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Previous Course Information

* Assignment: 2 paper summary + 1 presentation

e Each student should choose two deep learning papers published at NIPS, ICML or
ICLR, CVPR, ICCV, ECCV in last 3 years, where the authors do not release their
codes.

* | will help for deciding which papers to study (e.g., use the office hours to ask or
send emails to me, including your generic interests and backgrounds)

* Once you choose papers, try implementing the algorithms on your own using
TensorFlow or PyTorch, reproducing the authors’ results (reported in their papers)
and applying to other datasets

* Send the report on the first paper by Oct. 25t and the report on the second
paper by Dec. 20t to TA. You also have to send your source-code files with the
reports.

* You have to present one of two papers at the end of this class.
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New Course Information

* Assignment: 2 paper summary + 1 presentation

e Each student should choose two deep learning papers published at NIPS, ICML or
ICLR, CVPR, ICCV, ECCV in last 3 years.

* You can use the authors’ codes, but you will receive better grades if (a) the
authors do not release their codes or (b) you modify the authors’ code for better
performance.

* | will help for deciding which papers to study (e.g., send emails to me or ask after
the class)

* Try reproducing the authors’ results (reported in their papers) and applying to
other datasets. Or, modify the authors’ code or algorithm for better performance.

* Send the report on the first paper by Oct. 25t and the report on the second
paper by Dec. 20t to TA. You also have to send your source-code files with the
reports.

* You have to present one of two papers at the end of this class.
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Back Side of The Neural Network Success

* Deep learning system have achieved state-of-art on various Al-related tasks
e Super-human performance on image recognition problems

26.17% Trend on ILSVRC classification top-5 error rates
® SIFT + FVs (2012)
\ « 2" place in 2012
* SIFT + Fisher Vectors
* Non-CNN
VGG-Net (2014)
e 2" place in 2014 Batch Normalization (2015)
* By Oxford Visual Geometry Group * By Google
e 19-layer CNN * Preventing internal covariate shift
15.32% ¢ 13.51%
8 o GoogleNet (2014) Residual Network (2016)
11.74%  1stplace in 2014 * 1stplacein 2015
e  24-layer CNN * By MSRA
* Memory efficient * >100 layers CNNs via
l identity skip connections
AlexNet (2012) * s
* 1%tplacein 2012 7.339
+ g-layer CNN ZF-Net (2013) % 6.66% . 999, 5 250
* GPU acceleration * 3"place in 2013 4.90% ® ® -25%
for training * By Zeiler & Fergus 3.57% o
) . (]
* Dropout and ReLU * Avariant of
AlexNet : : |
2012 2013 2014 2015 2016~
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Back Side of The Neural Network Success

* Deep learning system have achieved state-of-art on various Al-related tasks
* Super-human performance on image recognition problems

* Problem: ML systems are highly vulnerable to a small noise on input that are
specifically designed by an adversary

* |n other words, answer of machine # answer of human

®
N

N

Algorithmic Intelligence Lab *source: https://wordberry.com/choosing-human-vs-machine-website-translation/ 7



What is The Adversarial Example?

* Deep learning system have achieved state-of-art on various Al-related tasks
* Super-human performance on image recognition problems

* Problem: ML systems are highly vulnerable to a small noise on input that are
specifically designed by an adversary

* |n other words, answer of machine # answer of human

e Even state-of-the-art-level neural networks make erroneous outputs
* Example: GoogleNet trained on ImageNet dataset

+ 007 x

“panda” “nematode” “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence

~ L

Humans can not distinguish them

Algorithmic Intelligence Lab *source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015 8



What is The Adversarial Example?

* Deep learning system have achieved state-of-art on various Al-related tasks
* Super-human performance on image recognition problems

* Problem: ML systems are highly vulnerable to a small noise on input that are
specifically designed by an adversary

* |n other words, answer of machine # answer of human

e Even state-of-the-art-level neural networks make erroneous outputs
* Example: GoogleNet trained on ImageNet dataset

+ 007 x

“panda” “nematode” “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence

L

It is called an adversarial example!

Algorithmic Intelligence Lab *source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015 9



Threat of Adversarial Examples

* Adversarial examples raise issues critical to the “Al safety” in the real world
* e.g. Autonomous vehicles may misclassify graffiti stop signs

®
N N

Algorithmic Intelligence Lab *source: Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018 10



Threat of Adversarial Examples

* Furthermore, adversarial examples exist across various tasks or modalities
* Adversarial examples for segmentation task [Xie et al., 2017]

Original Adversarial Adversarial Adversarial
Image Perturbations Image Result

< -4 K2

* Adversarial examples for automatic speech recognition [Qin et al., 2019]

Clean: “The sight of you bartley to see you living and happy and
successful can | never make you understand what that means to me”

Adversarial: “Hers happened to be in the same frame too but she
evidently didn’t care about that”

*source:
Xie et al., Adversarial Examples for Semantic Segmentation and Object Detection, ICCV 2017
Algorithmic Intelligence Lab Qin et al., Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition, ICML 2019 11



The Adversarial Game: Attacks and Defenses

* The literature of adversarial example commonly stated in security perspective
 Attacks: Design inputs for a ML system to produce erroneous outputs
» Defenses: Prevent the misclassification by adversarial examples

* In this perspective, specifying a threat model of the game is important

1. Adversary goals
2. Adversarial capabilities

3. Adversary knowledge

Algorithmic Intelligence Lab *source: https://gwynteatro.wordpress.com/2011/10/30/ambiguity-and-contradiction-leadership-certainties 12



The Adversarial Game: Threat model

* The literature of adversarial example commonly stated in security perspective

* In this perspective, specifying a threat model of the game is important

1. Adversary goals: Simply to cause misclassification, or else?
* Some adversary may be interested in to attack into a target class of their choice
* “Source-target” [Papernot et al., 2016], or “targeted” [Carlini & Wagner, 2017] attack
* In other setting, only a specific type of misclassification may be interesting
* e.g. Malware detection: “Benign — malware” is usually out-of-interest

o i“‘p”‘:'a“?““:” . \x00\x00\xb8\x00\
Nolele]a]els]e]e] i:7L—
- DA A A A A A A
-EEBEBEEE B ® ) ®
-SEEBESEE < | it
: - 1 1 [0 2 I
-EHEEEEEEE
° 616
4 2 52 A B B2 B WA 2 ~

A E2El 2 <
; P Malware  Benign

*source:
Carlini & Wagner, Towards Evaluating the Robustness of Neural Networks, IEEE SSP 2017
https://devblogs.nvidia.com/malware-detection-neural-networks/ 13



