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Limited Training Samples in Real-world Applications

* Deep learning suffers from a lack of training samples

* Deep learning shows remarkable success in various fields of artificial intelligence
(e.g., object classification, machine translation)

* But, use (VERY) large labeled dataset

Open Images Dataset V5 + 7
Extensions

Open Images Dataset (9M images) English Wikipedia (2.5B words)

* Collecting some annotations is too hard/expensive
* E.g., segmentation labels, bounding boxes, medical data
* For a new task, only few samples are available [ Source Tasks | Target Task

* Transfer learning aims to transfer the knowledge @
from source to target domains & tasks

!
|

Algorithmic Intelligence Lab * source: https://storage.googleapis.com/openimages/web/index.html, [Pan et al., 2010] 4



https://storage.googleapis.com/openimages/web/index.html

Transfer Learning in Artificial Intelligence

Robots learns skills and transfers that knowledge to other robots
have different kinematics

C-LEARN: Learning Geometric Constraints from Demonstrations for Multi-Step Manipulation
in‘Shared Autonomy. ‘Claudia Péerez D'Ar(pir)o.Julie A.Shah, |IEEE ICRA 7 Y

2) Execution of four
learned tasks with the
Optimus robot.

Speech recognition: Learn from specific languages/accents transfer
to learn different languages/accents

> Simulated robots learn new movements from get
transfer from previous learned task

(Top): from forward movements, learn backward
move

(Bottom): learn faster movements from slow
movements

Algorithmic Intelligence Lab * source: https://www.youtube.com/watch?v=_tlc_IrEH1k 5



Domains & Tasks

« DomainD ={X,P(X)}
* With a feature space X and a marginal probability distribution P(X) for X € X
* E.g., X is natural or cartoon image spaces / P(X) is dog or cat distribution

* Task 7T ={YV,P(Y|X)}
* With a label space ) and a conditional probability distribution P(Y'|X) for Y €
* E.g., Visdigit (0, 1, ...) or animal (dog, cat, ...) spaces

Age (e.g., 31, 49, 34, 50, 31)

Person recognition
(e.g., John, Aaron, Adam, Will, John)

Algorithmic Intelligence Lab 6



What is Transfer Learning?

* Definition of transfer learning [Pan et al., 2010]

* Given a source domain Dg and learning task 7g, and a target domain D7 and
learning task 71

* Transfer learning aims to improve the learning of the target predictive function f7(+)
using the knowledge in Ds and 7s where Dg # Dr or Ts # Tr

No

Ysand Vr are obs@

Yes Y(V w‘o
“Traditional” Transductive Inductive Unsupervised
Machine Learning Transfer Learning Transfer Learning Transfer Learning

Knowledge Domain Multi-task
Distillation Adaptation Learning
Semi-supervised Continual

Learning Learning



Type I: Same Tasks and Same Domain

* When tasks and domains are same, usually one can transfer knowledge for
* Making target model that are smaller (model compression)
* But, perform better than scratch learning
* Using the knowledge transferred from the source model

* Knowledge distillation

* Make a target model mimic the source model
* Make outputs (or features) similar
* Since tasks and domains are same, following a source/reference model is useful

s * = Person recognition

}\}\ ! 3 SRl . f (e.g., John, Aaron, Adam, Will, John)
X * B Person recognition

m\ , VN ¥ (e.g., John, Aaron, Adam, Will, John)

Ds = Dr Ts ="Tr
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Type ll: Same Tasks, but Different Domains (Transductive Transfer Learning)

* Labels to predict are same but input data samples are different

* Since tasks are same, by learning the features invariant to source and target
domains, a target model can perform well

* In many cases, target domain datasets do not have sufficient labels

* By learning domain invariant features, source model’s representations could be used for
target domain

* Domain adaptation (not covered in this lecture)

* Learn representations that confuse source and target domain inputs
* Learn target representations that are similar to source domain

