PixelCNN:                              | 81.30          | PixelCNN:        | 3.14 (3.08)      |
| Diagonal BiLSTM (1 layer, $h = 32$ ):  | 80.34<br>80.75 | Row LSTM:        | 3.07 (3.00)      |
| Diagonal BiLSTM (7 layers, $h = 16$ ): | 79.20          | Diagonal BiLSTM: | 3.00 (2.93)      |
| MNIST                                  |                | CIFAR            | R-10             |

• In general, pixel CNN is easiest to train and diagonal BiLSTM performs best.

- Pixel CNN++ [Salimans et al., 2017] improves pixel CNN by replacement of the softmax distribution with <u>discretized logistic mixture likelihood</u>.
- WaveNet [Oord et al., 2017] applies pixel CNN to speech data by introducing dilated convolutional layer for scalability.



 Applications of pixelCNN to <u>video</u> [Kalchbrenner et al., 2016a] and <u>machine</u> <u>translation</u> [Kalchbrenner et al., 2016b] have been investigated.

### **Table of Contents**

- 1. Introduction
  - Explicit vs. implicit generative models
- **2.** Auto-Regressive Models
  - Pixel recurrent neural network

### 3. Flow-based Models

Real-valued non-volume preserving transformation

### 4. Variational Auto-Encoder

- Variational auto-encoder (VAE)
- Improving VAE with importance weighted samples
- Improving VAE with normalizing flows

Modifying data distribution by flow (sequence) of invertible transformations [Rezende et al., 2015]:

$$\boldsymbol{x} = \boldsymbol{z}_0 \quad \boldsymbol{\Rightarrow} \quad \boldsymbol{z}_T = f_T \circ f_{T-1} \circ \cdots f_1(\boldsymbol{z}_0) \quad \boldsymbol{z}_t \in \mathbb{R}^K$$

- Final variable follows some specified prior  $p_T(\boldsymbol{z}_T)$ . ٠
- Data distribution is <u>explicitly</u> modeled by change-of-variables formula: •

$$\log p(\boldsymbol{x}) = \log p(\boldsymbol{z}_0) = \log p_T(\boldsymbol{z}_T) + \sum_{t=1}^T \log \left| \det \left( \frac{\partial f_t(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} \right) \right|$$



Mohamed et al., https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

 Modifying <u>data distribution</u> by flow (sequence) of <u>invertible transformations</u> [Rezende et al., 2015]:

$$oldsymbol{x} = oldsymbol{z}_0 \hspace{0.2cm} extsfrac{\hspace{-0.1cm}}{\scriptstyle\bullet} \hspace{0.2cm} oldsymbol{z}_T = f_T \circ f_{T-1} \circ \cdots f_1(oldsymbol{z}_0) \hspace{1.5cm} oldsymbol{z}_t \in \mathbb{R}^K$$

- Final variable follows some specified prior  $p_T(\boldsymbol{z}_T)$ .
- Data distribution is <u>explicitly</u> modeled by change-of-variables formula:

$$\log p(\boldsymbol{x}) = \log p(\boldsymbol{z}_0) = \log p_T(\boldsymbol{z}_T) + \sum_{t=1}^T \log \left| \det \left( \frac{\partial f_t(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} \right) \right|$$

- Log-likelihood  $\log p({m x})$  can be maximized directly.
- For training, important to design transformations with <u>tractable computation</u> of  $\log |\det (\partial f_t(\boldsymbol{z}_{t-1})/\partial \boldsymbol{z}_{t-1})|$ , which takes  $\mathcal{O}(K^3)$  times.

Next, introducing a flexible and tractable form of invertible transformation

- Coupling layer  $z_t = f_t(z_{t-1})$  for flow with <u>tractable</u> inference [Dinh et al., 2017]:
  - 1. <u>Partition</u> the variable into two parts:

$$oldsymbol{z}_{t-1} 
ightarrow [oldsymbol{z}_{t-1,1:d},oldsymbol{z}_{t-1,d+1:K}]$$





spatial-partition

channel-partition

2. Coupling law defines a simple invertible transformation of the first partition given the second partition (g and m are described later).

