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Generative Model and Discriminative Model

4

• Given an observed variable     and a target variable

• Discriminative model is a model of a conditional distribution
• e.g., neural network classifiers

• Generative model is a model of a joint distribution                 (or           )
• e.g., Boltzmann machines, sum-product networks

* source : https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg

https://en.wikipedia.org/wiki/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/File:Kittyply_edit1.jpg
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Why Generative Model?

5

• Generative models model a full probability distribution of given data

• enables us to generate new data similar to existing (training) data 
• This is impossible under discriminative models

• Sampling methods are required for generation

* source : https://en.wikipedia.org/wiki/File:Cat_poster_1.jpg

https://en.wikipedia.org/wiki/File:Kittyply_edit1.jpg
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• Generate new samples from the same distribution with training data

• Many real-world applications are related with generating data

• Common applications
• Vision: super-resolution, style transfer, and image inpainting, etc.

• Audio: synthesizing audio, speech generation, voice conversion, etc.

• And many more..

Why Generative Model?

6

Super-resolution [Ledig, et. al., 2017] Style transfer [Zhu, et. al., 2017] High-res image generation
[Karras, et. al., 2018] 
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• Modeling a joint distribution of      with an explicit probability density function
(which we will study in the next lecture)
• Multivariate Gaussian distributions

•

• Tractable inference, low expressive power

• Graphical models (e.g., RBM, DBM, etc.)

•

• Intractable inference, high expressive power with compact representations

• Modeling a joint distribution of      with an implicit density function
• Generative adversarial networks (GAN)

• Use function approximation capacity of neural networks 

• Modeling the data distribution with implicit density function using neural networks

• Sampling: simple forward propagation of a generator neural network

Examples of Generative Models

7
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• Many previous approaches (explicit generative models) have difficulties in
• Sampling from high-dimensional and complex distributions

• And make it realistic

• Basic idea of GAN [Goodfellow, et. al., 2014]
• Do not use any explicit density function 

• Two player game between discriminator network      and generator network 

• tries to distinguish real data and samples generated by      (fake samples)

• tries to fool the      by generating real-looking images

• Utilizes large capacity of neural nets to model the sampling function

Generative Adversarial Networks (GAN)

9

Real or 
fake?

Random 
noise

Fake samples

Real samples
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• tries to distinguish real data and samples generated by      (fake samples)

• tries to fool the      by generating real-looking images

• Objective function:

• For     , maximize objective by making            is close to 1 and                   is close to 0

• For     , minimize objective by making                   is close to 1

Training GAN

10

Real or 
fake?

Random 
noise

Fake samples

Real samples

Discriminator output 
for real data 

Discriminator output 
for generated fake data
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• Objective function [Goodfellow, et. al., 2014]:

• Alternative training between       and
• For  

• For 

• In practice, optimizing generator objective does not work well (details in later slides)

Training GAN

11
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• Discriminator
• For fixed     , the       optimizes: 

• Optimal discriminator is

• If                      , optimal discriminator  

What is Optimized in GAN Objective?

12
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• Generator
• For fixed         , the      optimizes: 

• When discriminator is optimal
• Generator objective becomes minimizing the Jensen-Shannon (JS) divergence

• Many previous generative models use KL divergence (maximum likelihood)

• Unlike KL divergence, JS divergence helps to 

• Generate sharp, clear images but causes a missing mode problem

What is Optimized in GAN Objective?