The Adversarial Game: Threat model

* The literature of adversarial example commonly stated in security perspective

* In this perspective, specifying a threat model of the game is important

2. Adversarial capabilities

* Reasonable constraints to adversary allow us to build more meaningful defenses
* Too large perturbations to an image may break even the human’s decision

* To date, most defenses restrict the adversary to make “small” changes to inputs

/
distance metric — d(f7 'CU\) <€

input adversarial

* A common choice for d(:,) is ¢p-distance (especially for image classification)
* {.-norm ball: the adversary cannot modify each pixel by more than €
* {y-norm ball: the adversary can arbitrary change at most € pixels

Algorithmic Intelligence Lab
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The Adversarial Game: Threat model

* The literature of adversarial example commonly stated in security perspective

* In this perspective, specifying a threat model of the game is important

3. Adversary knowledge

* A threat model must describe what knowledge the adversary is assumed to have
* White-box model: Complete knowledge of the model and its parameter
* Black-box model: No knowledge of the model
* Gray-box: Some threat models specify the various degree of access
* Alimited number of queries to the model
* Access to the predicted probabilities, or just class
e Access to the training data
* The guiding principle: Kerckhoffs’ principle [Kerckhoffs, 1883]

* The adversary is assumed to completely
know the inner workings of the defense 1 ‘ f

white-box black-box
*source:

https://emperorsgrave.wordpress.com/2016/10/18/black-box/

Algorithmic Intelligence Lab https://reqtest.com/testing-blog/test-design-techniques-explained-1-black-box-vs-white-box-testing/ 15



The Adversarial Game: Evaluating Adversarial Robustness

* A precise threat model — well-defined measures of adversarial robustness
1. “Adversarial risk”: The worst-case loss L for a given perturbation budget
Ey e max L(f(2),
o e 4 )|

Data distribution model
2. The average minimum-distance of the adversarial perturbation

set of adv. examples
* For misclassification, A, , = {z' : f(z') # y}
* For targeted attack, A, , = {2’ : f(z') =t} for some target class ¢

* Key challenge: Computing adversarial risk is usually intractable

* We have to approximate these quantities
* Much harder problem than approximating “average-case” robustness
* The heart reason of why evaluating adversarial robustness is difficult

Algorithmic Intelligence Lab
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White-Box: Fast Gradient Sign Method [Goodfellow et al., 2015]

In vision ML system, the following threat model is common:
1. Goal - Untargeted attack: Find argmax,,. . )< L(f(2'), )
2. Capabilities - Pixel-wise restriction: d(z,2") = ||z — 2'||s0 := max|z; — x| < €

3. Knowledge - White-box: Full access to the target network

Fast Gradient Sign Method (FGSM): A fast approximation of this threat model
* ldea: In white-box setting, one can get the gradients w.r.t input of the network

FGSM solves the maximization via linearizing the loss:

max  L(f(z'),y) = L(f(z),y) + 0 - Vo L(f(x),y)

2] |r—a' [ oo <e

To meet the max-norm constraint, FGSM takes sign(-) on the gradient
* Quiz. Why the use of sign(-) maximizes the loss?
/ \_p:oo B—c pi=1

N

Algorithmic Intelligence Lab *source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015 19

v =2 +e-sign(ViL(f(x),y))




White-Box: Least-likely Class Method [Kurakin et al., 2017b]

The idea of FGSM can be directly applied to targeted attack model:
1. Goal -|Targeted attack
2. Capabilities - Pixel-wise restriction: d(z,2') = ||z — 2'||o0 := max |z; — 2} <€

3. Knowledge - White-box: Full access to the target network

Unlike FGSM, Least-likely Class Method minimizes the loss for the target class

Nevertheless, one could also linearize the loss L

min L(f(ﬂjl), ytarget)

x| |e—x! || oo <€

This formulation leads to an attack method similar to FGSM:

x = T —€- sign(V. L(f (), Ytarget))

Now, we perform “gradient descent”

Algorithmic Intelligence Lab *source: Kurakin et al., Adversarial Machine Learning at Scale, ICLR 2017 20



White-Box: Projected Gradient Descent [Madry et al., 2018]

FGSM can be generalized toward a stronger method
1. Single-step update = multi-step optimization
2. sign(-) — Generalized projection operation

Essentially, our goal is to solve the following optimization:

L /
x,rggflg\ (f(x"),y)

set of neighbors
Projected Gradient Descent (PGD) is a direct way to solve this:

o =1L (o' + o sign(Va L(f (). 9)))

projection

« Basic Iterative Method (BIM): 2 := z
0

* Usually, PGD refers the case when z" is randomly-chosen inside = + B

In some sense, PGD is regarded as the strongest first-order adversary
* |tis the best way we could try using only gradient information

Algorithmic Intelligence Lab *source: Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018 21



White-Box: DeepFool [Moosavi-Dezfooli et al., 2016]

* Recall: One may interest to measure the average minimum-distance

'€ AL,y ]

* For misclassification, A, , = {2’ : f(z') # y}

]E(:C,y)mp|: min d(IE,ﬂC,)

* For targeted attack, A, , = {2’ : f(2') =t} for some target class ¢

* However, FGSM and PGD do not give explicit information about this

* DeepFool approximates this by computing the closest decision boundary
* By using linear approximation to decision boundaries

7 Decision boundary

Algorithmic Intelligence Lab *source: Moosavi-Dezfooli et al., DeepFool: a simple and accurate method to fool deep neural networks, CVPR 2016 22



White-Box: DeepFool [Moosavi-Dezfooli et al., 2016]

DeepFool approximates this by computing the closest decision boundary
* By using linear approximation to decision boundaries

Suppose a multi-class classifier f(x) is defined by:
k(x) = argmax fi(z)
p N

k
classifier for k-th class

Under linearity, the distance from x to the boundary of f; is computable:

£1(®) ~ fiy (@)
Vo (@) = Ve fom @)l

Like FGSM — PGD, This process is done iteratively: 7 5
* More accurate approximation of d is possible

d; =

* Also, a good adversarial example could also obtained

Y

| = argminl#@(mﬂ) d;
' =2t + dp - (Vafi(21) = Vi, (@)

Algorithmic Intelligence Lab *source: Moosavi-Dezfooli et al., DeepFool: a simple and accurate method to fool deep neural networks, CVPR 2016 23



White-Box: DeepFool [Moosavi-Dezfooli et al., 2016]

* Experimental Results
* Avg. minimum-distance among four different networks
* DeepFool finds more accurate approximation of avg. minimum-distance