7 “EEEA : = 0-9 digits classification
B o4 ) —  ° (eg,6,2,38,1,0)
: \ ‘ 0-9 digits classification

Dg # Dy Ts =Tr

Algorithmic Intelligence Lab



Type lll: Different Tasks (Inductive/Unsupervised Transfer Learning)

» Different tasks: different labels to predict

* When tasks are different, feature extractors and output layers are need to be
adjusted a lot for new tasks

* Multi-task learning/fine-tuning are used to learn appropriate representations for
target tasks from the source model’s representations

Age (e.g., 31, 49, 34, 50, 31)

Person recognition
(e.g., John, Aaron, Adam, Will, John)

Ts # Tr

Scene classification
(e.g., elevator, gas station, castle,
cafeteria, cabin)

Object classification
(e.g., car, airplane, panda, lion, guitar)

Ts # Tr

10
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Fine-tuning Approach

e Convolutional layers are viewed as a feature extractor.
* Lower convolutional layers capture low-level features. e.g. edges
* Higher convolutional layers capture more complex, high-level features. e.g. eyes

1
|

| SFClabels |

3 | REPRESENTATION |

-~ Cl1: M2: G3: L4: L5z L6:
Calista Flockhart 0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16 16X5x5x16 4096d 4030d
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

* A source model pre-trained by a large dataset, e.g., ImageNet, is well-generalized,
so one can expect it as a good feature extractor or parameter initialization.

* To avoid overfitting, one can often freeze convolutional layers for small target datasets.
* Can transfer to different domains and tasks
* But, same architectures (at least for feature extraction part)

Algorithmic Intelligence Lab * source: [Yaniv et al., 2014] 12



Fine-tuning Approach

(a) Train large model on ImageNet (b) Using pre-trained weights (c) Fine-tuning the weights
as initial parameter of target for new task

model
ImageNet
Pre-trained o Target task Target task
model Weight model model
(€.g- ResNet)  BTTNEIPEVIoN

Public spaces

ImageNet

e Assumptions for fine-tuning approaches

* Features/Parameters learned from some task are useful for another tasks
* True in many artificial intelligence tasks (e.g. lower-level features of images such as edge)

 When do they fail to work
* When dataset of source and target tasks are very different
* When target tasks have no (or very small) labeled training data

Algorithmic Intelligence Lab 13



Fine-Tuning with Increasing Target Model Capacity

* Increasing the target model capacity in various ways [Wang et al., 2017]
e Channel-wise, depth-wise, (channel+depth)-wise
* Using the pre-trained weights for all the layers except newly augmented layers/channels
* Fine-tuning with target tasks

* Main idea at a high level
* Using the pre-trained weight of source model to initialize the target model
* Increase the capacity of target model in depth/channel-wise

Novel task Novel task 0 Augmented
i 0] Pre-trained
image ground truth
Target task Target task labels Classifier
N : - :

(a) Classic Fine-Tuning

Novel task Novel task
— m Deeper Developmental Transfer Novel task Novel task A, ﬁ’ﬁ AN
Source task labels image ground truth

1
, Convolutional layers  Fully-connected layers

[vcs | - 3 rcs | g (b) Depth Augmented Network (c) Width Augmented Network
- (DA-CNN) (WA-CNN)

Novel task Novel task Novel task Novel task
image [“ground truth image [“ground truth

(d) Jointly Depth and Width Aug- (¢) Recursively Width Aug-
mented Network (DWA-CNN) mented Network (WWA-CNN)

Representation module Classifier module

Algorithmic Intelligence Lab * source: [Wang et al., 2017] 14



Experimental Results

e Evaluated on MIT-67, 102 Flowers, CUB200-2011, Stanford-40 with ImageNet
pre-trained AlexNet

e Outperform most of task customized CNN or other multi-task learning methods

e Drawbacks:
* Did not apply on architecture like ResNet (model without fully-connected layers)