13
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• Alternative training of discriminator and generator
• Recall:       optimizes JS divergence when      is optimal

• But      is not optimal generally

• By updating discriminator 𝑘-steps per each iteration of generator, this problem 
could be reduced

GAN Training Algorithm: in Practice

14* source : Goodfellow, et. al., Generative adversarial nets, NIPS 2014
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• Alternative training between       and
• For  

• For 

• In practice, optimizing generator objective does not work well

• When generated sample looks bad (at beginning of training) gradient is relatively flat

• Learning by back-prop becomes difficult

GAN Training Algorithm: in Practice

15

Flat gradients when a 
sample is really bad

* source : http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture12.pdf
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• Alternative training between       and
• For  

• In practice,       is optimized by

• gives stronger gradients early in learning

GAN Training Algorithm: in Practice

16

Stronger gradients when 
a sample is really bad

* source : http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture12.pdf
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• GAN generates sharp, clear images compared to previous generative models
• Most previous works are suffered by blurred unrealistic generated samples

• Then, what makes GAN be able to generate realistic samples?
• GAN utilizes the function approximation power of neural networks

• But it is also the cases for other models (e.g., Variational auto encoder; VAE)

• What else?

Generated Samples with GAN

18

Bedroom images Faces images ImageNet

* source : Radford, et. al., Unsupervised representation learning with deep convolutional generative adversarial networks. 
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• Maximum likelihood methods (= KL divergence minimization)

•

• When                                              , the integrand grows quickly to infinity

• High penalty when generator’s distribution does not cover parts of the train data

•

• When                                              , the integrand goes to 0

• Low penalty for generating fake looking samples

• KL divergence solution tends to cover all the modes

• Inverse KL divergence                               tends to fit single mode

Difference with Previous Generative Models

19
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• Maximum likelihood methods (= KL divergence minimization)

• KL divergence solution tends to cover all the modes

• Inverse KL divergence                               tends to fit single mode

• Jensen-Shannon divergence

• (A bit like a) combination of the two divergences

• Using JS divergence instead of KL divergence helps to generate realistic images 
[Huszar 2015]

Difference with Previous Generative Models

20* source : https://www.inference.vc/how-to-train-your-generative-models-why-generative-adversarial-networks-work-so-well-2/ 
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• Hard to achieve Nash equilibrium to a two-player non-cooperative game 
[Salimans, et. al., 2016]
• Each model updates its own objective function 

• Modification of       that reduces      ‘s objective can increase     ‘s, and vice versa

• Mode collapse
• Generator collapse to parameters that produces the same outputs

• Generator can fool if it is really good at making only a good looking sample

• JS divergence does not penalize missing mode as hard as KL divergence

Issues of GAN: Intractable Nash and Mode Collapse

21

Examples of mode collapse in GAN.

* source : Arjovsky, et. al., Wasserstein GAN, ICML 2017
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• In the standard (unconditional) GAN, there is no control on modes of the data 
being generated.

• Conditional GANs aim for modeling the distribution better by incorporating its 
attribute or class    , therefore they have advantages of to its class-wise 
controllability and improved quality for complex generation tasks.

• Recall the objective function of unconditional GAN [Goodfellow et al., 2014]:

• The objective function of conditional GAN is as follows [Mirza et al., 2014]:

Conditional GAN

23

There are many works to concatenate (embedded)     to 
the input or to the middle layers [Reed et al. ICML 2016].
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• For better results and to stabilize training, several methods to feed conditional 
information to GANs are studied.

• Instead of feeding class information to the discriminator, [Odena et al., ICML 
2017] tasks the discriminator with reconstructing class information.

• They modified the discriminator to contain an auxiliary classifier which classifies 
the classes of both real and fake inputs.

Conditioning of GANs: Auxiliary Classifier GAN (ACGAN)

24

Conditional GAN
(Mirza et al., 2014)

* source : Basart , Analysis of Generative Adversarial Models, 2017

ACGAN
(Odena et al., 2017)
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• The training objective function consists of two parts:
• The log-likelihood of the correct source,       (i.e. the original GAN loss). 

• The log-likelihood of the correct class,       . 

• The discriminator trained to maximize                   , and the generator trained to 
maximize                       .
• Note that the classification loss        is used not only for the discriminator, but also 

for the generator.

• The balancing weight of both losses can be tuned for better training. (i.e. The 
discriminator and generator maximize                        and                          , respectively.)