 $z_{t,d+1:K} = g(z_{t-1,d+1:K}; m(z_{t-1,1:d}))$ 

3. Second partition is left invariant (  $z_{t,1:d} = z_{t-1,1:d}$  ).



Next, specifying a particular effective form of the coupling layer

• Affine coupling layer was shown to be effective in practice:

$$\boldsymbol{z}_{t,d+1:K} = g(\boldsymbol{z}_{t-1,d+1:K}; m(\boldsymbol{z}_{t-1,1:d}))$$

$$= \boldsymbol{z}_{t-1,d+1:K} \odot \exp(m_1(\boldsymbol{z}_{t-1,1:d})) + m_2(\boldsymbol{z}_{t-1,1:d})$$

$$= \operatorname{lement-wise \ product} \quad \underbrace{ \qquad } \qquad \underbrace{ \qquad } \qquad \operatorname{neural \ neural \ n$$

• Jacobian of each transformation becomes a lower triangular matrix:

$$\frac{\partial f_{t-1}(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} = \begin{bmatrix} \operatorname{diag}(\exp(m_2(\boldsymbol{z}_{t-1,1:d}))) & \boldsymbol{0} \\ \frac{\partial f_{t-1}(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} & \mathbb{I} \end{bmatrix} \checkmark \begin{bmatrix} a_{11} & 0 \cdots & 0 \\ a_{22} & 0 & \vdots \\ \ddots & 0 \\ a_{KK} \end{bmatrix}$$

- Inference for such transformations can be done in tractable time.
  - Determinant of lower triangular matrix can be computed in  $\mathcal{O}(K)$  time.

$$\log p(\boldsymbol{x}) = \log p(\boldsymbol{z}_0) = \log p_T(\boldsymbol{z}_T) + \sum_{t=1}^T \log \left| \det \left( \frac{\partial f_t(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} \right) \right|$$

- For each coupling layer, there exists <u>asymmetry</u> since the first partition  $z_{t-1,1:d}$  is left invariant.
  - Two coupling layers are <u>paired alternatively</u> to overcome this issue.



- Multi-scale architectures are used.
  - Half variables follow Gaussian distribution at each scale.



• Test results for <u>log-likelihood of test images</u>:

Done by forward pass of functions  $\, oldsymbol{x} = oldsymbol{z}_0 o oldsymbol{z}_T .$ 

| Dataset                   | PixelRNN [46] | Real NVP    | Conv DRAW [22] | IAF-VAE [34] |
|---------------------------|---------------|-------------|----------------|--------------|
| CIFAR-10                  | 3.00          | 3.49        | < 3.59         | < 3.28       |
| Imagenet $(32 \times 32)$ | 3.86 (3.83)   | 4.28 (4.26) | < 4.40 (4.35)  |              |
| Imagenet $(64 \times 64)$ | 3.63 (3.57)   | 3.98 (3.75) | < 4.10 (4.04)  |              |
| LSUN (bedroom)            |               | 2.72 (2.70) |                |              |
| LSUN (tower)              |               | 2.81 (2.78) |                |              |
| LSUN (church outdoor)     |               | 3.08 (2.94) |                |              |
| CelebA                    |               | 3.02 (2.97) |                |              |

• Synthetic <u>image generation</u> results:

Done by backward pass of functions  $\, oldsymbol{z}_T 
ightarrow oldsymbol{z}_0 = oldsymbol{x}_{\!.} \,$ 





• If one uses <u>fully factorized</u> prior distribution  $p_T(z_T)$ , then flow based models can be interpreted as non-linear independent components estimation (NICE) [Dinh et al., 2015].



 <u>Alternative pairing</u> of coupling layers have been generalized to linear transformations [Kingma et al., 2018].



• More advanced flows specified for <u>density estimation (not sampling)</u> have been proposed by using autoregressive transformations [Papamakarios et al., 2017].