* Only augment the layers for fully-connected layers

Type MIT-67 102 Flowers CUB200-2011 Stanford-40
P Approach Acc(%)| Approach Acc(%) | Approach Acc(%)| Approach Acc(%)
Finetuning-CNN 61.2 |Finetuning-CNN 75.3 |Finetuning-CNN 62.9 |Finetuning-CNN 57.7
ImageNet CNNs Caffe [53] 59.5 |CNN-SVM [32] 74.7 |CNN-SVM [32] 53.3 |Deep Standard [4] 58.9
— — |CNNaug-SVM [32] 86.8 |CNNaug-SVM [32]| 61.8 |[— R
Caffe-DAG [53] 64.6 |LSVM [30] 87.1 |LSVM [30] 61.4 |Deep Optimized [4] 66.4
Task Customized — —  |MsML+ [30] 89.5 |DeCaf+DPD [7] 65.0 |— —
CNNs Places-CNN [59] 68.2 |MPP [55] 91.3 |MsML+ [30] 66.6 |— —
— —  |Deep Optimized [4] 91.3 |MsML+* [30] 679 |— —
Data Augmented CNNs|Combined-AlexNet [18]| 58.8 |Combined-AlexNet [18]| 83.3 |— — |Combined-AlexNet [18]| 56.4
. Joint [22] 639 |— — |Joint [22] 56.6 |— —
Mnit-Task CNINa LwF [22] 645 |— —  |LwF[22] 577 |— —
| Ours WA-CNN 66.3 |WA-CNN 92.8 |WA-CNN 69.0 |WA-CNN 67.5 |
Algorithmic Intelligence Lab 15



Experimental Results

* Normalization and scaling activations are important for the performance

improvement

e Reconcile the learning pace of the new and pre-existing units
* Normalization and scaling is more crucial in Width-augmented CNN (WA-CNN)
* Without normalization and scaling, marginally better or worse than fine-tuning method

=3

WA-CNN DA-CNN

- Pre-trained units
- New units

Algorithmic Intelligence Lab

h¥ = yh*/ [[R*]],

Scaling ’ ‘ Normalization

Method Scaling New FCr-new FCgnew  All
Fine-tuning CNN ; 5363 5475 5429  55.93
wio Gand) | 53.82 5647 5625 5721
DA-CNN w/ 5351 5615 5714  58.07
wio cand) | 5378 54.66 4972 5134
WA-CNN | wlo (copy+rand) | 53.62 5435 5370 5531
w/ 5681  56.99 57.84  58.95

Performance on SUN-397 dataset by changing the fine-tuning layers
from only new layer to all the layers

w/o (rand): new units are randomly initialized

w/o (copy+rand): initialize by copying FC,, and add random noise
w/: with normalization and scaling

16



Sample Selection for Pre-training

* Select samples from the source domain before pre-training [Cui et al., 2018]
* Select only related samples to the target task
* Pre-train CNNs on the selected set = Fine-tune CNNs on the target dataset

\
I
I
I
I
I
I
I
I
|
|

k Domain
.7 Similarity

Ragdoll (0.2) Feature Space (05)

How to measure similarity between samples in source/target datasets?
« d(s,t) = ||g(s) — g(t)|| for s € Xg,t € X1 where 3(*) is a feature extractor
* Earth Mover's Distance: minimum cost of moving samples between two sets

d(S,T) =EMD(S,T) = Z,gfz d(si, t;)

. . f Zzg fw
* With some constraints
* Incrementally select samples in the source domain using a greedy strategy

Algorithmic Intelligence Lab * source: [Cui et al., 2018] 17



Sample Selection for Pre-training

* Transfer learning performance on the selected subsets

target
CUB200 | Stanford Dogs | Flowers-102 | Stanford Cars | Aircraft | Food101 | NABirds
o  ImageNet 82.84 84.19 96.26 91.31 85.49 88.65 82.01
O iNat 89.26 78.46 97.64 88.31 82.61 88.80 87.91
g ImageNet + iNat 85.84 82.36 97.07 91.38 85.21 88.45 83.98
| Subset A [832-class) 86.37 84.69 97.65 91.42 86.28 88.78 84.79
Subset B [585-class) 88.76 85.23 97.37 90.58 86.13 88.37 87.89