Conditioning of GANs: Auxiliary Classifier GAN (ACGAN)

25



Algorithmic Intelligence Lab

• ACGAN can generate diverse, higher resolution images than concatenation of 
class labels in the discriminator.
• The authors show that synthesizing higher resolution images leads to increased 

discriminability by feeding images to a pre-trained Inception network (left).

• To evaluate the diversity of generated images quantitatively, they also measure the 
multiscale structural similarity (MS-SSIM) between randomly chosen pairs of images 
within a given class (right).

Conditioning of GANs: Auxiliary Classifier GAN (ACGAN)

26

MS-SSIM: lower is betterInception accuracy: higher is better

* source : Odena et al., Conditional Image Synthesis with Auxiliary Classifier GANs, ICML 2017

real
fake (128x128)

fake (64x64)

diverse
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• Instead of concatenating one-hot vectors to the generator, [Dumoulin et al., 
ICLR 2017, de Vries et al., NIPS 2017] made the conditions modulate Batch 
Normalization (BN) layers.

• The key idea is to predict the affine scaling parameters,     and     of the batch 
normalization from an embedding of conditional information,    . 

Conditioning of GANs : Conditional Batch Normalization (CBN)

27

Batch Normalization Conditional Batch Normalization

* source : de Vries et. al., Modulating early visual processing by language, NIPS 2017

Embed
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• [Miyato et al., ICLR 2018] suggested another approach to feed conditional 
information to the discriminator.

• They show a projection of one-hot vector is much better than concatenation.

• The architecture of the proposed projection discriminator is as follows:

Conditioning of GANs: Projection Discriminator

28* source : Miyato et. al., cGANS with Projection Discriminator, ICLR 2018

where      is a function of     and    , and      is an activation 
function of the users' choice (e.g. sigmoid for vanilla GAN).

The discriminator is modeled by a inner-product 
(projection) of the class embedded vector    . 
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• Projection discriminator significantly outperforms concatenation of one-hot 
vector and ACGAN.

Conditioning of GANs: Projection Discriminator

29

Inception score: higher is better
Intra (class-wise) FID:  lower is better

FID for each class

The projection discriminator is also more 
robust for mode-collapse than prior methods.
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• Some heuristics can alleviate the issue for training GAN
• But, they are not fundamental solutions and are not clear to work in general

• Wasserstein distance: measure of the distance between two probability 
distributions (also called Earth Mover’s distance)

• Intuitively, minimal total amount of work to transform one heap of dirt into the other

• Work is defined as the amount of dirt in a chunk times the distance it was moved

• Example

• : the minimum amount of work from distribution      to 

Wasserstein Distance

31* source : https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html#wasserstein-gan-wgan
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• Wasserstein distance: measure of the distance between two probability 
distributions (also called Earth Mover’s distance)

• Intuitively, minimal total amount of work to transform one heap of dirt into the other

• Work is defined as the amount of dirt in a chunk times the distance it was moved

• Example

• is the set of all possible joint probability distributions between            and  

• Infimum over joint distribution     (each      corresponds to one dirt transport plan like in  
example in a slide before)

Wasserstein Distance

32* source : https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html#wasserstein-gan-wgan
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• When two distributions are located without overlaps
• Still provides meaningful and smooth representation of the distance (and gradients) 

• Example [Arjovsky, et. al., 2017]
• Let                        ,        be the distribution of                      

• with    , a single real parameter, and        is the distribution of 

• Distance between two distributions are:

• Parameter     can be learned on the Wasserstein distance

• Parameter     cannot be learned on JS or KL divergence

Comparison between Wasserstein Distance and Other Distance Metrics

33
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• This example shows that there exist distributions that
• Don’t converge under the JS, KL, or inverse KL

