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• Successful Deep Neural Networks (DNNs) have mainly focused on grid or 
sequence data, e.g., CNN and RNN.

Motivation

2*reference: http://cs231n.stanford.edu/2017/

Speech Language

Image GameGrid 2D

Grid 1D
(Sequence)



Algorithmic Intelligence Lab

• Successful Deep Neural Networks (DNNs) have mainly focused on grid or 
sequence data, e.g., CNN and RNN.

• Many practical data are often not on the grid (i.e., non-Euclidean space)
• E.g., distance between two nodes are not defined

• These data (e.g., molecule and social networks) can be represented by graphs

Motivation
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• Practical problems of graph data

• Community detection                                                            → Node classification

• Friend recommendation                                                        → Link prediction

• Toxic detection                                                                        → Graph classification

• How can solve graph problems using DNNs? 

Motivation

4*source: https://slideplayer.com/slide/8271410/
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• Deep learning extracts features from the input data
• For image data, deep networks finds high-level features that used for various image 

tasks, e.g., classification, object detection and segmentation.

Recap: Deep Learning = Feature Learning
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• Deep learning extracts features from the input data
• For image data, deep networks finds high-level features that used for various image 

tasks, e.g., classification, object detection and segmentation.

• For graph data, we want to find good features for graph tasks, e.g., node 
classification, link prediction and graph classification.

• How can DNNs extract features on graph dataset?

Recap: Deep Learning = Feature Learning
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• Consider (undirected) graph                         given by adjacency matrix              

• Each node feature is given by                         
• For example, node feature can include the number of neighbors of each node

Graph Neural Networks (GNNs): Basics
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• Consider (undirected) graph                         given by adjacency matrix              

• Each node feature is given by                         
• For example, node feature can include the number of neighbors of each node

• Graph Neural Networks (GNNs) can extract graph node features

Graph Neural Networks (GNNs): Basics
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• Consider convolution on image data
• Weighted sum of features of neighbor nodes

• The feature is multiplied with individual parameter then aggregated to next layer

• The parameters are shared for all pixels

Graph Neural Networks (GNNs): Basics

11

individual weighted sum

non-linear functiona b c

d e f

g h i



Algorithmic Intelligence Lab

• Consider convolution on image data
• Weighted sum of features of neighbor nodes

• The feature is multiplied with individual parameter then aggregated to next layer

• The parameters are shared for all pixels

• In graph, each node has different number of neighbor nodes

• No fixed order of neighbor nodes

Graph Neural Networks (GNNs): Basics
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• Consider convolution on image data
• Weighted sum of features of neighbor nodes

• The feature is multiplied with individual parameter then aggregated to next layer

• The parameters are shared for all pixels

• Basic approach in GNNs – share the neighbor weights

Graph Neural Networks (GNNs): Basics
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• [Scarselli et al., 2008] propose a GNN with a single layer (similar to RNN)

• Node embedding (feed-forward)
• Node features is computed iteratively until converge (or maximum T steps)

Graph Neural Networks (GNNs): Basics

14

a

b c

f

d

e

Input

…

1 step T step

a

b c

f

d

e

a

b c

f

d

e

Loss

Cross-entropy

MSE

…



Algorithmic Intelligence Lab

• [Scarselli et al., 2008] propose a GNN with a single layer (similar to RNN)

• Node embedding (feed-forward)
• Node features is computed iteratively until converge (or maximum T steps)

• Parameter learning (back-propagation)
• Gradients are also back-propagated iteratively until converge (or maximum T steps)

Graph Neural Networks (GNNs): Basics
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• [Scarselli et al., 2008] propose a GNN with a single layer (similar to RNN)

• Forward/backward are computed iteratively until converge

• (-) In general, the states (node features) may not converge

• (-) The iteration makes computationally expensive, not scalable

• How can make GNNs computationally efficient?

Graph Neural Networks (GNNs): Basics
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• Graph Convolutional Networks (GCNs) [Kipf et al., 2016a]
• It performs fixed number of feed-forwards (e.g., 2-layer convolution)

• Parameters for self and neighbor are tied (shared) as a single parameter

• Normalized the features with the products of degree, 

Graph Convolutional Networks (GCNs): Basics
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• Graph Convolutional Networks (GCNs) [Kipf et al., 2016a]
• It performs fixed number of feed-forwards (e.g., 2-layer convolution)

• Parameters for self and neighbor are tied (shared) as a single parameter

• Normalized the features with the products of degree, 

• (+) Number of parameters is reduced with more parameter sharing

• (+) No need to recursive operations (easy to optimize)

• (+) Easy to implement using matrix multiplication, requiring                   operations

Graph Convolutional Networks (GCNs): Basics

18

sparse matrix,                           non-zero entries 

diagonal matrix

shared weight 

a

b c

f

d

e

Feed-forward
…



Algorithmic Intelligence Lab

• Graph Convolutional Networks (GCNs) [Kipf et al., 2016a]
• It performs fixed number of feed-forwards (e.g., 2-layer convolution)

• Parameters for self and neighbor are tied (shared) as a single parameter

• Normalized the features with the products of degree, 

• (+) Number of parameters is reduced with more parameter sharing

• (+) No need to recursive operations (easy to optimize)