* Pre-training on selected subsets achieves good performance consistently

* The relationship between transfer learning performance and domain similarity

 Drawbacks

* Pre-training for each model

* Pre-training takes few hours ~ days
* Need all samples in source domain

good —

* # of samples in source datasets > 1M

Algorithmic Intelligence Lab

Transfer learning performance (%)
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QEX—V
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= Oxford Flowers
Stanford Cars

= F00d101

= Ajrcraft

- CUB200

= NABirds
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o
\
]
X
*

ImageNet
iNat
ImageNet+iNat

Subset A (832-class)
Subset B (585-class)

0.525 0.550  0.575

0.600

0.625

0.650  0.675

Domain similarity (e~Y9)

similar —
* source: [Cui et al., 2018] 18
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Using Pre-Training Can Improve Model Robustness and Uncertainty

* Pre-training also improves other tasks such as robustness and uncertainty

* Considered various scenarios such as label corruption, class imbalance, out-of-
distribution detection, etc.

Using pre-trained weights Train from scratch

Train on ImageNet Train on CIFAR-10&100 CIFAR-10&100

ImageNet

Pre-trained Random init

Pre-trained o
model Weight model model

(G-I hitialization

Better
robustness & uncertainty

Algorithmic Intelligence Lab 19



Using Pre-Training Can Improve Model Robustness and Uncertainty

* Label corruption: when mis-labeled sample existed in train data

CIFAR-10 CIFAR-100
Normal Training | Pre-Training |[Normal Training] Pre-Training

No Correction 28.7 15.9 55.4 39.1

Forward Correction 25.5 15.7 52.6 42.8

GLC (5% Trusted) 14.0 72 46.8 33.7

GLC (10% Trusted) 11.5 6.4 38.9 28.4

* Class imbalance: when labels are imbalanced
Dataset Imbalance Ratio 0.2 0.4 0.6 0.8 1.0 1.5 2.0
AL Method Total Test Error Rate / Minority Test Error Rate (%)

o Normal Training 23.7/26.0 21.8/26.5 21.1/258 20.3/24.7 20.0/24.5 18.3/23.1 15.8/20.2
Z Cost Sensitive 22.6/249 21.8/26.2 21.1/257 20.2/243 202/24.6 18.1/229 16.0/20.1
35 Oversampling 21.0/23.1 194/23.6 19.0/23.2 18.2/222 183/224 17.3/222 153/19.8
— SMMOTE ke et O S s S e e S e QG-4-|
© Pre-Training 8.0/8.8 7.9/9.5 7.6/9.2 8.0/9.7 7.47/9.1 7.4/9.5 72/94
S Normal Training 69.7/72.0 66.6/70.5 63.2/69.2 58.7/65.1 572/644 50.2/59.7 47.0/57.1
- Cost Sensitive 67.6/70.6 66.5/70.4 62.2/68.1 60.5/669 57.1/64.0 50.6/59.6 46.5/56.7
5):4 Oversampling 62.4/662 59.7/63.8 59.2/655 553/61.7 546/622 49.4/59.0 46.6/56.9
E S7 4 /A1 0 _SAD /AN _SA4/AND SI2RR/8Q07 K81 22/8%4 AR K8 /87 Q A5 R /8412
Q

37.8/41.8

36.9/41.3 36.2/41.7 364/423 349/415

34.0/41.9

33.5/42.2

* Out-of-distribution detection: detecting unseen samples in the test set

Algorithmic Intelligence Lab

AUROC AUPR
Normal Pre—TrainI Normal |Pre-Train
CIFAR-10 91.5 94.5 63.4 73.5
CIFAR-100 69.4 83.1 29.7 52.7
Tiny ImageNet  71.8 73.9 30.8 31.0

* source: [Hendrycks et al., 2019] 20
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Knowledge Distillation