Lee | MNIST | CIFARIO
Classifier | LeNet | FC500-150-10 | NIN | LeNet
Testacc. | 99% | 98.3% | 88.5% | 77.4%
FGSM 0.26 0.11 0.024 | 0.028

| DeeoFool | 0.10 0.04 0.008 | 0.015 |}

e Adversarial examples made by DeepFool have a smaller perturbation

DeepFool

Algorithmic Intelligence Lab *source: Moosavi-Dezfooli et al., DeepFool: a simple and accurate method to fool deep neural networks, CVPR 2016 24



White-Box: Carlini-Wagner Method [Carlini & Wagner, 2017a]

e Carlini & Wagner (CW): Even tighter approximation is possible:

]E(g;,y)N’D|: min d(m,:ﬂ’)]

r'C€Ag y

« CW attempts to directly minimize the distance ||§]| in targeted attack

v 4],
. ($+5)—ytarget

AN

* Key challenge: How to incorporate the constraint during optimization

* CW takes the Lagrangian relaxation to allow the gradient-based optimization:

min||8]), + o g(x + )

_l_
< gta) = (0 S0~ f@)) marcon

 g(x) attains the minimum when z is an adversarial example

Algorithmic Intelligence Lab *source: Carlini & Wagner, Towards Evaluating the Robustness of Neural Networks, IEEE S&P 2017 25



White-Box: Carlini-Wagner Method [Carlini & Wagner, 2017a]

* Experimental Results

e CW finds much smaller avg. minimum-distance than DeepFool

CIFAR-10 CIFAR-100 SVHN

L. Acc. L. Acc. L Acc.
Clean 0 95.19% 0 77.63% 0 96.38%
FGSM 0.21 20.04% | 0.21 4.86% | 0.21 56.27%
DenseNet BIM 022 0.00% | 022 0.02% | 022 0.67%
DeepFool | 0.30  0.23% | 0.25 0.23% | 0.57 0.50%
{ CW 0.05 0.10% | 0.03 0.16% | 0.12  0.54%)]
Clean 0 93.67% 0 78.34% 0 96.68%
FGSM | 0.25 2398% | 025 11.67% | 0.25 49.33%
ResNet BIM 026 0.02% | 026 021% | 026 237%
DeepFool | 0.36___0.33% | 027 0.37%_ | 0.62 _13.20%
(cw__ [0.08__0.00% | 0.08__0.01% | 0.15__0.04%)

* Comparison of images generated from several attacks [Y. Song et al., 2018]

clean

frog

Algorithmic Intelligence Lab

*source:
Carlini & Wagner, Towards Evaluating the Robustness of Neural Networks, IEEE S&P 2017

Y. Song et al., PixelDefend, ICLR 2018

r

.

\

CW

It is the most similar to
clean image

bird

26
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Black-Box: Transferability of Adversarial Example

* Some adversarial examples strongly transfer across different networks

white-box attack
\

Adversarial noise

\ “panda” white-box /

“gibbon™

“panda” Adversarial noise black-box

Algorithmic Intelligence Lab *source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015 28



Black-Box: The Local Substitute Model [Papernot et al., 2017]

* Motivation: The transferability enables us to attack a black-box model

* Idea: Finding an adversarial example via white-box attack on the local substitute
model

* Goal: Training a local substitute model via FGSM-based adversarial dataset
augmentation

 FGSM-based adversarial examples are computed to change the prediction of
the black-box model

' =z +e-sign(ViL(f(2), Ypred))
 Method: f \

substitute model black-box prediction

Substitute Model

White-box attack: FGSM

Training

Data augmentation
*Labeling the adversarial dataset
with the black box model

is used to white-box attack

Adversarial Dataset

Algorithmic Intelligence Lab

*prediction of the black box model

29



Black-Box: The Local Substitute Model [Papernot et al., 2017]

* Experimental Results
* Black-box attack to the Amazon and Google Oracle
* Two types of architecture:
* DNN: Deep Neural Network
* LR: Logistic Regression

Misclassification rates (%)

Amazon Google
Epochs || Queries ||| DNN LR DNN LR
p = 800 87.44 | 96.19 | 84.50 | 88.94
p = 6,400 96.78 | 96.43 | 97.17 | 92.05

Number of queries to train the local substitute model

Algorithmic Intelligence Lab *source: Papernot et al., Practical Black-Box Attacks against Machine Learning, ACM CCS 2017 30



Black-Box: Ensemble Based Method [Liu et al., 2017]

* Motivation: Stronger substitute model using ensemble model?
* ldea: White-box attack to an ensemble of the substitute models

* Consider k substitute models and let .Jq, ..., Ji. be their softmax outputs.

* For given (z,y), ensemble black-box attack objective is the follow:

k
min —log | 1 — Z@iji(37+5) HAd(x, x +9)
1=1

where «; is a ensemble weight with Zle a; =1,

e d(x,x’): Root Mean Square Deviation (RMSD)

d(z,2') = /O, (z) —x;)?/N), xz,2’ e RN

Algorithmic Intelligence Lab *source: Liu et al., Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017 31



Black-Box: Ensemble Based Method [Liu et al., 2017]

* Experimental Results
* Ensemble of modern architecture DNNs
e “-X”:an ensemble without the model X
 RMSD: Root Mean Square Deviation of adversarial perturbations

Black-box models

0 TRMSD [[ ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 GoogLeNet }
-ResNet-152 | 17.17 0% 0% 0% 0% 0%
-ResNet-101 | 17.25 0% 1% 0% 0% 0%
-ResNet-50 17.25 0% 0% 2% 0% 0%
-VGG-16 17.80 0% 0% 0% 6% 0%
-GoogLeNet | 17.41 0% 0% 0% 0% 5%

N J

Adversarial examples from the ensemble models via white-box attack

Algorithmic Intelligence Lab *source: Liu et al., Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017 32



Black-Box: Ensemble Based Method [Liu et al., 2017]

* Experimental Results

* The first successful black-box attack against Clarifai.com, a commercial
image classification system

original — Clarifai.com target targete(.l Clarifai.com results
image label .re.sultg of label adversarial of ta_lrgeted
original image example adversarial example
bridge, window,
sight, - wall,
viaduct arch, window old,
1 screen :
river, decoration,
sky design
fruit, Buddha,
hip, rose fall, — gold,
hip, food, tope, temple,
rosehip little, P celebration,
wildlife artistic
dogsled, | group together, cherry,
dog four, hip, rose branch,
sled, sledge, hip, fruit,
dog sled, rosehip food,
sleigh enjoyment season
pug, sea seal,
friendship, ocean,
up‘fl;) adorable, sea lion head,
pug-dog purebred, sea,
sit cute

Algorithmic Intelligence Lab

*source: Liu et al., Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017 33
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Unrestricted and Physical Attacks

e So far, all we have considered is about restricted attacks
* An adversary is restricted to bounded perturbations (e.g. £,, £, ...)