• (+) Easy to implement using matrix multiplication, requiring                   operations

• (+) Residual connections can improve the performance

Graph Convolutional Networks (GCNs): Basics
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• Overview of CNNs, GNNs and GCNs
• CNNs have individual parameters for all neighbors and self nodes

• GNNs have 2 type of parameters; only parameters for neighbor nodes are shared

• GCNs have a single parameter shared for both self and neighbor nodes

Graph Convolutional Networks (GCNs): Basics
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• Graph Convolutional Networks (GCNs) [Kipf et al., 2016a]

• Goal – classify the paper category (e.g., stat.ML, cs.LG, and etc) for citation 
networks (graph node classification)

• Model – 2 layer GCN

Graph Convolutional Networks (GCNs): Basics

21

Test accuracy (training time) for graph node classification
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• Graph Convolutional Networks (GCNs) [Kipf et al., 2016a]

• Goal – classify the paper category (e.g., stat.ML, cs.LG, and etc) for citation 
networks (graph node classification)

• Model – 2 layer GCN

• Why 2 layer is enough? 
• Most of graph dataset can be covered with 4 hop-neighbors

• Large number of layers can cause over-smoothing on the node features

Graph Convolutional Networks (GCNs): Basics
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• Graph Convolutional Networks (GCNs) [Kipf et al., 2016a]
• (+) Number of parameters is reduced with more parameter sharing

• (+) No need to recursive operations (easy to optimize)

• (+) Easy to implement using matrix multiplication, requiring                   operations

• (+) Empirically works well even for a small number of layers

• Some limitations on GCNs
• (-) Can be overfit easily

• (-) Still expensive for large-scale graphs

• (-) Cannot embedding edge features

• How can overcome these drawbacks?

Graph Convolutional Networks (GCNs): Basics

23

Next, GCNs with Neighbor Sampling
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• Problem – GCNs can be overfit easily

• Solution – Train the model stochastically based on sampling neighbors

Sampling Neighbors for Regularization
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• Problem – GCNs can be overfit easily

• Solution – Train the model stochastically based on sampling neighbors

• Graph Sampling and Aggregation (GraphSAGE) [Hamilton et al., 2017]

• Sample neighbor nodes randomly
• (+) Avoid overfitting

• (+) Training time can be reduced

Sampling Neighbors for Regularization
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• Problem – GCNs can be overfit easily

• Solution – Train the model stochastically based on sampling neighbors

• Graph Sampling and Aggregation (GraphSAGE) [Hamilton et al., 2017]

• Sample neighbor nodes randomly
• (+) Avoid overfitting

• (+) Training time can be reduced

• Instead of summing the self and neighbor features, concatenate them

Sampling Neighbors for Regularization
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• Problem – GCNs can be overfit easily

• Solution – Train the model stochastically based on sampling neighbors

• Graph Sampling and Aggregation (GraphSAGE) [Hamilton et al., 2017]

• Sample neighbor nodes randomly
• (+) Avoid overfitting

• (+) Training time can be reduced

• Instead of summing the self and neighbor features, concatenate them

• Aggregation function can be generalized including

Sampling Neighbors for Regularization
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• Problem – GCNs can be overfit easily

• Solution – Train the model stochastically based on sampling neighbors

• Graph Sampling and Aggregation (GraphSAGE) [Hamilton et al., 2017]

• Aggregation function can be {mean, pool, LSTM} 

• Experiments for node classification
• Performs better than GCNs

Sampling Neighbors for Regularization

29

Next, GCNs with Edge Attention
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• Problem – GCNs use the fixed weight (or importance) of the edges

• Solution – Use the learnable edge attention weights

Learning Attentions of Neighbors

30

edge weight

f (                )



Algorithmic Intelligence Lab

• Problem – GCNs use the fixed weight (or importance) of the edges

• Solution – Use the learnable edge attention weights

• GCNs have constant edge weights, i.e., 

• GraphSAGE has binary random edge weights, i.e.,

• Edge weights can be a trainable neural network

Learning Attentions of Neighbors

31
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• Problem – GCNs use the fixed weight (or importance) of the edges

• Solution – Use the learnable edge attention weights

• Graph Attention Networks (GAT) [Veličković et al., 2017]

Learning Attentions of Neighbors

32
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• Problem – GCNs use the fixed weight (or importance) of the edges

• Solution – Use the learnable edge attention weights

• Graph Attention Networks (GAT) [Veličković et al., 2017]

• Multiple attentions can be used with averaging or concatenating

Learning Attentions of Neighbors
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concatenate/average of K independent attentions
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• Problem – GCNs use the fixed weight (or importance) of the edges

• Solution – Use the learnable edge attention weights

• Graph Attention Networks (GAT) [Veličković et al., 2017]

• Multiple attentions can be used with averaging or concatenating

• (+) Edge features can be learned

• (+) Generalize the neighbor sampling (soft version)

• (-) Traning is slower than GCN and difficult to optimize

Learning Attentions of Neighbors

34
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• Problem – GCNs use the fixed weight (or importance) of the edges

• Solution – Use the learnable edge attention weights

• Graph Attention Networks (GAT) [Veličković et al., 2017]

• Experiments for node classification
• Performs better than GCNs

Learning Attentions of Neighbors
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• GNNs basically learns a good node embeddings

• How to use the node embeddings of GNNs for other tasks? 