* Learn a source model and distill its knowledge to a target model
* Can lead to a better model with small architecture, or faster training

e Given a teacher network on domain D, enhance the training of (usually smaller)
a student network on same domain P, using knowledge of a teacher network

* Done by matching the output of source and target models

* Design a new loss term (e.g., MISE loss, KL divergence) for making source and target
outputs similar in addition to the original loss term (e.g., cross entropy loss)

Source (teacher) model

ﬁ{ U e
e

Target (student) model
Algorithmic Intelligence Lab 22
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Knowledge Distillation: Matching Output of Source and Target Model

* [Hinton et al., 2015] propose
* Use temperature T > 1 to make a softer probability distribution over classes

' _ exp(z;/T)
4T = S exp(z;/T)

where z;, q; are the i-th logit and probability, respectively
* Use the soft target as additional labels to train student model

L = (1 — a)Ece(y, Q) + OfTZ['ce(pTa qT)

where Y, 4 and p are ground-truth labels, target model outputs, and source model
outputs, respectively. It is important to multiply soft targets by T2 because the
magnitudes of the gradients produced by them scale as 1/72. (derived in the next page)

soften

Teacher 0.61
network

Algorithmic Intelligence Lab 23
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Knowledge Distillation: Effect of Temperature Scaling

 Let C be a cross-entropy loss of softened labels.
C = Ece(pTa qT)

* The gradient of C, with respect to each target logit z;, and source logit v; :
oc __ 1y¢, .\ _ 1 exp(2:/T) __exp(vi/T)

9z = T\G—Pi) =7 (zj ex(z,/T)) T 5 eXp<vj/T>)

* |f the temperature is high compared with the magnitude of the logits,

oC . 1 1+2,/T 14w/ T
821' ~ T N—I—Zij/T N+Zjvj/T

* If we assume that the logits have been zero-meaned (i.e. Zj Zj = Zj v; =0)

32 ~ e (2 — i) = g egi (E(Z% _ UZ’)2I)

scaling

* At high temperatures, the objective is equivalent to a quadratic function.
* Distillation pays much more attention to logits that are negative than the average.

* This is potentially advantageous because these logits (which are not the correct label)
are almost completely unconstrained by the classification loss.

24



Knowledge Distillation: Experimental Results

* MNIST experiments

* Hand-written digits (28x28 grayscale images) ? ? ? 2 f
* 60000 training, 10000 test images 2222 .9

e Source model: 2 hidden layers MLP with 1200 hidden nodes 3
e Target model: 2 hidden layers MLP with 800 hidden nodes 3 533
Y ¢ ¢ Y4
Model Error rate (%) S 9 585 5
Source model 0.67 L 6 6 6 G
Target model 1.46 T7 777
(without knowledge distillation) ' ¥ 3 & ¥ &
Target model 0.74 7 9 9 9 19

(with knowledge distillation, T = 20) '

OO 3500

A

1200 nodes @m @E 800 nodes
1200 nodes O O O O m 800 nodes

Source model Target model

25



Beyond Knowledge Distillation

* Smaller target models get advantages by following larger source models

» Useful when target and source datasets/tasks are same
* Performance may degrade when apply target dataset or task are changed

* Main challenges: what, when, and where to transfer
* Decide the form of transferring knowledge
* Decide when does transfer helps
* Decide which level representations (layers) to transfer

Algorithmic Intelligence Lab
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Attention Transfer

* Visualizing attention maps in deep CNN is an open problem.

e Recently, a number of methods was proposed to improve attention maps.
* e.g. Guided backpropagation [Springenberg et al., 2015], Grad-CAM[Selvaraju et al.,
2016].

* In CNN models, the attention maps produced by intermediate features can be
transferable knowledge.

Guided Backprop Grad-CAM Guided Grad-CAM

What color is the firehydrant?

Visualization of VQA model.