### **Table of Contents**

- 1. Introduction
  - Explicit vs. implicit generative models
- **2.** Auto-Regressive Models
  - Pixel recurrent neural network
- 3. Flow-based Models
  - Real-valued non-volume preserving transformation

### 4. Variational Auto-Encoder

- Variational auto-encoder (VAE)
- Improving VAE with importance weighted samples
- Improving VAE with normalizing flows

• Consider the following generative model:



- Fixed prior on random latent variable.
  - e.g., standard Normal distribution

$$p(\boldsymbol{z}) = \mathcal{N}(\boldsymbol{z}; \boldsymbol{0}, \mathbb{I})$$

- Parameterized likelihood (decoder) for generation:
  - e.g., Normal distribution parameterized by neural network

$$p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}; f_{\texttt{dec}}(\boldsymbol{z}), \mathbb{I})$$

• Resulting generative distribution (to optimize):

$$\log p_{\theta}(\boldsymbol{x}) = \log \int_{\boldsymbol{z}} p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) p(\boldsymbol{z}) d\boldsymbol{z} = \log \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})}[p(\boldsymbol{x}|\boldsymbol{z})]$$

• Variational autoencoder (VAE) introduce an auxiliary distribution (encoder) [Kingma et al., 2013].

 $q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) = \mathcal{N}(\boldsymbol{z}; f_{\texttt{enc},\mu}(\boldsymbol{x}), f_{\texttt{enc},\sigma}(\boldsymbol{x}))$ 



• Each  $\log p_{\theta}(\boldsymbol{x})$  term is replaced by its <u>lower bound</u>:

$$\begin{split} \log p_{\theta}(\boldsymbol{x}) &\geq \log p_{\theta}(\boldsymbol{x}) - \min_{\phi} \mathrm{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p_{\theta}(\boldsymbol{z}|\boldsymbol{x})) \\ &= \log p_{\theta}(\boldsymbol{x}) + \max_{\phi} \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} [\log p_{\theta}(\boldsymbol{z}|\boldsymbol{x}) - \log q_{\phi}(\boldsymbol{z}|\boldsymbol{x})] \\ &= \max_{\phi} \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} [\log p_{\theta}(\boldsymbol{x}) + \log p_{\theta}(\boldsymbol{z}|\boldsymbol{x}) - \log q_{\phi}(\boldsymbol{z}|\boldsymbol{x})] \\ &= \max_{\phi} \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} [\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - \mathrm{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z})) \end{split}$$

• Bound becomes equality when  $q_{\phi}(m{z}|m{x}) pprox p_{ heta}(m{z}|m{x})$  .

• The training objective becomes:

tractable between two Gaussian distributions

$$\max_{\theta} \sum_{n=1}^{N} \log p_{\theta}(\boldsymbol{x}^{(n)}) \geq \max_{\theta} \max_{\phi} \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - \mathrm{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z}))$$
$$\approx \max_{\theta} \max_{\phi} \sum_{n=1}^{N} \sum_{k=1}^{N} \log p_{\theta}(\boldsymbol{x}^{(n)}|\boldsymbol{z}^{(n,k)}) - \mathrm{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}^{(n)})||p(\boldsymbol{z}))$$
where latent variables are sampled by  $\boldsymbol{z}^{(n,k)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x}^{(n)})$ .

• However, non-trivial to train with back propagation due to sampling procedure:

• Reparameterization trick is based on the change-of-variables formula:

$$\varepsilon_2 \sim \mathcal{N}(\varepsilon_2 | \mu, \sigma) \iff \varepsilon_2 = \mu + \sigma \varepsilon_0, \qquad \varepsilon_0 \sim \mathcal{N}(\varepsilon_0 | 0, 1)$$



• Latent variable  $z^{(n,k)}$  can be similarly parameterized by encoder network:

• Total loss of variational autoencoder:

 $\nabla_{\phi} \mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{N} - \underbrace{\nabla_{\phi} \log p_{\theta}(\boldsymbol{x}^{(n)} | \boldsymbol{z}^{(n,k)})}_{\nabla \phi \mathcal{L}_{1}} + \underbrace{\nabla_{\phi} \mathrm{KL}(q_{\phi}(\boldsymbol{z} | \boldsymbol{x}^{(n)}) | | p(\boldsymbol{z}))}_{\nabla \phi \mathcal{L}_{2}}$ 

- Recall that  $f_{{\rm dec}}, f_{{\rm enc},\mu}, f_{{\rm enc},\sigma}$  are parameterized by  $\phi$  .
- Derivative of first part:

 $\bigtriangledown_{\phi} \mathcal{L}_1 = \bigtriangledown_{\phi} \log \mathcal{N}(\boldsymbol{x}^{(n)}; f_{\texttt{dec}}(\boldsymbol{z}^{(n,k)}), \boldsymbol{1})$ 

• Total loss of variational autoencoder:

 $\nabla_{\phi} \mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{N} - \underbrace{\nabla_{\phi} \log p_{\theta}(\boldsymbol{x}^{(n)} | \boldsymbol{z}^{(n,k)})}_{\nabla_{\phi} \mathcal{L}_{1}} + \underbrace{\nabla_{\phi} \mathrm{KL}(q_{\phi}(\boldsymbol{z} | \boldsymbol{x}^{(n)}) | | p(\boldsymbol{z}))}_{\nabla_{\phi} \mathcal{L}_{2}}$ 

- Recall that  $f_{{\rm dec}}, f_{{\rm enc},\mu}, f_{{\rm enc},\sigma}$  are parameterized by  $\phi$  .
- Derivative of second part:

 $\bigtriangledown_{\phi} \mathcal{L}_1 = \bigtriangledown_{\phi} \mathrm{KL}(\mathcal{N}(\boldsymbol{z}; f_{\mathtt{enc}, \mu}(\boldsymbol{x}^{(n)}), f_{\mathtt{enc}, \sigma}(\boldsymbol{x}^{(n)})) || \mathcal{N}(\boldsymbol{z}; \boldsymbol{0}, \boldsymbol{1}))$ 

• Based on the proposed scheme, variational autoencoder successfully generates images:



Training on MNIST

• Interpolation of latent variables induce transitions in generated images:



• Recall: evidence lower bound (ELBO, also variational lower bound).

 $\log p_{\theta}(\boldsymbol{x}) \geq \max_{\phi} \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - \mathrm{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z}))$ 

- Approximating the log-likelihood is also called variational inference.
  - Considered to be a important topic in theory.
  - However, gap in bound does not decrease no matter how many samples we use.
- Two ways of improving variational inference:
  - **Replace ELBO** with a tighter bound: importance weighted samples
  - Use more powerful parameterization of  $q_{\phi}$ : inverse auto-regressive flow

• Observe that ELBO can also be proved by the Jensen's inequality:

$$\log p(\boldsymbol{x}) = \log \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[ \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right] \geq \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[ \log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right]$$

- Based on convexity, interchange order of logarithm and summation.
- Importance weighted AE (IWAE) relax the inequality [Burda et al., 2018]:

$$\log p(\boldsymbol{x}) = \log \mathbb{E}_{\boldsymbol{z}^{(1)}, \cdots, \boldsymbol{z}^{(K)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[ \sum_{k=1}^{K} \frac{p(\boldsymbol{x}, \boldsymbol{z}^{(k)})}{q_{\phi}(\boldsymbol{z}^{(k)}|\boldsymbol{x})} \right]$$
$$\geq \mathbb{E}_{\boldsymbol{z}^{(1)}, \cdots, \boldsymbol{z}^{(K)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[ \log \frac{1}{K} \sum_{k=1}^{K} \frac{p(\boldsymbol{x}, \boldsymbol{z}^{(k)})}{q_{\phi}(\boldsymbol{z}^{(k)}|\boldsymbol{x})} \right]$$

also called importance weights

- Becomes original ELBO when K = 1 and becomes exact bound when  $K = \infty$ .