• Link (or edge) prediction
• Edge feature can be the dot-product of adjacent node features [Kipf et al., 2016b]

• Loss function can be the cross-entropy for binary classification

Learning Edge Features

36
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• GNNs basically learns a good node embeddings

• How to use the node embeddings of GNNs for other tasks? 

• Graph-level classification
• Graph features can be the summation or max pooling of all node features 

[Duvenaud et al., 2015] 

• A feed forward network can be used as a classifier

• Graph pooling can be important to compress the graph feature

Learning Graph Features

37
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• GNNs basically learns a good node embeddings

• How to use the node embeddings of GNNs for other tasks? 

• Graph-level classification
• Graph features can be the summation or max pooling of all node features 

[Duvenaud et al., 2015] 

• A feed forward network can be used as a classifier

• Graph pooling can be important to compress the graph feature

• How to graph pooling ?
• Pooling methods can be learned with parameters [Ying et al., 2018]

Learning Graph Features

38*source: https://arxiv.org/pdf/1806.08804.pdf

Next, Differentiable Pooling

https://arxiv.org/pdf/1806.08804.pdf
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• Differentiable pooling [Ying et al., 2018] – graph pooling can be represented 
using matrix multiplication on adjacency matrix and node feature matrix

• Assignment matrix has the same dimension of node features

• Idea – learning the assignmet matrix using GNNs

• Soft pooling operation can be differentiable and shows improvement for graph 
classification

Learning Graph Features: Differentiable pooling

39
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• Boolean satisfiability (SAT) problem determines the existence of interpretation
satisfying the Boolean formula:

• The example formula is satisfiable by following interpretation:

• It is very hard to solve in general, i.e., NP-hard

• Various applications, e.g., circuit design and automatic theorem proving

• A GNN can be trained to determine the existence [Selsam et al., 2018]

Boolean Satisfiability Problem

41

Example of boolean formula

Literal Clause

Example of satisfying interpretation
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• Step 1: Represent the Boolean formula as a graph
• Nodes represent literals and clauses in the formula

• Edges are added for each literal-clause pair

• Edges are added for literals with opposite signs

• Step 2: Train the GNN to predict satisfiability of formula (True / False)
• This becomes a binary graph classification problem

• Labels of graphs, i.e., true satisfiability, are obtained by existing solvers

Boolean Satisfiability Problem

42

4 literals and 2 clauses
Graph representation of formula
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• More details: the GNN consists of two phases

• Long short-term memory (LSTM) can be used for embedding features
• Two phases (or layers) are repeated multiple times

• Result: the trained GNN is better than random guessing
• Trained on SAT problems with up to 40 variables
• Achieves 85% test accuracy (existing solvers get 100% correct)

Boolean Satisfiability Problem

43

“clause-update” phase “literal-update” phase



Algorithmic Intelligence Lab

• Independent set is a set of nodes, where no two nodes are adjacent

• Maximum independent set (MIS) problem search for the independent set with 
maximum cardinality
• Again, hard to solve, i.e., NP-hard

• Applications to computer vision, communication, physics, ...

• A GCN can be trained to find the MIS [Li et al., 2018]

Maximum Independent Set Problem

44

Examples of independent set (with size 3, 1, 3)
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• The naïve approach: train a GCN to predict the MIS
• Becomes a node classification problem

• Problem: at generation, the output sometimes have a pair of adjacent nodes
• This violates the assumption of independent set

Maximum Independent Set Problem

45
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0.1

0.1

0.2

0.9

1.0
0.9

What is prob. of 
node being in MIS?

Label “1” means “included in the independent set” 

Labels are given by existing solvers



Algorithmic Intelligence Lab

• Problem: the output sometimes can have a pair of adjacent nodes

• Solution: label them one-by-one

• Repeatedly update the labels as follows: 
1. Assign 1 to the node with the highest probability of being chosen

2. Assign 0 to the adjacent nodes

Maximum Independent Set Problem

46
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• Result: the trained GNN successfully solves the MIS problems

• The GNN solver performs well even when training and test graphs are different

Maximum Independent Set Problem

47

Objective of MIS problems in large graphs (bold is best)



Algorithmic Intelligence Lab

• GNNs have similar operations with CNNs, but specialized for graph-structured 
dataset, i.e., neighbor aggregation

• GNNs basically extracts node features that suitable for graph tasks, e.g., node 
classification; From these node features, it can be used for link prediction and 
graph-level classicification

• GNNs are first proposed using iterative feed-forwards, after that GCNs are 
developed which are more efficient and perform better

• Several variants of GCNs, e.g., GraphSAGE, GAT, have been proposed to 
overcome drawbacks of GCNs

• GCNs practically are used for many graph problems including node classification, 
link prediction, graph classification and combinatorial optimization

Summary

48
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