Algorithmic Intelligence Lab * source: [Selvaraju et al., 2016] 27



Attention Transfer

* Matching the attention of intermediate features [Zagoruyko et al. 2017]
* Make a 2D attention map from feature activations with attention mapping function F

C y anming.
F(Anw) = 3 [Aonol” e
c=1

C

* p > 1, feature activation A, ., € REXH*XW (C channels, spatial size H x W)
* Train the original loss with the attention map matching regularization term

Lot (0]D) = Lo (0|D) + £ Qér(t‘) z) Q% (0,2)

where @QJ. = vec(F(AZ)) and Q‘fg = vec(F(A”é)) are respectively the j-th pair
of target (student) and source (teacher) attention maps.

teacher

groupl group2 group3
attention Teacher
map
attentlon

transfer AT loss AT loss AT loss

R L )

student

Algorithmic Intelligence Lab * source: [Zagoryuko et al., 2017] 28



Attention Transfer: Experimental Results

* Attention transfer works better than original distillation methods or they can be

used together

* Hyper-parametric choices:

e Choose proper attention mapping function
* Layers to transfer the attention map

student teacher student AT | F-ActT | KD | AT+KD | teacher
NIN-thin, 0.2M NIN-wide, 1M 9.38 8.93 9.05 8.55 8.33 7.28
WRN-16-1, 0.2M | WRN-16-2, 0.7M 8.77 7.93 8.51 7.41 7.51 6.31
WRN-16-1, 0.2M | WRN-40-1, 0.6M 8.77 8.25 8.62 8.39 8.01 6.58
WRN-16-2, 0.7M | WRN-40-2, 2.2M 6.31 5.85 6.24 6.08 5.71 5.23

CIFAR-10 experiments. AT: attention transfer, F-ActT: full activation transfer, KD: knowledge
distillation AT+KD: applying AT and KD at the same time. AT+KD is best in most cases (for
student networks)

Algorithmic Intelligence Lab

type model ImageNet—CUB | ImageNet—Scenes
student | ResNet-18 28.5 28.2

KD ResNet-18 27 (-1.5) 28.1 (-0.1

AT ResNet-18 27 (-1.5) 27.1 (-1.1)
teacher | KesNet-34 20.5 20

Large-scale experiments. Using ImageNet pre-trained model, fine-
tune source model with target dataset. Then, transfer to student
model learning same target task.

29



Jacobian Matching

» Several Jacobian-based regularizations have been proposed recently

* Sobolev training [Czarnecki et al., 2017] demonstrated that using higher order
(typically 1st order) derivatives along with the targets can help training.

[Srinivas et al., 2018] showed that matching Jacobians is a special case of previous
distillation methods, when noise is added to the inputs.

 They added a new branch for distillation, and matched the output activations,
attention maps, and their Jacobians (for the largest value of an attention map).

Match with ground

truth labels (from P
& o tetdaiase)  — Lig = (1 — ) Lee(y, q) + @Lee(Pr, qr)
Student
> —> > — i ;
J J
L ’ L L | Tefeall, ~ Telea,
Input o | |
(ta.rI:g)et Match attention maps . L Vg fj (z) _ vmgfj (z)
dataset) . and their Jacobians ) Match output! Jac Ve f7 (@)l [[Vag? (@),
l activations o
Teacher " where f2 ¢’ are max points of j-th attention
—> —> —_— —> I <-- .
(Pre-trained net) maps of target and source model, respectively.

vise linear function;
e currect nypuness s enncnied with derivative information.

Algorithmic Intelligence Lab * source: [Czarnecki et al., 2017], [Srinivas et al., 2018] 30



Jacobian Matching: Experimental Results

* Matching Jacobians improves distillation performance in small data.

