Algorithmic Intelligence Lab

Algorithmic Intelligence Lab

GNN Architectures

Al602: Recent Advances in Deep Learning
Lecture 7

Slide made by

Insu Han and Sungsoo Ahn
KAIST EE

Motivation

e Successful Deep Neural Networks (DNNs) have mainly focused on grid or
sequence data, e.g., CNN and RNN.

Grid 2D

o—0—-0

- - - - - - - - - — Predicate / Verb Phrase
"JiL“Hk i 4‘,"‘*‘,. b Prepositional Phrase
I | Noun Phrase

1 Noun Phrase
[-
7

/N

Article Noun Verb Preposition Article Noun

I I I I
The cat sat on the mat.

Grid 1D

(Sequence) Speech Language

Algorithmic Intelligence Lab *reference: http://cs231n.stanford.edu/2017/

Motivation

e Successful Deep Neural Networks (DNNs) have mainly focused on grid or
sequence data, e.g., CNN and RNN.

* Many practical data are often not on the grid (i.e., non-Euclidean space)
* E.g., distance between two nodes are not defined

* These data (e.g., molecule and social networks) can be represented by graphs

OH
H
N : \
HO A) ~_ ﬁ;@ a8 @
//

S | ‘ ®
NG ,’1@ - @ | .
B Y
Graph Molecule Social Network

Algorithmic Intelligence Lab

Motivation

* Practical problems of graph data

 Community detection — Node classification
* Friend recommendation — Link prediction
* Toxic detection — Graph classification

’ Friend?

Node classification Link prediction Graph classification

e How can solve graph problems using DNNs?
graph p & Next, Graph Neural Networks

Algorithmic Intelligence Lab *source: https://slideplayer.com/slide/8271410/ 4

https://slideplayer.com/slide/8271410/

Table of Contents

1. Graph Neural Networks (GNNs)
* Basics
* Convolution and pooling
* Graph convolutional networks (GCNs)

2. Advanced Techniques
* Sampling neighbors for regularization
* Learning attentions of neighbors
* Extracting edge and graph features

3. Application to Combinatorial Optimization

* Boolean satisfiability
 Maximum independent set

Algorithmic Intelligence Lab

Table of Contents

1. Graph Neural Networks (GNNs)
* Basics
* Convolution and pooling
* Graph convolutional networks (GCNs)

Algorithmic Intelligence Lab

Recap: Deep Learning = Feature Learning

* Deep learning extracts features from the input data

* For image data, deep networks finds high-level features that used for various image
tasks, e.g., classification, object detection and segmentation.

Deep Network

, ——> Output > Task
= Feature Extraction P

Input ——>

Feature representation

3rd layer

“Objects” f Classiciation

“Object parts”

2nd layer < DeteCtlon

Segmentation

1st layer
llEdgesH

Pixels \

Image Deep neural networks High-level features Image tasks

Algorithmic Intelligence Lab

Recap: Deep Learning = Feature Learning

* Deep learning extracts features from the input data

* For image data, deep networks finds high-level features that used for various image
tasks, e.g., classification, object detection and segmentation.

* For graph data, we want to find good features for graph tasks, e.g., node
classification, link prediction and graph classification.

Deep Network
= Feature Extraction

Input — ——> Output > Task

(Node classification

- K ?"*:.-..% < Link prediction
oL Graph classification
Graph Deep neural networks High-level features Graph tasks

 How can DNNs extract features on graph dataset?

Algorithmic Intelligence Lab

Graph Neural Networks (GNNs): Basics

* Consider (undirected) graph G := (V, E) given by adjacency matrix A € RIVIxIV

e Each node feature is given by X ¢ RIVIxd
* For example, node feature can include the number of neighbors of each node

1 if node a connects to node b, O otherwise

/0 1 1 1 0 0\
1 01000
1 101 1 1
A=11010 1 0
00 1 1 0 0
\0 01 0 0 0)
V ={a,b,c,d,e, f} Degree Adjacency matrix

E ={{a,b},....{c, f}}

Algorithmic Intelligence Lab 9

Graph Neural Networks (GNNs): Basics

* Consider (undirected) graph G := (V, E) given by adjacency matrix A € RIVIxIV

e Each node feature is given by X ¢ RIVIxd
* For example, node feature can include the number of neighbors of each node