$$\mathbb{E}_{\boldsymbol{z}^{(1)},\cdots,\boldsymbol{z}^{(K)}\sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\frac{1}{K}\sum_{k=1}^{K}\frac{p(\boldsymbol{x},\boldsymbol{z}^{(k)})}{q_{\phi}(\boldsymbol{z}^{(k)}|\boldsymbol{x})}\right] \approx p(\boldsymbol{x})$$

- IWAE improves the ELBO, i.e., lower negative log-likelihood (NLL).
- It also alleviates the so-called posterior collapse problem: hidden units become inactive (=invariant for all input).

|          |       | MN              | IST   |                 |               | OMNI            | GLOT    |                 |
|----------|-------|-----------------|-------|-----------------|---------------|-----------------|---------|-----------------|
|          | V     | AE              | IW    | AE              | VA            | E               | IW      | AE              |
| <u>k</u> | NLL   | active<br>units | NLL   | active<br>units | NLL           | active<br>units | NLL     | active<br>units |
| 1        | 86.76 | 19              | 86.76 | 19              | 108.11        | 28              | 108.11  | 28              |
| 5        | 86.47 | 20              | 85.54 | 22              | 107.62        | 28              | 106.12  | 34              |
| 50       | 86.35 | 20              | 84.78 | 25              | 107.80        | 28              | 104.67  | 41              |
|          |       |                 |       | ×<br>b          | ∖<br>est perf | ,<br>orman      | ≉<br>ce |                 |

### Improving Variational Inference with Inverse Auto-Regressive Flow

- Fully factorized Gaussian  $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$  often leads to <u>poor approximation</u> of the true distribution  $p_{\theta}(\boldsymbol{z}|\boldsymbol{x})$ .
- This can be improved by introducing flow-based distribution as the flexible parameterization of  $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$ .
  - Recall: functions are <u>invertible</u> in order to allow tractable density estimation.

$$oldsymbol{z} \sim q_{\phi}(oldsymbol{z} | oldsymbol{x}) \quad \langle oldsymbol{z} > \ oldsymbol{z} = f_T \circ f_{T-1} \circ \cdots, \circ f_1(oldsymbol{z}_0), \ oldsymbol{z} = f_T \circ f_{T-1} \circ \cdots, \circ f_1(oldsymbol{z}_0) 
angle$$

- Inverse autoregressive flow (IAF) for improving variational auto-encoder was proposed [Kingma et al., 2016] (details in the next slide).
  - IAF is specialized for variational inference since its forward pass  $z_0 \rightarrow z_T$  is fast, but its backward pass  $z_T \rightarrow z_0$  is slow (not needed for variational inference).

### Improving Variational Inference with Inverse Auto-Regressive Flow

- Inverse autoregressive flow (IAF) modifies each dimension of variable in auto-regressive manner [Kingma et al., 2016]:
  - For each  $d = 1, \cdots, K$ :

 $z_{t,d} = \mu_{t,d}(\boldsymbol{z}_{t-1,1:d-1}) + \sigma_{t,d}(\boldsymbol{z}_{t-1,1:d-1})z_{t-1,d}$ 



case of d = 3



updates done in parallel

• Inference for corresponding normalizing flow is efficient:

• Variational lower bound and estimated log likelihood for test dataset (MNIST):