* However, this threat model is highly limited in real world threats

* There are much more noise types that humans don’t aware
* Example: Single-pixel attack [Su et al., 2017]

Only one pixel
is perturbed

Jellyfish
Bathing tub(21.18%)

Algorithmic Intelligence Lab *source: Su et al., One pixel attack for fooling deep neural networks, arXiv, 2017 35



Unrestricted and Physical Attacks

e So far, all we have considered is about restricted attacks

* An adversary is restricted to bounded perturbations (e.g. £5, £, ...

* However, this threat model is highly limited in real world threats

* There are much more noise types that humans don’t aware
* Example: Localized & visible noise [Karmon et al., 2018]

Original Image Noised Image
Lifeboat: 89.20%, Scotch Terrier: 0.00% Lifeboat: 0.03%, Scotch Terrier: 99.77%

)

Visible, away from
the main object

Lifeboat (89.2%) — Scotch Terrier (99.8%)

Algorithmic Intelligence Lab *source: Karmon et al., LaVAN: Localized and Visible Adversarial Noise, ICML 2018
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Unrestricted and Physical Attacks

e So far, all we have considered is about restricted attacks
* An adversary is restricted to bounded perturbations (e.g. £,, £, ...)

* However, this threat model is highly limited in real world threats

* There are much more noise types that humans don’t aware
* Example: Rotation & translation [Engstrom et al., 2018]

Natural Adversarial

“revolver” “mousetrap”

-~

“vulture” “orangutan”

Algorithmic Intelligence Lab *source: Engstrom et al., A Rotation and a Translation Suffice: Fooling CNNs with Simple Transformations, arXiv 2017 37



Unrestricted and Physical Attacks

So far, all we have considered is about restricted attacks
* An adversary is restricted to bounded perturbations (e.g. £,, £, ...)

However, this threat model is highly limited in real world threats

There are much more noise types that humans don’t aware

In particular, adversarial attack is possible even using physical perturbation
* Example: Physically designed perturbation [Eykholt et al., 2018]

Real graffiti Simulated perturbation

Algorithmic Intelligence Lab *source: Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018 38



Unrestricted and Physical Attacks: Spatially Transformed Adversarial Examples

e Xiao et al. (2018): Adversarial example via spatial transformation
* It has large distance in £),-measure, but much realistic

Benign image x Adversarial image X4y

o @O
(uadv' Vadv)

Bilinear
Interpolation

Gk | Flow calculation

T (bu®,Av®) (u®,v®) = (u“,id‘\ +au®, v + Av‘”)

SR NN e
B bt Tt b Pt P O | ) "
RN —a “u.m\"’.uh‘]"“’ Au'

.

.

A\

@
(u®, v

"""" NN AvY

 Each pixels is transformed by an optimized flow f = (Au(i), Afu(i))
* f is optimized with L-BFGS solver [Liu & Nocedal, 1989]

f* =argmin L.gy(x, f) + 7 Laow(f)
f CW objective

Liow(£) = Y 3 /Il Au® — Au@|3 + [|Auv®) — Av@)]

p:pixels ¢: N (p)

“Flow should be smooth over neighbors”

Neighbors of p

Algorithmic Intelligence Lab *source: Xiao et al., Spatially Transformed Adversarial Examples, ICLR 2018 39



Unrestricted and Physical Attacks: Spatially Transformed Adversarial Examples

e Xiao et al. (2018): Adversarial example via spatial transformation

. a
Benign * -

Figure 5: Flow visualization on MNIST. The digit “0" is misclassified as “2".

Adversarial

adversarial
Figure 6: Flow visualization on CIFAR-10. The example is misclassified as bird.

Algorithmic Intelligence Lab *source: Xiao et al., Spatially Transformed Adversarial Examples, ICLR 2018 40



Unrestricted and Physical Attacks: Spatially Transformed Adversarial Examples

e Xiao et al. (2018): Adversarial example via spatial transformation

(a) mountain bike (b) goldfish (c) Maltese dog (d) tabby cat

CAM interpretation for ImageNet Inception-v3 model

Algorithmic Intelligence Lab *source: Xiao et al., Spatially Transformed Adversarial Examples, ICLR 2018 41
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Adversarial Training [Madry et al., 2018]

* Motivation: An optimization view on attacks and defenses
* Recall: Adversarial attacks aim to find inputs so that:

max  L(f(z'),y)

x':d(x,x’)<e

* In the viewpoint of defense, our goal is to minimize the adversarial risk:

B | uux _ L(7().0)

x':d(x,x’)<e

* Adversarial training framework aims to minimize adversarial risk in training

)

* ldea: Use strong attack methods to approximate the inner-maximization
e e.g. FGSM, PGD, DeepFooal, ...

max  L(f(z'),y;0)

' :d(x.x')<e

_

m@il’l (E(m’y),\,p
/

. . FGSM, PGD, ...
Training parameters

* Challenge: Computing the inner-maximization is difficult

Algorithmic Intelligence Lab *source: Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018 44



Adversarial Training [Madry et al., 2018]

e Up to now, adversarial training is the only framework that has passed the
test-of-time to show its effectiveness against adversarial attack

* Nowadays, most of “real” defense methods are based on this framework

 MNIST results

” Accurac Y |

Algorithmic Intelligence Lab

*source: Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018 45

|}‘I““"‘“1 |E“'IJH |RUHLH1-IH |E“““:“ |11111||ml |Ht|:'pr-: |RL'HLH1‘[H |f'§u-urr.:v ||.-'-"LL:'.:|II'H{':\'|
Natural - N - 98.87% FGSM A 96.8%
e _ - ] L G0 T - - : =
;E:;M o ; : géggj PGD 10 1 A 96.0%
- - — PGD 100 20 A 95.7%
PGD 100 1 A 91 8% oW 10 1 A 07 0%
PGD 10 20 A 00.4% o o - 5.1
PGD 100 20 A 80.3% - ———
Targeted |40 1 A 9277 FGSM |- - B 95.4%
oW 10 1 A 0107 PGD 40 ! B 9647
oW 10 1 A 93.0% CW+ - - B 95.7%
White-box Black-box
* CIFAR10 results
| Method [Steps  [Source |[Accuracy] [Method [Steps  [Source [[Accuracy]|
MNatural - - 87.3% FGSM - A’ 67.0%
FGSM - A 56.1% PGD 7 A’ 64.2%
PGD 7 A 50.0% CW 30 A T8.7T%
PGD 20 A 45.8% FGSM - A nat 85.6%
CW 30 A 16.8% PGD 7 At 86.0%
White-box Black-box