* Graph Neural Networks (GNNs) can extract graph node features

V ={a,b,c,d,e, [}
E ={{a,b},....{c, f}}

Algorithmic Intelligence Lab

Graph Neural
Networks

Za
O ORf .
C
Zd ..
Ze
(o)
Zp

A good embedding for node classification

>

Next, Convolution on Graph

10

Graph Neural Networks (GNNs): Basics

* Consider convolution on image data
* Weighted sum of features of neighbor nodes
* The feature is multiplied with individual parameter then aggregated to next layer
* The parameters are shared for all pixels

|—> non-linear function

azggﬂ) =0 (Bff)wgf) + -+ ng)w,ge))

individual weighted sum

Algorithmic Intelligence Lab

11

Graph Neural Networks (GNNs): Basics

* Consider convolution on image data
* Weighted sum of features of neighbor nodes
* The feature is multiplied with individual parameter then aggregated to next layer
* The parameters are shared for all pixels

|—> non-linear function

2D _ (9(3@ O 4. 190 (@)

individual weighted sum

* In graph, each node has different number of neighbor nodes

* No fixed order of neighbor nodes

Algorithmic Intelligence Lab

12

Graph Neural Networks (GNNs): Basics

* Consider convolution on image data
* Weighted sum of features of neighbor nodes
* The feature is multiplied with individual parameter then aggregated to next layer
* The parameters are shared for all pixels

|—> non-linear function

2D _ (9(3@ O 4. 190 (8))

individual weighted sum

|—> weight for self node
a:((;gﬂ) =0 9(3) (g) + 9(@ : Z wg'@

lJ L|N|JENC

e.g., non-linear function, weight for neighbors

long short-term memory (LSTM)
Algorithmic Intelligence Lab 13

Graph Neural Networks (GNNs): Basics

* [Scarselli et al., 2008] propose a GNN with a single layer (similar to RNN)

* Node embedding (feed-forward)
* Node features is computed iteratively until converge (or maximum T steps)

1
w£e+1) — 9033&@ 10, Z m;ﬂ)
JEN

NG|

Cross-entropy

MSE

Algorithmic Intelligence Lab 14

Graph Neural Networks (GNNs): Basics

* [Scarselli et al., 2008] propose a GNN with a single layer (similar to RNN)

* Node embedding (feed-forward)
* Node features is computed iteratively until converge (or maximum T steps)

1
(e+1) _ (£) (£)
T, =0 | Opx, +91|NC|E T,
FjEN,

* Parameter learning (back-propagation)
* Gradients are also back-propagated iteratively until converge (or maximum T steps)

Cross-entropy

MSE

Algorithmic Intelligence Lab

15

Graph Neural Networks (GNNs): Basics

[Scarselli et al., 2008] propose a GNN with a single layer (similar to RNN)

Forward/backward are computed iteratively until converge

(-) In general, the states (node features) may not converge

(-) The iteration makes computationally expensive, not scalable

How can make GNNs computationally efficient?

Cross-entropy

MSE

s 1) —s [

«— «—
axT T step gr ~ Loss
oXxX(T=1) oX(T)

Next, Graph Convolutional Networks

Algorithmic Intelligence Lab

16

Graph Convolutional Networks (GCNs): Basics

* Graph Convolutional Networks (GCNs) [Kipf et al., 2016a]
* It performs fixed number of feed-forwards (e.g., 2-layer convolution)
* Parameters for self and neighbor are tied (shared) as a single parameter
* Normalized the features with the products of degree,

(4)

T
Feed-forward CL‘EHU =0 9(6) Z N'J N
—_—) ... == 7 LjeNcU{c} \/’ CH j|

shared weight

|—> weight for self node
1
2D = o | 6020 + o) — 5" 2!

weight for neighbors

Algorithmic Intelligence Lab 17

Iteratively updates

Graph Convolutional Networks (GCNs): Basics

* Graph Convolutional Networks (GCNs) [Kipf et al., 2016a]
* It performs fixed number of feed-forwards (e.g., 2-layer convolution)
* Parameters for self and neighbor are tied (shared) as a single parameter
* Normalized the features with the products of degree,

(4)

T
Feed-forward CL‘EHU =0 9(6) Z N'J N
—_—) ... == 7 LjeNcU{c} \/’ CH j|

shared weight

* (+) Number of parameters is reduced with more parameter sharing

* (+) No need to recursive operations (easy to optimize)