| Model                                                                                                                                                  | VLB                                                                                                                                                      | $\log p(\mathbf{x}) \approx$                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Convolutional VAE + HVI [1]<br>DLGM 2hl + IWAE [2]                                                                                                     | -83.49                                                                                                                                                   | -81.94<br>-82.90                                                                                                                     |
| LVAE [3]<br>DRAW + VGP [4]                                                                                                                             | -79.88                                                                                                                                                   | -81.74                                                                                                                               |
| Diagonal covariance<br>IAF (Depth = 2, Width = 320)<br>IAF (Depth = 2, Width = 1920)<br>IAF (Depth = 4, Width = 1920)<br>IAF (Depth = 8, Width = 1920) | $\begin{array}{c} -84.08 \ (\pm \ 0.10) \\ -82.02 \ (\pm \ 0.08) \\ -81.17 \ (\pm \ 0.08) \\ -80.93 \ (\pm \ 0.09) \\ -80.80 \ (\pm \ 0.07) \end{array}$ | $\begin{array}{l} -81.08 (\pm 0.08) \\ -79.77 (\pm 0.06) \\ -79.30 (\pm 0.08) \\ -79.17 (\pm 0.08) \\ -79.10 (\pm 0.07) \end{array}$ |

• Average negative log likelihood for test dataset (CIFAR-10):

| Method                                                     | bits/dim ≤ |
|------------------------------------------------------------|------------|
| Results with tractable likelihood models:                  |            |
| Uniform distribution (van den Oord et al., 2016b)          | 8.00       |
| Multivariate Gaussian (van den Oord et al., 2016b)         | 4.70       |
| NICE (Dinh et al., 2014)                                   | 4.48       |
| Deep GMMs (van den Oord and Schrauwen, 2014)               | 4.00       |
| Real NVP (Dinh et al., 2016)                               | 3.49       |
| PixelRNN (van den Oord et al., 2016b)                      | 3.00       |
| Gated PixelCNN (van den Oord et al., 2016c)                | 3.03       |
| Results with variationally trained latent-variable models: |            |
| Deep Diffusion (Sohl-Dickstein et al., 2015)               | 5.40       |
| Convolutional DRAW (Gregor et al., 2016)                   | 3.58       |
| ResNet VAE with IAF (Ours)                                 | 3.11       |

- Overcoming the posterior collapse problem (hidden units becoming inactive) is an active topic of research [He et al., 2019].
- Latent variables can be disentangled, i.e., trained to be sensitive to only a single generative factor of dataset [Higgins et al., 2017]:



• Recent variational autoencoders were successfully applied to generating high-fidelity images [Razavi et al., 2019] :



### References

[Kingma et al., 2013] Auto-Encoding Variational Bayes, ICLR 2013 link: <u>https://arxiv.org/abs/1802.06455</u>

[Dinh et al., 2015] NICE: Non-Linear Independent Components Estimation, ICLR 2015 link: <u>https://arxiv.org/abs/1410.8516</u>

[Rezende et al., 2015] Variational Inference with Normalizing Flows, ICML 2015 link: <u>https://arxiv.org/abs/1705.08665</u>

[Oord et al., 2016] Pixel Recurrent Neural Networks, ICML 2016 link: <u>https://arxiv.org/pdf/1601.06759</u>

[Burda et al., 2016] Importance Weighted Autoencoders, ICLR 2016 link: <u>https://arxiv.org/abs/1509.00519</u>

[Kingma et al., 2016] Improving Inference with Inverse Autoregressive Flows, NIPS 2016 link: <u>https://arxiv.org/abs/1710.10628</u>

[Oord et al., 2017] WaveNet: A Generative Model for Raw Audio, SSW 2017 link: <u>https://arxiv.org/abs/1703.01961</u>

[Dinh et al., 2017] Density Estimation using Real NVP, ICLR 2017 link: <u>https://arxiv.org/abs/1605.08803</u>

[Higgins et al., 2017] beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, ICLR 2017 link: <u>https://openreview.net/pdf?id=Sy2fzU9gl</u>

[Papamakarios et al., 2017] Masked Autoregressive Flow for Density Estimation, NIPS 2017 link: <u>https://arxiv.org/abs/1710.10628</u>

[Kingma et al., 2018] Generative Flow with Invertible 1x1 Convolutions, NIPS 2018 link: <u>https://arxiv.org/abs/1807.03039</u>

[He et al., 2019] Lagging Inference Networks and Posterior Collapse in Variational Autoencoders, ICLR 2019 link: <u>https://openreview.net/forum?id=ryIDfnCqF7</u>