Adversarial Training [Madry et al., 2018]

e Up to now, adversarial training is the only framework that has passed the
test-of-time to show its effectiveness against adversarial attack

I”

* Nowadays, most of “real” defense methods are based on this framework

* Madry et al. also released the “attack challenges” against their trained models
 MNIST: https://github.com/MadryLab/mnist challenge
e CIFAR10: https://github.com/MadryLab/cifarl10 challenge

MNIST white-box leaderboard CIFAR-10 white-box leaderboard
Attack Submitted by Accuracy  Submission Date Attack Submitted by Accuracy  Submission Date
Interval Attacks Shiqi Wang 88.42% Feb 28, 2019 FAB: Fast Adaptive Boundary Attack Francesco Croce  44.51% Jun 7, 2019

Distributionally Adversarial Attack
merging multiple hyperparameters

Tianhang Zheng  88.56% Jan 13, 2019 Distributionally Adversarial Attack Tianhang Zheng ~ 44.71% Aug 21, 2018

20-step PGD on the cross-entropy loss . )
Tianhang Zheng  45.21% Aug 24, 2018

Interval Attacks Shigi Wang 88.59% Jan 6, 2019 with 10 random restarts
Distributionally Adversarial Attack Tianhang Zheng  88.79% Aug 13, 2018 20-step PGD on the cross-entropy loss  (initial entry) 47.04% Dec 10, 2017
First-order attack on logit difference . - i o
Samarth Gupta 88.85% May 23, 2018 20-step PGD on the CW loss (initial entry) 47.76% Dec 10, 2017
for optimally chosen target label ' '
FGSM on the CW loss (initial entry) 54.92% Dec 10, 2017
100-step PGD on the cross-entropy loss initial o
with 50 random restarts R B e L 2l FGSM on the cross-entropy loss (initial entry) 55.55% Dec 10, 2017
100-step PGD on the CW loss o )
i (initial entry) 89.71% Nov 6, 2017
with 50 random restarts
100-step PGD on the cross-entropy loss  (initial entry) 92.52% Nov 6, 2017
100-step PGD on the CW loss (initial entry) 93.04% Nov 6, 2017
FGSM on the cross-entropy loss (initial entry) 96.36% Nov 6, 2017
FGSM on the CW loss (initial entry) 96.40% Nov 6, 2017

Algorithmic Intelligence Lab *source: Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018 46
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Large Margin Training [Elsayed et al., 2018]

* Adversarial training attempts to minimize the adversarial risk

E(:c,mw[ max L(f(fﬂ’),y)]

x':d(x,x’)<e

e Similarly, one may want to optimize the another measure of robustness

e ...the average minimum-distance!

max (]E(x’y)N'D [ min d(:ﬁ,x')])

0 ' €A y
Am,y — {':U’ : f(.??,) 7é y}

* Large margin training attempts to maximize the margin: <a>
* the smallest distance from a sample to the decision boundary

g(x,w)=0

Z2

d = méin H(SHP S.t. fz($ + (S) = fj(SU + (5)

"

margin

Algorithmic Intelligence Lab *source: Elsayed et al., Large Margin Deep Networks for Classification, NeurlPS 2018 48



Large Margin Training [Elsayed et al., 2018]

(a)
* Large margin training attempts to maximize the margin:
* the smallest distance from a sample to the decision boundary p

d:m(sin (0], s.t. fi(z +0) = fj(z+9)

Z2

* Similar to DeepFool [S. Moosavi-Dezfooli et al., 2016], mafginxl

the margin is linearly approximated:

S i@ @)
Ve Fi(@)=Va F5 @1,

where |-, is the dual norm of [|-||,, ¢ = -5

* Based on this, a new loss is proposed:

. | filz) = fyx) T
m@m Z Az;éy (’Y+{||vf%(x)—ny(a:)|J)

(z,y)~D

margin

A . aggregate operator; max or sum

Algorithmic Intelligence Lab *source: Elsayed et al., Large Margin Deep Networks for Classification, NeurlPS 2018 49



Large Margin Training [Elsayed et al., 2018]

* Experimental Result

* Test accuracy of standard model: 99.5%

* Test accuracy of the margin classifier models:

White-box: BIM attack

e Xent: Cross-entropy loss

1.0 FrEig e T b T e
Al &
\‘s‘\‘,,\‘h -=- Xent
\ :
RN - - hinge
VNN -- input!
08l - '*\i', ....................... x |
|‘ \ ‘-.\_ “““ all le
A .
' N -~ inputl,
a \ \ A,
© 0.6 . \‘ "‘\\‘ all I
5 \ : vy . == inputl,
8 1 z \\\\\ -
\ \ STail I (EIET all I,
\ : S~
@ 04f A i A O L S LY S
'— 1 \ A -
1 A LT S Y e
\ \ A
\ A\
AY
0.2} “ . SRR A Mgt T Mg bl
\ N Mo B e -
1 ~ ‘.-‘-
‘\ Sl R
0.0 LR i v~ dompma )i ==
0.0 0.1 0.2 0.3

Input /,: applying the margin loss on first layer (input) only
All 1,,: applying the margin loss on all hidden layer (hidden features)

) 0.4 0.5
Epsilon

Large margin classifiers

Algorithmic Intelligence Lab

99.3~99.5%
CIFAR 10
1.0
t;."‘n
0.8 feah
I.'._"|\‘
W
"._\l‘ \
E‘Qﬁ 2 Hﬂ
i ik
o v
< K
B 04 i
A
0.2
0.0

0.20
Epsilon

applying on multiple layer
(input, output, some conv layers)

*source: Elsayed et al., Large Margin Deep Networks for Classification, NeurlPS 2018 50



Large Margin Training [Elsayed et al., 2018]

* Experimental Result

* Test accuracy of standard model: 99.5%
* Test accuracy of the margin classifier models: 99.3~99.5%
* Black-box: BIM attack to Xent model

e Xent: Cross-entropy loss

Epsilon

1.0 & v - T
Fag, : —
AL TN : : -- Xent
\ "?.'\\, hi
\ AN - inge
) I L SN A input I ||
Y
‘\ 't-.,":\ """ all 1
\ Tyt .
\ [N == inputl
9 k A I
A5
o 0.6 ‘\ ‘-,)’5\‘ A I
S ASEY B input [,
bt \ vt puti;
L3 R T A BT
< ‘\ \ _':ﬁ-i_\
% 04 v MO
I R -
— \ ~
\ '
A} H
\ : ‘
0.2 b i) S R 0 IR S
\ Fom, .
~ T o SR i P LLLTTPII
0.0 i i
0.0 0.1 0.2 0.3 /o.a 0.5