° (+) Easy to implement using matrix multiplication, requiring (O(|E/|) operations
|—> diagonal matrix

X)) — 4 (D—l/z(A + I)D—U?X(f)@(f))

sparse matrix, O(|E| + |V|) non-zero entries

Algorithmic Intelligence Lab 18

Graph Convolutional Networks (GCNs): Basics

* Graph Convolutional Networks (GCNs) [Kipf et al., 2016a]
* It performs fixed number of feed-forwards (e.g., 2-layer convolution)
* Parameters for self and neighbor are tied (shared) as a single parameter
* Normalized the features with the products of degree,

(4)

T
Feed-forward CL‘EHU =0 9(6) Z N.J N
—_—) ... == 7 L’jeNGU{C} \/| C|| j|

shared weight

+) Number of parameters is reduced with more parameter sharing
)
)
)

+) Residual connections can improve the performance

+) No need to recursive operations (easy to optimize)

+) Easy to implement using matrix multiplication, requiring (O(|E/|) operations

e e —

X)) — o (D—W(A + I)D—l/QX“)@“)) +x®
/

residual connection

Algorithmic Intelligence Lab 19

Graph Convolutional Networks (GCNs): Basics

* Overview of CNNs, GNNs and GCNs

* CNNs have individual parameters for all neighbors and self nodes
* GNNs have 2 type of parameters; only parameters for neighbor nodes are shared

* GCNs have a single parameter shared for both self and neighbor nodes

Algorithmic Intelligence Lab

20

Graph Convolutional Networks (GCNs): Basics

* Graph Convolutional Networks (GCNs) [Kipf et al., 2016a]

* Goal — classify the paper category (e.g., stat.ML, cs.LG, and etc) for citation

networks (graph node classification)

* Model -2 layer GCN ’—>D‘1/2(A+I)D‘1/2

/ = softmax (A RelLU (AX@(O)) @(1))

Method Citeseer Cora Pubmed NELL

ManiReg [3] 60.1 59.5 70.7 21.8

SemiEmb [28] 59.6 59.0 71.1 26.7

LP [32] 45.3 68.0 63.0 26.5

DeepWalk [22] 43.2 67.2 65.3 H&.1

ICA [18] 69.1 75.1 73.9 23.1

Planetoid* [29] 64.7(26s) T75.7(13s) 77.2(25s) 61.9 (185s)

GCN (this paper) 70.3 (7s) 81.5 (4s) 79.0 (38s) 66.0 (48s)

Test accuracy (training time) for graph node classification

Algorithmic Intelligence Lab

21

Graph Convolutional Networks (GCNs): Basics

networks (graph node classification)

Model — 2 layer GCN

’—>D_1/2(A +1)D™1/?

Graph Convolutional Networks (GCNs) [Kipf et al., 2016a]

Z = softmax (ﬁ ReLLU (EX@(O)) @(1))

Why 2 layer is enough?

* Most of graph dataset can be covered with 4 hop-neighbors
e Large number of layers can cause over-smoothing on the node features

Accuracy
o
~J
=

=
L]
v

0.60

0.55

0.50

“1 2 3 4 5 & 7 8 9 10

Algorithmic Intelligence Lab

Citeseer

Train

Train (Residual)
Test

Test (Residual)

Number of layers

0.55

[&---= Train
»——= Train (Residual)
————— Test

»———=a Test (Residual)

1 2 3 4 5 6 7 & 9 10
Number of layers

Accuracy

Pubmed

Goal — classify the paper category (e.g., stat.ML, cs.LG, and etc) for citation

AT T
- —a,

= -

e---= Train
= Train (Residual)
»---w» Test
»——= Test (Residual)

1
—

e Cw.
S —]
- S

B T

|

1 2 3 4 5 & 7 8 9 10

Number of layers

22

Graph Convolutional Networks (GCNs): Basics

* Graph Convolutional Networks (GCNs) [Kipf et al., 2016a]
* (+) Number of parameters is reduced with more parameter sharing
* (+) No need to recursive operations (easy to optimize)
* (+) Easy to implement using matrix multiplication, requiring (O(|E|) operations
* (+) Empirically works well even for a small number of layers

* Some limitations on GCNs
* (-) Can be overfit easily
 (-) Still expensive for large-scale graphs
* (-) Cannot embedding edge features

e How can overcome these drawbacks?