• For the JS, KL, and inverse KL, there are cases where the gradient is always 0

• This is especially not good from an optimization perspective

• Do converge under the Wasserstein distance

• Easy to get similar results, if            and       are on low-dimensional manifolds in 
high dimensional space

Comparison between Wasserstein Distance and Other Distance Metrics

34

Low dimensional manifolds in high dimension space can hardly have overlaps. 
(Left) two lines in a 3-d space. (Right) two surfaces in 3-d space

* source: https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html#wasserstein-gan-wgan
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• Infimum over joint distribution                                 is computationally intractable

• Using Kantorovich-Rubinstein duality [Villani, 2009], Wasserstein distance 
becomes:

• The Supremum is over all the 1-Lipschitz functions 

• Let      is parameterized by     , then one could consider solving the problem

• To enforce the Lipschitz constraint, clamp the weights to a fixed box 
(e.g.,                                      , where     is dimension of parameter               ) 

Wasserstein Distance in GAN Objective

35* source: WGAN and Kantorovich-Rubinstein duality https://vincentherrmann.github.io/blog/wasserstein/

https://vincentherrmann.github.io/blog/wasserstein/
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• Comparison of GAN and WGAN
• Discriminator (outputs probability of real or fake) becomes a continuous function 

to help compute Wasserstein distance (with weight clamping)

WGAN vs GAN

36
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WGAN vs GAN

37

(Left) WGAN vs. (Right) GAN with DCGAN architecture . Both produce high quality samples

(Left) WGAN vs. (Right) GAN with less parameter models and without batch normalization

(Left) WGAN vs. (Right) GAN with MLP generator. 
Vanilla GAN does mode collapse, while WGAN still produces good samples

* source : Arjovsky, et. al., Wasserstein GAN, ICML 2017
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• To maintain Lipschitz constraint WGAN uses weight clamping
• But it is naïve and no guaranteed method
• Weight clamping leads to optimization difficulties sometimes

• Recent works try to improve the method for maintaining Lipschitz constraint
• Improved training of Wasserstein GANs (WGAN-GP) [Gulrajani, et. al., 2017] 

• Use gradient penalty to maintain Lipschitz constraint

where 

• Spectral normalization for generative adversarial networks [Miyato, et. al., 2018]
• Control the Lipschitz constant of       by constraining the spectral norm of each layer

where               is the spectral norm of 

• Nevertheless, stabilizing training GAN is still an on-going research topic!

Enforcing the Lipschitz Constraint of Discriminator

38
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• GANs produce sharp images
• But only in fairly small resolutions and with somewhat limited variation

• Training continues to be unstable despite recent progress

• Generating high resolution image is difficult
• It is easier to tell the generated images from training images in high-res images 

[Karras, et. al., 2018]

• Grow both generator and discriminator progressively

• Start learning from easier low-resolution images 

• Add new layers that introduce higher-resolution details as the training progress

Progressive GAN: High-Resolution Image Generation

40* source : Karras, et. al., Progressive growing of GANs for improved quality, stability, and variation, ICLR 2018
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• Fade in the new layers smoothly
• Prevent sudden shocks to the already well-trained, smaller-resolution layers

• Simplified minibatch discrimination [Salimans, et. al., 2016]
• Compute standard deviation for each feature in each spatial location and average it

• Use it as an additional feature map for the input of the next layer

Progressive GAN: High-Resolution Image Generation

41

Transition from 16 × 16 images (a) to 32 × 32 images (c). During the transition (b)
we treat the layers that operate on the higher resolution like a residual block, 
whose weight α increases linearly from 0 to 1

* source : Karras, et. al., Progressive growing of GANs for improved quality, stability, and variation, ICLR 2018



Algorithmic Intelligence Lab

Progressive GAN: Results

42

Visual quality comparison: LSUN bedroom LSUN other categories generated image (256x256)

1024x1024 images generated using the CELEBA-HQ dataset
https://www.youtube.com/watch?v=G06dEcZ-QTg&feature=youtu.be