Large margin classifiers

Input /,: applying the margin loss on first layer (input) only

1.0 _
= Xent
[ 1
S x
™
0.8 [N h
11
h L
LY Y !
V1% - inge
o Lo
m 0.6 1 e b
[ 1
] 8l 11
(W) i
~
w04t v N '
-
' o
n - .‘l. T
0.2 n S I
TR
0.0 i e s ms == 1
0.00 0.05 0.10 0.15 0.20 0.23
Epsilon

applying on multiple layer
(input, output, some conv layers)

All 1,,: applying the margin loss on all hidden layer (hidden features)
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Obfuscated gradients: False sense of security [Athalye et al., 2018]

* InICLR 2018, 9 defense papers were published including adversarial training:
* Adversarial training [Madry et al., 2018] Orginal  TVMinimization  Image Quiting
* Thermometer Encoding [Buckman et al., 2018]

Original

* Input Transformations [Guo et al., 2018]

* Local Intrinsic Dimensionality [Ma et al., 2018]

* Stochastic Activation Pruning [Dhillon et al., 2018]
* Defense-GAN [Samangouei et al., 2018]

e PixelDefend [Song et al., 2018]

Adversarial

®
Difference

Input transformation [Guo et al., 2018]

Tare) Z = - * o —_ EY
Seed Random number —U’ Nllnlmlze Z x G(Z ) . e
—> Y erator |l1G(z) — x|2 ——» Generator ———» Classifier —» ¥y

Input image x T

Defense-GAN [Samangouei et al., 2018]

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing
Algorithmic Intelligence Lab defenses to adversarial examples, ICML 2018 53



Obfuscated gradients: False sense of security [Athalye et al., 2018]

* InICLR 2018, 9 defense papers were published including adversarial training:
* Adversarial training [Madry et al., 2018]
* Thermometer Encoding [Buckman et al., 2018]
* Input Transformations [Guo et al., 2018]
* Local Intrinsic Dimensionality [Ma et al., 2018]
* Stochastic Activation Pruning [Dhillon et al., 2018]
* Defense-GAN [Samangouei et al., 2018]
e PixelDefend [Song et al., 2018]

» Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
» “Fake” defense?: They don’t aim the non-existence of adversarial example
e Rather, they aim to obfuscate the gradient information
* Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder

'''''''' ‘a =~ h(j:-) """"""e_“l
f: "-._____ | L_ _ _
e | D ho) |- )
r z” r z*
<> e
T T

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing
Algorithmic Intelligence Lab defenses to adversarial examples, ICML 2018 54



Obfuscated gradients: False sense of security [Athalye et al., 2018]

e Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
» “Fake” defense?: They don’t aim the non-existence of adversarial example
* Rather, they aim to obfuscate the gradient information
e Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder

* They identified three obfuscation techniques used in the defenses

Obfuscation Defenses

Existence of a non-differentiable layer

Shattered Gradients e Thermometer Encoding [Buckman et al., 2018]
* Input Transformation [Guo et al., 2018]
* Local Intrinsic Dimensionality (LID) [Ma et al., 2018]

Artificial randomness on computing gradient

Stochastic Gradients . siochastic Activation Pruning (SAP) [Dhillon et al., 2018]
* Mitigating Through Randomization [Xie et al., 2018]

Multiple iterations, or extremely deep DNN

* Pixel Defend [Song et al., 2018]
* Defense-GAN [Samangouei et al., 2018]

Exploding & Vanishing
Gradients

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing
defenses to adversarial examples, ICML 2018



Obfuscated gradients: False sense of security [Athalye et al., 2018]

e Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
» “Fake” defense?: They don’t aim the non-existence of adversarial example
* Rather, they aim to obfuscate the gradient information
e Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder

* Those kinds of defenses can be easily bypassed by 3 simple tricks
1. Backward Pass Differentiable Approximation (BPDA)
* Replace the non-differentiable parts only at backward pass
* Use some differentiable approximative function

X = L » Py |x)

Vx <= |Vr—4- <+ Py|x)

) ) ) *source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing
Algorithmic Intelligence Lab defenses to adversarial examples, ICML 2018 56



Obfuscated gradients: False sense of security [Athalye et al., 2018]

e Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
» “Fake” defense?: They don’t aim the non-existence of adversarial example
* Rather, they aim to obfuscate the gradient information
e Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder

* Those kinds of defenses can be easily bypassed by 3 simple tricks
2. Expectation Over Transformation (EOT)
» Take the expectation of attacks to mitigate stochastic defenses
/
max  Eyor|L(f(¢(z")),y)]
x':d(x,x’)<e N

Random transformation

3. Reparameterization
* Replace deep or recurrent parts by simpler differentiable function

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing
Algorithmic Intelligence Lab defenses to adversarial examples, ICML 2018 57



Obfuscated gradients: False sense of security [Athalye et al., 2018]

e Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
» “Fake” defense?: They don’t aim the non-existence of adversarial example
* Rather, they aim to obfuscate the gradient information
e Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder

* Those kinds of defenses can be easily bypassed by 3 simple tricks
* 6 of the 9 defense papers were completely broken using those tricks
e 1 of the 9 was partially broken (Defense-GAN)
e Adversarial training [Madry et al. 2018; Na et al., 2018] were the only survivals

Defense Type Behavior Attack technique
Thermometer Encoding Shattered Black-box is better BPDA
Local Intrinsic Dimensionality (LID) Shattered Unbounded attack do not reach 100% EFDA
Input Transformation Shattered Black-box is better BPDA, EOT
Stochastic Activation Pruning (SAP) Stochastic, Exploding : modified EOT
Mitigating Through Randomization Stochastic . EOT
Pixel Defend Vanishing . BPDA
Defense-GAN Vanishing Unbounded attack do not reach 100% BPDA

) ) ) *source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing
Algorithmic Intelligence Lab defenses to adversarial examples, ICML 2018 58



Obfuscated gradients: False sense of security [Athalye et al., 2018]

e Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
» “Fake” defense?: They don’t aim the non-existence of adversarial example
* Rather, they aim to obfuscate the gradient information
e Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder

* Then... what should we do?
* At least, we have to do sanity checks on evaluating defenses

|II

* Do your best to show that the proposed defense is a “real” defense

* Some “red-flags” indicating obfuscated gradients

(1) One-step attacks perform better than iterative attacks

(2) Black-box attacks are better than white-box attacks

(3) Unbounded attacks do not reach 100% success

(4) Random sampling finds adversarial examples better

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing
Algorithmic Intelligence Lab defenses to adversarial examples, ICML 2018 59
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Certified Robustness via Wasserstein Adversarial Training [Sinha et al., 2018]

* In adversarial training, the inner-maximization is solved via existing attacks

min
0

(E(m,y)w

xT

max  L(f(z'),y;0)

fd(x,a’)<e

)

FGSM, PGD, ...

e Challenge: Attack methods do not fully solve the inner-maximization
* Still, there will be a practical gap between the optimal worst-case loss

* More stronger adversary? — Much more expensive to compute

* Motivation: Adversarial training with a rigorous guarantee?
* To this end, Wasserstein adversarial training considers distributional robustness

Algorithmic Intelligence Lab

min
0

sup

Ex,y)~p [L(f(X),Y;0)]

P{W.(Py,P)<p

N\

“Wasserstein ball”

Original data distribution

*source: Shina et al., Certifying Some Distributional Robustness with Principled Adversarial Training, ICLR 2018
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Certified Robustness via Wasserstein Adversarial Training [Sinha et al., 2018]

* Wasserstein metric I/.: The avg. cost to move a distribution P to Q

W.(P.Q) = inf Eiyynonlc(Z. 7
( ) MGIITD(P,Q) (.2~ [l )

’ 12 (X,Y)
* W, specifies a cost function: ¢(z,2") == ||z — Z'[|) + 00 - 12y

Smaller Larger

* Next, we take the Lagrangian dual form of the original objective

min ( sup  Exy)~p [L(f(X),Y; 9)])
P:WC(PCHP)SJO

it (supEr [L(/(X),Y36) ~W.(P. )]

*source:
https://slideplayer.com/slide/12699282/
Algorithmic Intelligence Lab Shina et al., Certifying Some Distributional Robustness with Principled Adversarial Training, ICLR 2018 62



Certified Robustness via Wasserstein Adversarial Training [Sinha et al., 2018]

* Next, we take the Lagrangian dual form of the original objective

11%111 sup Exyy~p [L(f(X),Y;0)]
P:W.(Po,P)<p

b uin (supEp [L(/(X),Y36) - 71W.(P, P
* Then, [J. Blanchet et al., 2016] induces the form to the relaxed objective to

mm) min (Epo [sup{L(z;ﬁ\) —ye(z, Zo)}D

0 z€EZ
(z,y)
* This is the final objective of Wasserstein adversarial training

Algorithm 1 Distributionally robust optimization with adversarial training

INPUT: Sampling distribution Py, constraint sets © and Z, stepsize sequence {a; > 0};‘;‘01
fort=0,...,7 —1do

Sample 2zt ~ P, and find an e-approximate maximizer zt of £(6%; z) — vye(z, 2%)

O+« Projg (0 — oy Vel (0%;2Y))

Algorithmic Intelligence Lab *source: Shina et al., Certifying Some Distributional Robustness with Principled Adversarial Training, ICLR 2018 63



Certified Robustness via Wasserstein Adversarial Training [Sinha et al., 2018]

* Experimental Results: White-box attack with 5 and [, metric
* Wasserstein adversarial training (WRM) outperform the baselines

10°¢ 10°

g 10! g 10"
2 &
ERM ERM
IFGM IFGM
/ i FGM é FGM
PGM 3
. Drort . (J.t%%%? Best performance among
0 0.05 01 015 02 025 0 005 0.1 015 02 the baselines
(a) Test error vs. €,4, for || - ||2-FGM attack (b) Test error vs. €ady for || - || oc-FGM attack *ERM: Standard Training
*IFGM: BIM Adv. Training
10’ 10°f *FGM: FGSM Adv. Training
*PGM: PGD Adv. Training
*WRM: Wasserstein Adv. Training
S0} 2oty
= =
ERM ERM
éIFGM é[FGM
FGM FGM
P rPGM p>PGM
102 B WRM 1072 B WRM
0 0.05 Ujl O.iS ().‘2 0.:’25 0 (1.65 (].‘l (],lIS 0,‘2
Cn(l\'/cﬂ €adv /Cx
(a) Test error vs. €ady for || - H2 (b) Test error vs. €aqv for || - ||oo
* PGD attack * PGD attack

Algorithmic Intelligence Lab *source: Shina et al., Certifying Some Distributional Robustness with Principled Adversarial Training, ICLR 2018 64
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Tradeoff between accuracy and robustness [Zhang et al., 2019]

Motivation: Robust model — accuracy reduction? [Tsipras et al. ,2019]

Consider (X, Y) modeled by n(x)
* Bayes optimal classifier: sign(2n(x) — 1)

* We are using an “accuracy-biased” loss function

* Can we exploit this trade-off for better robustness?

I 3
1(x) n(z) :=Pr(Y =1|X = x)
1 [ ) 0, e [zkfj (% N 1)E)’
1, z€ ((2k+ 1)e, (2k + 2)€].
1/2
Bayes Optimal Classifier | All-One Classifier
Rnat 0 {Optllﬂﬂ.l) 1/2
J ; T ] ] >4 Rb-dy 1 0
£ £ 1 Rerob 1 1/2 (optimal)

Algorithmic Intelligence Lab *source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018 66



Tradeoff between accuracy and robustness [Zhang et al., 2019]

* We re-write the relationship between robust error and natural error

* Consider a binary classification with Y € {—1, 1}
* Natural error: R.¢(f) := E(x y)~p1[f(X)Y < 0]
* Robust error under e-perturbation:
* [Schmidt et al., 2018; Cullina et al., 2018; Bubeck et al., 2018]

Riob(f) == E(x,v)~pl[3X' € B(X,€) s.t. f(X)Y <0

Algorithmic Intelligence Lab *source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018 67



Tradeoff between accuracy and robustness [Zhang et al., 2019]

* We re-write the relationship between robust error and natural error

* Consider a binary classification with Y € {—1, 1}
* Natural error: R.¢(f) := E(x y)~p1[f(X)Y < 0]
* Robust error under e-perturbation:
* [Schmidt et al., 2018; Cullina et al., 2018; Bubeck et al., 2018]

Rrob(f) = E(X,Y)ND]-[H'X’ € ]B(X: E) s.t. f(X,)Y < O]

7~

* Zhang et al. (2019) also defines the boundary error:
Ruay(f) = Egxv)~pllX € BDB(/), ), (X)Y >0