Next, GCNs with Neighbor Sampling

Algorithmic Intelligence Lab

23

Table of Contents

2. Advanced Techniques
* Sampling neighbors for regularization
* Learning attentions of neighbors
* Extracting edge and graph features

Algorithmic Intelligence Lab

24

Sampling Neighbors for Regularization

* Problem — GCNs can be overfit easily

* Solution — Train the model stochastically based on sampling neighbors

Algorithmic Intelligence Lab

25

Sampling Neighbors for Regularization

Problem — GCNs can be overfit easily

Solution — Train the model stochastically based on sampling neighbors

Graph Sampling and Aggregation (GraphSAGE) [Hamilton et al., 2017]

Sample neighbor nodes randomly
* (+) Avoid overfitting
* (+) Training time can be reduced

Aggregate ({asg-e);j €SS, C Nc})

neighbor sampling

=
@
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Algorithmic Intelligence Lab 26

Sampling Neighbors for Regularization

Problem — GCNs can be overfit easily

Solution — Train the model stochastically based on sampling neighbors

Graph Sampling and Aggregation (GraphSAGE) [Hamilton et al., 2017]

Sample neighbor nodes randomly
* (+) Avoid overfitting
* (+) Training time can be reduced

Instead of summing the self and neighbor features, concatenate them

) =g ([Bff):cﬁe) , Aggregate ({mgg);j € 5S¢, 8¢ C ./\/'c})D

neighbor sampling
e
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Algorithmic Intelligence Lab

27

Sampling Neighbors for Regularization

* Problem — GCNs can be overfit easily
* Solution — Train the model stochastically based on sampling neighbors
e Graph Sampling and Aggregation (GraphSAGE) [Hamilton et al., 2017]

* Sample neighbor nodes randomly
* (+) Avoid overfitting
* (+) Training time can be reduced

* Instead of summing the self and neighbor features, concatenate them

) = o ([eg%g@ , Aggregate ({mge);j eS¢, Se C NC})D

neighbor sampling
* Aggregation function can be generalized including

(£)
M > T
ean |N | =
Pool max ({W(E)ilf i J €N }) W) : learnable parameter
LSTM LSTM ([mge);j ‘. W(Nc)]) 7 :random permutation

Algorithmic Intelligence Lab

28

Sampling Neighbors for Regularization

Problem — GCNs can be overfit easily

Solution — Train the model stochastically based on sampling neighbors

Graph Sampling and Aggregation (GraphSAGE) [Hamilton et al., 2017]

Aggregation function can be {mean, pool, LSTM}

Experiments for node classification
e Performs better than GCNs

Citation Reddit PPI

Name Unsup. F1 ~ Sup. F1 Unsup. F1 ~ Sup. F1 Unsup. F1 Sup. F1
Random 0.206 0.206 0.043 0.042 0.396 0.396
Raw features 0.575 0.575 0.585 0.585 0.422 0.422
DeepWalk 0.565 0.565 0.324 0.324 — —
DeepWalk + features 0.701 0.701 0.691 0.691 — —
GraphSAGE-GCN 0.742 0.772 0.908 0.930 0.465 0.500
GraphSAGE-mean 0.778 0.820 0.897 0.950 0.486 0.598
GraphSAGE-LSTM 0.788 0.832 0.907 0.954 0.482 0.612
GraphSAGE-pool 0.798 0.839 0.892 0.948 0.502 0.600
% gain over feat. 39% 46% 55% 63% 19% 45%

Next, GCNs with Edge Attention

Algorithmic Intelligence Lab 29

Learning Attentions of Neighbors

* Problem — GCNs use the fixed weight (or importance) of the edges

* Solution — Use the learnable edge attention weights

edge weight

Qjj = f (zi, {x;:J EM}) wq(;eﬂ) =0 | 6Y Z

JEN;U{i}

Algorithmic Intelligence Lab

(£)
Qg j .’Ej

30

Learning Attentions of Neighbors

* Problem — GCNs use the fixed weight (or importance) of the edges

* Solution — Use the learnable edge attention weights

edge weight

Qjj = f (zi, {x;:J EM}) wq(;eﬂ) =0 | 6Y Z
jEN@U{’L}

* GCNs have constant edge weights, i.e.,

(GON) _ 1

Y NG

* GraphSAGE has binary random edge weights, i.e.,

1
1 w.p.
ogrem {1

0 otherwise

* Edge weights can be a trainable neural network

Algorithmic Intelligence Lab

(£)
Qg j CUj

31

Learning Attentions of Neighbors

* Problem — GCNs use the fixed weight (or importance) of the edges
* Solution — Use the learnable edge attention weights
* Graph Attention Networks (GAT) [Velickovi¢ et al., 2017]

edge weight

a:,ggﬂ) —o[6W Z Qi ()
jEN@'U{ }

exp (LeakyReLU (NN([z;, x;])))