* source : Karras, et. al., Progressive growing of GANs for improved quality, stability, and variation, ICLR 2018

https://www.youtube.com/watch?v=G06dEcZ-QTg&feature=youtu.be


Algorithmic Intelligence Lab

1. Generative Models
• Why generative model?

• Types of generative models

2. Generative Adversarial Networks (GAN)
• Vanilla GAN

• Advantages and disadvantages of GAN

• Improved techniques for training GAN

• Conditional GAN

• Wasserstein GAN (WGAN)

3. Improved GANs
• Progressive GAN

• Self-Attention GAN (SAGAN)

• BigGAN

• StyleGAN

Table of Contents

43



Algorithmic Intelligence Lab

• Previous GANs fail to capture geometric or structural patterns that occur 
consistently in some classes.

• Convolution process is local, thus using conv layers alone is computationally 
inefficient for modeling long-range dependencies in images. 

• They adapt the non-local model (i.e. self-attention module) of [Wang et al., 
CVPR 2018] for both the generator and the discriminator to efficiently model 
relationships between spatial regions. 

Self-Attention GAN: Attention-Driven Image Generation Tasks

44* source : Zhang, et. al., Self-Attention Generative Adversarial Networks, ICML 2019

: attention between regions
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• The self-attention module for the SAGAN

• The Image features are first transformed into two feature spaces.

• Then calculate the attention. 

• indicates the extent to which the model attends to the    th location when 
synthesizing the    th region.

Self-Attention GAN: Attention-Driven Image Generation Tasks

45* source : Zhang, et. al., Self-Attention Generative Adversarial Networks, ICML 2019
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• The self-attention module for the SAGAN

• Here the output of the attention layer is:

• In addition, multiply the output of the attention layer by a scale parameter and add 
back the input feature map (as similar as Residual block).

Self-Attention GAN: Attention-Driven Image Generation Tasks

46* source : Zhang, et. al., Self-Attention Generative Adversarial Networks, ICML 2019
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• They additionally proposed some stabilization techniques, such as Spectral 
Normalization on both G/D and two-timescale learning rates (TTUR), which is 
using separate learning rates for the G/D.

• Comparison of Self-Attention and Residual block on GANs. These blocks are 
added into different features of the network. 

Self-Attention GAN: Attention-Driven Image Generation Tasks

47* source : Zhang, et. al., Self-Attention Generative Adversarial Networks, ICML 2019

Training of G/D 
are well-balanced

The improvements depend not only on 
residual connections, but also on attentions.
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• BigGAN is a massive aggregation of recent techniques for training GANs.

• The model is a kind of conditional GANs, which can generate high-resolution, 
diverse samples from complex datasets such as ImageNet successfully.

• When trained on ImageNet at 128×128 resolution, BigGAN improves the state-
of-the-art Inception Score (IS) and Fré chet Inception Distance (FID).

BigGAN: High-resolution, Diverse Image Generation

49* source : Brock, et. al., Large Scale GAN Training for High Fidelity Natural Image Synthesis, ICLR 2019
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• Aggregation of previous techniques
• The base model is Self-Attention GAN [Zhang et al., ICML 2019] using spectral 

normalization [Miyato et al., ICLR 2018].

• They provide class information to the generator with class-conditional BatchNorm
[Dumoulin et al., ICLR 2017; de Vries et al., NIPS 2017] and to the discriminator with 
projection [Miyato et al., ICLR 2018].

• Progressive growing [Karras et al., ICLR 2018] is not used. 

• Modification for scaling up GANs
• Increasing the size of models and batches leads to a IS and FID improvement (This is 

why we call the model big).

• Some techniques such as shared embedding, skip connection, and orthogonal 
regularization are used for stabilized training.