Decision boundary

* B(DB(f),¢) := {z: 3z’ € B(z,¢) s.t. f(x)f(z") <0}

* Boundary error identifies the gap between R, (f) and R...(f)

Riob(f) = Ruat(f) + Rbay(f)

\

Algorithmic Intelligence Lab *source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018 68



Tradeoff between accuracy and robustness [Zhang et al., 2019]

* Goal: Find f such that R.ob(f) — RE,, is small

nat

Reob(f) = Riar = (Ruat (f) = Riat) + Rbay(f) < 8

Natural error gap

* Theorem 1 (upper bound, informal). Let ¢ be a usual surrogate loss. We have:

Rrob(f) = Rpat = (Rnat(f) — Rpat) + Robdy(f)
< (Re(f) = Rgy) + Rudy(r) (Bartlett et al., 2006)

< (Ro(f) ~ Ry +E|_mmx  o(f(X)f(X)/Y

* Theorem 2 (lower bound, informal). for any ¢ > 0, there exist D, f,and A > 0
such that:

Ruanlf) = Riwe = (Rolf) = R) +E | _max 6(/(X)F(X)/N)] ¢

* The upper bound is tight if there is no assumption on D

*source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018 69



Tradeoff between accuracy and robustness [Zhang et al., 2019]

Goal: Find f such that R.ob(f) — RE,, is small

nat

Reob(f) = Riar = (Ruat (f) = Rias) + Rbay(f) < 8

The theorems naturally suggests a new surrogate loss:

min B E(ffjfa);y Y) 4+ max  L(F(X), F(X)/A

robustness

TRADES: TRadeoff-inspired Adv. DEfense via Surrogate-loss minimization
* A: The balancing hyper-parameter
* We can boost the robust accuracy with little loss of natural accuracy

Key difference: TRADES finds X' by solving maxx’cp(x.¢) L(f(X), f(X"))/A
* Adversarial training [Madry et al., 2018]: MaxX x’cp(X,e) L(f(X"),Y)

Up to now, TRADES is regarded as the state-of-the-art defense method

Algorithmic Intelligence Lab *source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018 70



Tradeoff between accuracy and robustness [Zhang et al., 2019]

* Experimental results

* White-box attack results (CIFAR-10 & MNIST)

Table 5: Comparisons of TRADES with prior defense models under white-box attacks.

Defense | Defense type | Under which attack | Dataset | Distance | Auat(f) | Awon(f)
[BRRG 18] gradient mask [ACWIS] CIFARI0 | 0.031 (f) - 0%
[MLW 18] gradient mask [ACW18] CIFARI0 | 0.031 () | - 5%
[DAL™ 18] gradient mask [ACW1E] CIFAR10 | 0.031 () - 0%
[SKN*18] gradient mask [ACW18] CIFARI0 | 0.031 () | - 9%
[NKM17] gradient mask [ACW1E] CIFAR10 | 0.015 (£..) - 15%
[WSMK 18] robustopt. | FGSM2 (PGD) | CIFARIO | 0.031 (£.,) | 27.07% | 23.54%

[ [MMSTI3] robust opt. | FGSM® (PGD) | CIFARIO | 0.031 (o) | 87.30% | 47.04%]
[ZSLG16] regularization | FGSM® (PGD) | CIFARIO | 0.031 () | 94.64% | 0.15%
[KGB17] regularization FGSM? (PGD) CIFARI1O | 0.031 ({s) | 85.25% | 45.89%
[RDV17] regularization FGSM? (PGD) CIFAR10 | 0.0531 () [ 95.34% 0%

TRADES (1/A = 1) || regularization | FGSM"% (PGD) | CIFARIO | 0.031 (¢..) | 88.64% | 48.90%
TRADES (1/A = 6) || regularization | FGSM'"" (PGD) | CIFARI10 | 0.031 (¢..) | 84.92% | 56.43%
TRADES (1/\ = 1) || regularization FGSM?’ (PGD) CIFARI10 | 0.031 (£) | 88.64% | 49.14%
TRADES (1/A = 6) || regularization FGSM?’ (PGD) CIFAR10 | 0.051 (£..) | 84.92% | 56.61%
TRADES (1/X = 1) || regularization DeepFool (f~) CIFARI1O | 0.031 (/) | 88.64% | 59.10%
TRADES (1/XA = 6) || regularization DeepFool (f~) CIFARI1O | 0.031 ({~) | 84.92% | 61.38%
TRADES (1/X = 1) || regularization LBFGSAttack CIFAR10 | 0.031 (¢£..) | 88.64% | 84.41%
TRADES (1/XA = 6) || regularization LBFGSAttack CIFARI1O | 0.031 (/) | 84.92% | 81.58%
TRADES (1/X = 1) || regularization MI-FGSM CIFARI1O | 0.031 (/) | 88.64% | 51.26%
TRADES (1/\ = 6) || regularization MI-FGSM CIFARI1O | 0.031 (£.) | 84.92% | 57.95%
TRADES (1/\ = 1) || regularization C&W CIFARI1O | 0.031 (fs) | 88.64% | 84.03%
TRADES (1/A = 6) || regularization C&W CIFARI10 | 0.031 (£s) | 84.92% | 81.24%

[SKC18] gradient mask [ACWIS] MNIST | 0.005 (f5) - 55%

[MMS* 18] robustopt. | FGSM® (PGD) | MNIST | 0.3(fx) | 99.36% | 96.01%
TRADES (1/\ = 6) || regularization FGSMY"" (PGD) | MNIST 0.3 (£5) 99.48% | 95.60%
TRADES (1/A = 6) || regularization FGSM* (PGD) MNIST 0.3 (£a2) 99.48% | 96.07%
TRADES (1/A = 6) || regularization C&W MNIST | 0.005 (£2) | 99.48% | 99.46%
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Tradeoff between accuracy and robustness [Zhang et al., 2019]

* Experimental results
* NeurlPS 2018 Adversarial Vision Challenge
* Black-box setting on Tiny-ImageNet dataset
* Attacks are generated from the top-5 entries in the attack track
* TRADES surpassed the runner-up by 11.41%

Mean £, perturbation distance
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Summary

Adversarial examples are one of the biggest problems that makes harder to
deploy deep learning models into real-world

* Especially on error-sensitive applications: Autonomous driving

The literature of adversarial example commonly stated in security perspective
* Defining a feasible & realistic threat model is important

Attack methods are evolving across various threat models
* White-box attacks are mainly based on the gradient of model
* Transferability of adversarial examples allow black-box attack
e Unrestricted and physical attacks are gaining attention

Up to now, adversarial training is the only framework that has passed the
test-of-time to show its effectiveness against adversarial attack
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