8% j =
> ren; exp (LeakyReLU (NN([z;, zx])))
single layer neural network
fo1
M=y concat/avg /7
h
: v
fy)=ay
LeakyRelU activation

Algorithmic Intelligence Lab

32

Learning Attentions of Neighbors

* Problem — GCNs use the fixed weight (or importance) of the edges
* Solution — Use the learnable edge attention weights
* Graph Attention Networks (GAT) [Velickovi¢ et al., 2017]

edge weight

CC,EE—'_l) =0 Q(E) Z a,,;ng-g)
jEN@U{Z}

_ exp (LeakyReLU (NN([z;, x;])))
>_ren, €xp (LeakyReLU (NN([z;, zx])))

single layer neural network

Odij

* Multiple attentions can be used with averaging or concatenating

K

(6+1) 1 (0,K) (k) . (0)
T, =0 | Z 0 Z o X
k=1 JENU{i}

concatenate/average of K independent attentions

Algorithmic Intelligence Lab

concat/avg
> R

33

Learning Attentions of Neighbors

* Problem — GCNs use the fixed weight (or importance) of the edges
* Solution — Use the learnable edge attention weights
* Graph Attention Networks (GAT) [Velickovi¢ et al., 2017]

edge weight

CC,EE—'_U =0 9(@ Z Od,,;ng-e)
JEN@U{Z}

_ exp (LeakyReLU (NN([z;, x;])))
> _ren, €xp (LeakyReLU (NN([z;, zx])))

Single layer neural network

Od@'j

Multiple attentions can be used with averaging or concatenating

(+) Edge features can be learned

(+) Generalize the neighbor sampling (soft version)

(-) Traning is slower than GCN and difficult to optimize

Algorithmic Intelligence Lab

34

Learning Attentions of Neighbors

Problem — GCNs use the fixed weight (or importance) of the edges

Solution — Use the learnable edge attention weights
Graph Attention Networks (GAT) [Velickovi¢ et al., 2017]

Experiments for node classification
e Performs better than GCNs

Method PP1
Random 0.396
MLP 0.422

GraphSAGE-GCN (Hamilton et al., 2017) 0.500
GraphSAGE-mean (Hamilton et al., 2017) 0.598
GraphSAGE-LSTM (Hamilton et al., 2017) 0.612
GraphSAGE-pool (Hamilton et al., 2017) 0.600

GraphSAGE* 0.768
Const-GAT (ours) 0.934 + 0.006
GAT (ours) 0.973 £+ 0.002

Algorithmic Intelligence Lab

Learning Edge Features

* GNNs basically learns a good node embeddings
* How to use the node embeddings of GNNs for other tasks?

* Link (or edge) prediction
* Edge feature can be the dot-product of adjacent node features [Kipf et al., 2016b]
* Loss function can be the cross-entropy for binary classification

a 0 GNN > 7/ :node embeddings

cA

Loss function: L := E — log (@‘(.))
— |V |xd i,7
G=(VE), XeR Wik

e Edge score : U(i,j) ‘= sigmoid(z;zj)

Algorithmic Intelligence Lab 36

Learning Graph Features

* GNNs basically learns a good node embeddings
* How to use the node embeddings of GNNs for other tasks?

* Graph-level classification

* Graph features can be the summation or max pooling of all node features
[Duvenaud et al., 2015]

* A feed forward network can be used as a classifier
e Graph pooling can be important to compress the graph feature

GNN

v
N

Graph feature: z; = Z Zi or max({z;:1€V})
ieV

Loss function: L= Z cross-entropy (NN(ZG))
G Feed-forward neural network

G=(V,E), X eRIVIxd

Algorithmic Intelligence Lab 37

Learning Graph Features

GNNs basically learns a good node embeddings

How to use the node embeddings of GNNs for other tasks?