BigGAN: High-resolution, Diverse Image Generation

50* source : Brock, et. al., Large Scale GAN Training for High Fidelity Natural Image Synthesis, ICLR 2019

SAGAN
with spectral 
normalization 

Conditional BN
and Projection D

Shared embed
Skip connection
Orthogonal reg

BigGAN

Baselines Conditioning Stabilizing

Scale up
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• Instead of having a separate layer for each embedding [Miyato et al., ICLR 2018], 
they use a shared embedding, which is linearly projected to each layer’s gains 
and biases [Perez et al., 2018].

• Skip connections (skip- ) from the noise vector    to multiple layers of G rather 
than just the initial layer. This design allows G to use the latent space to directly 
influence features at different resolutions and levels of hierarchy.

BigGAN: High-resolution, Diverse Image Generation

51

shared embedding

skip connection

The architecture of the BigGAN
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• Simply increasing the batch size by a factor of 8 improves the state-of-the-art IS 
by 46%. Increasing the width (number of channels) in each layer by 50% leads 
to a further IS improvement of 21%.

• In the test time, “truncation trick”, which reduces the variance of the 
generator’s input, allows fine control over the trade-off between sample fidelity 
and variety.

BigGAN: High-resolution, Diverse Image Generation

52* source : Brock, et. al., Large Scale GAN Training for High Fidelity Natural Image Synthesis, ICLR 2019

Scale up

Stabilize

variety fidelity
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• Interpolation of latent-space vectors yields non-linear changes in the image. For 
example, features that are absent in either endpoint may appear in the middle 
of a linear interpolation path as belows:

• The input latent space must follow the probability density of the training data, 
and this leads to some degree of unavoidable entanglement. 

• [Karras et al., 2019] proposed an intermediate latent space which is free from 
that restriction and is therefore allowed to be disentangled. 

StyleGAN: An Alternative Style-Based Generator Architecture

54

Latent space interpolations with Progressive GAN 
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• Instead of using the latent variable as an input directly, authors embed it into 
an intermediate latent space using a non-linear mapping network                       .

• The mapping network     is implemented using an 8-layer MLP.

• As illustrated above, complex data distribution forces the mapping from      to 
features to become curved (b), while non-linear mapping       is well adapted (c).

• A curved latent space is highly entangled.

StyleGAN: An Alternative Style-Based Generator Architecture

55* source : Rani Horev's blog

The mapping network. Illustration of disentanglement.
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• Motivated by style transfer literature [Huang et al., 2017], the generator starts 
from a learned constant input and adjusts the “style” which is a learned affine-
transformation of an intermediate latent code.

• Styles      control adaptive instance normalization (AdaIN) [Huang et al., 2017] 
operations after each convolution layer of the synthesis network    .

• The styles control high-level attributes (e.g., pose, identity of face images).

StyleGAN: An Alternative Style-Based Generator Architecture

56* source : Rani Horev's blog

style
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• To generate stochastic detail, the authors introduce explicit noise inputs. These 
are single-channel images consisting of uncorrelated Gaussian noise, and they 
are fed to each layer of the synthesis network. 

• The noise image is broadcasted to all feature maps using learned per feature 
scaling factors which are denoted as     , and then added to the output of the 
corresponding convolution, as illustrated as below.

• The noise controls stochastic variation (e.g., freckles, hair of face images).

StyleGAN: An Alternative Style-Based Generator Architecture

57* source : Rani Horev's blog



Algorithmic Intelligence Lab

• The generator improves the state-of-the-art in terms of traditional distribution 
quality metrics such as FID on face image dataset.

• It also leads to demonstrably better interpolation properties, and also better 
disentangles the latent factors of variation.

StyleGAN: An Alternative Style-Based Generator Architecture
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• Lots of GAN papers are published since 2014

• Hundreds of papers about theories and applications
• About better training and various applications to many types of dataset/tasks

• If you are interested for more, see the-gan-zoo 
(https://github.com/hindupuravinash/the-gan-zoo)

The GAN-Zoo
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