Graph-level classification

* Graph features can be the summation or max pooling of all node features
[Duvenaud et al., 2015]

* A feed forward network can be used as a classifier
e Graph pooling can be important to compress the graph feature

How to graph pooling ?
* Pooling methods can be learned with parameters [Ying et al., 2018]

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

Next, Differentiable Pooling

Algorithmic Intelligence Lab *source: https://arxiv.org/pdf/1806.08804.pdf 38

https://arxiv.org/pdf/1806.08804.pdf

Learning Graph Features: Differentiable pooling

» Differentiable pooling [Ying et al., 2018] — graph pooling can be represented
using matrix multiplication on adjacency matrix and node feature matrix

A—ll
(o) 10

I

I
— = O
= O =
O = =

Assignment matrix 1 0
A=STAS S=(0 1
1 0

e Assignment matrix has the same dimension of node features

* Idea —learning the assignmet matrix using GNNs

S = softmax (GNN(A, X))

* Soft pooling operation can be differentiable and shows improvement for graph
classification

Algorithmic Intelligence Lab

39

Table of Contents

3. Application to Combinatorial Optimization
* Boolean satisfiability
 Maximum independent set

Algorithmic Intelligence Lab

40

Boolean Satisfiability Problem

* Boolean satisfiability (SAT) problem determines the existence of interpretation
satisfying the Boolean formula:

Literal Clause

! —

|
(1 VaaVas)A(T1 VTV T3)A(T1V eV as)

Example of boolean formula

* The example formula is satisfiable by following interpretation:

xr1 = True, a9 = False, x3 = True
Example of satisfying interpretation

* |tis very hard to solve in general, i.e., NP-hard
* Various applications, e.g., circuit design and automatic theorem proving

A GNN can be trained to determine the existence [Selsam et al., 2018]

Algorithmic Intelligence Lab 41

Boolean Satisfiability Problem

* Step 1: Represent the Boolean formula as a graph
* Nodes represent literals and clauses in the formula
* Edges are added for each literal-clause pair
» Edges are added for literals with opposite signs

. 2 C—E) @E—E)
(Vo) AFVE) \@@'

4 literals and 2 clauses

Graph representation of formula

» Step 2: Train the GNN to predict satisfiability of formula (True / False)
* This becomes a binary graph classification problem
* Labels of graphs, i.e., true satisfiability, are obtained by existing solvers

Algorithmic Intelligence Lab 42

Boolean Satisfiability Problem

* More details: the GNN consists of two phases

@) @) @ @ @—@@@
@) @ @ @

C1 < LSTM(.’L‘l, 372) X1,To < LSTM(l)(Cl), LSTM(Q) (Cl)

“clause-update” phase “literal-update” phase

* Long short-term memory (LSTM) can be used for embedding features
* Two phases (or layers) are repeated multiple times

* Result: the trained GNN is better than random guessing
* Trained on SAT problems with up to 40 variables
» Achieves 85% test accuracy (existing solvers get 100% correct)

Algorithmic Intelligence Lab 43

Maximum Independent Set Problem

* Independent set is a set of nodes, where no two nodes are adjacent

Examples of independent set (with size 3, 1, 3)

* Maximum independent set (MIS) problem search for the independent set with
maximum cardinality

* Again, hard to solve, i.e., NP-hard
* Applications to computer vision, communication, physics, ...

* A GCN can be trained to find the MIS [Li et al., 2018]

Algorithmic Intelligence Lab

44

Maximum Independent Set Problem

* The naive approach: train a GCN to predict the MIS

* Becomes a node classification problem

What is prob. of
node being in MIS?

0-1 0.9

GCN

—>

0.9

Label “1” means “included in the independent set”

L= Z cross-entropy (GCN(X¢)) «— Labels are given by existing solvers

G

* Problem: at generation, the output sometimes have a pair of adjacent nodes
* This violates the assumption of independent set

Algorithmic Intelligence Lab

45

Maximum Independent Set Problem

* Problem: the output sometimes can have a pair of adjacent nodes
* Solution: label them one-by-one

* Repeatedly update the labels as follows:
1. Assign 1 to the node with the highest probability of being chosen
2. Assign 0 to the adjacent nodes

15t step of labeling

0.1 0.9

=
0.9

2" step of labeling

Algorithmic Intelligence Lab

46

Maximum Independent Set Problem

* Result: the trained GNN successfully solves the MIS problems

MIS MVC
Name : -
Classic S2V-DOQN ReduMIS| Owrs |Classic S2V-DOQN ReduMIS | Ours
ego-Facebook 993 1,020 1,046| 1,046 | 3,046 3,019 2,993 | 2,993
ego-Gplus 56,866 56,603 57,394|57,394 | 50,748 51,011 50,220 |50,220
ego-Twiller 36,235 36,275 36,843 | 36,843 | 45,071 45,031 44,463 |44.463

soc-Epinions| 53.457 53,089 53,599|53,599 | 22,422 22,790 22,280 |22,280
soc-Slashdot0811 53,009 52,719 53,314|53,314 | 24,351 24.641 24,046 |24,046
soc-Slashdot0922 56,087 55,506 56,398|56,398 | 26,081 26,662 25,770 |25,770

wiki-Vote 4,730 4,779 4,866 4,866 | 2,385 2,336 2,249 | 2,249
wiki-RIA 8.019 7,956 8,131 8,131 | 2816 2,879 2,704 | 2,704
bitcoin-otc 4,330 4,334 4,346 4,346 | 1,551 1,547 1,535 | 1,535
bitcoin-alpha 2,703 2,705 2,718| 2,718 | 1,080 1,078 1,065 | 1,065

Objective of MIS problems in large graphs (bold is best)

* The GNN solver performs well even when training and test graphs are different

Algorithmic Intelligence Lab

Summary

* GNNs have similar operations with CNNs, but specialized for graph-structured
dataset, i.e., neighbor aggregation

* GNNs basically extracts node features that suitable for graph tasks, e.g., node
classification; From these node features, it can be used for link prediction and
graph-level classicification

* GNNs are first proposed using iterative feed-forwards, after that GCNs are
developed which are more efficient and perform better

* Several variants of GCNs, e.g., GraphSAGE, GAT, have been proposed to
overcome drawbacks of GCNs

* GCNs practically are used for many graph problems including node classification,
link prediction, graph classification and combinatorial optimization

48

References

[Scarselli et al., 2008] Scarselli, Franco, et al. "The graph neural network model." IEEE Transactions on Neural
Networks. 2008.
link: https://ieeexplore.ieee.org/abstract/document/4700287

[Duvenaud et al., 2015] Duvenaud, David K., et al. "Convolutional networks on graphs for learning molecular
fingerprints." Advances in neural information processing systems. 2015.
link: http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf

[Kipf et al., 2016a] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional
networks." arXiv preprint arXiv:1609.02907. 2016.
link: https://openreview.net/pdf?id=SJU4ayYgl

[Kipf et al., 2016b] Kipf, Thomas N., and Max Welling. "Variational graph auto-encoders." arXiv preprint
arXiv:1611.07308. 2016.
link: https://arxiv.org/pdf/1611.07308.pdf

[Hamilton et al., 2017] Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large
graphs." Advances in Neural Information Processing Systems. 2017.
link: https://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf

[Velickovic¢ et alk ., 2017] Velickovié, Petar, et al. "Graph attention networks." arXiv preprint arXiv:1710.10903. 2017.
link: https://openreview.net/forum?id=rJXMpikCZ

[Ying et al., 2018] Ying, Zhitao, et al. "Hierarchical graph representation learning with differentiable pooling."
Advances in Neural Information Processing Systems. 2018.
link: http://papers.nips.cc/paper/7729-hierarchical-graph-representation-learning-with-differentiable-pooling.pdf

[Selsam et al., 2018] Selsam et al. “Learning a SAT solver from single-bit super-vision" International Conference of
Learning Representations (2018).
link: https://openreview.net/pdf?id=HIMC_iA5tm

Algorithmic Intelligence Lab

https://ieeexplore.ieee.org/abstract/document/4700287
http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf
https://openreview.net/pdf?id=SJU4ayYgl
https://arxiv.org/pdf/1611.07308.pdf
https://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
https://openreview.net/forum?id=rJXMpikCZ
http://papers.nips.cc/paper/7729-hierarchical-graph-representation-learning-with-differentiable-pooling.pdf

References

[Li et al., 2018] Li et al. "Combinatorial Optimization with Graph Convolutional Networks and Guided Tree
Search.” Advances in Neural Information Porcessing Systems. 2018.
link: https://arxiv.org/pdf/1810.10659.pdf

Algorithmic Intelligence Lab

50