Distillation performance on the CIFAR100 dataset

# of Data points per class — 1 5 10 50 100 500 (full)
Cross-Entropy (CE) training 5.69 139 20.03 37.6 4492 54.28
CE + match activations 12. 13 26.97 3392 4647 50.92 56.65
E + match pbian: 23.94 2.0 4571 1.4 44

CE + match actlvatlons + Jacobians 13 78 33.39 39.55 49.49 52.43 54.57

Match activations only 10.73 2856 33.6 4573 50.15 56.59
Match {activations + Jacobians} 13.09 33.31 38.16 47.79 50.06 51.33

* Matching Jacobians improves performance of all case of transfer learning.

* None of the methods match the oracle performance of pre-trained model.

Transfer performance from Imagenet to MIT Scenes dataset

# of Data points per class — 5 10 25 50 Full
Cross-Entropy (CE) training on untrained student network 11.64 20.30 35.19 46.38 59.33
CE on pre-trained student network (Oracle) 2593 4381 57.65 64.18 7142
CE + match activations (Li & Hoiem, 2016) 17.08 27.13 45.08 5522 6522
CE + match {activations + Jacobians} 17.88 28.25 4526 56.49 66.04
E + match {activations + attention} (Zagoruyko & Komodakis, 2017 16.53 28.35 46.01 57.80 67.24
CE + match {activations + attention + Jacobians} 18.02 29.25 47.31 58.35 67.31

Algorithmic Intelligence Lab
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Variational Information Distillation for Knowledge Transfer

e [Ahn et al., 2019] maximize mutual information between source/target models
* Use the variational information maximization [Barber and Agakov, 2003]
* |nstead of matching a specific form of feature representations

variational information maximization

Teacher * Student
[2] @ Ls2] I(t;s) = H(t) — H(t|s)
[t knowwdge 1 s1] = H(t) + E; s[log p(t|s)]
estimation = H(t) + Eqs[log q(t]s)] + Es[Dkr(p(t]s)||a(t]s))]
EI(E?::@:::::::::::::J_SIO_I > H(t) + By 4 [log g(t]s)]

e Use a Gaussian distribution for modeling ¢(t|s) with heteroscedastic mean 1($)
and homoscedastic variance o (s)

tC C 2
—log q(t|s) E logo. + (e 252’h’w(8)) + constant
C

c,h,w

Algorithmic Intelligence Lab * source: [Ahn et al., 2019] 32



Variational Information Distillation for Knowledge Transfer

* Apply Variational Information Distillation (VID) to different locations

* VID-I: between intermediate layers of teacher/student networks

* VID-LP: between penultimate layers of teacher/student networks

Knowledge Distillation on CIFAR-10

M 5000 1000 500 100
Teacher 94 .26 - - -
Student 90.72 84.67 79.63 58.84
KD 9127 86.11 8223 6424
FitNet 90.64 8478 80.73 68.90
AT 91.60 87.26 84.94 73.40
NST 91.16 86.55 82.61 64.53

IVID1 91.85 89.73 88.09 81.59 |
KD + AT 91.81 8734 8501 7629
KD+ VID-I 917 8859 8653 78.48

* VID can be applied between CNNs/MLPs
* VID achieves state-of-the-art performance

compared to other MLPs on CIFAR-10

Algorithmic Intelligence Lab

Transfer learning from ImageNet to CUB200

M ~29.95 20 10 5

Student 3722 2433 1200 7.09

fine-tuning 76.69  71.00 59.25 44.07

LwF 55.18 4213 2623 1427

FitNet 66.63  56.63 46.68 31.04

AT 5462 4144 2890 16.55

NST 5501  41.87 23.76 15.63

VID-LP . 412 3920 27

VID-I 7325 67.20 _56.86 _ 46.21

LwF + FitNet 68.69 5881 48.86 31.30

VID-LP + VID-I ~ 69.71  63.94 52.87 41.12
Network | MLP-4096 MLP-2048 MLP-1024
Student 70.60 70.78 70.90
KD 70.42 70.53 70.79
FitNet 76.02 74.08 72.91
VID-I 85.18 83.47 78.57
Urban et al. [27] 74.32
Lin et al. [17] 78.62

33



Relational Knowledge Distillation

[Park et al., 2019] transfers the mutual relations of data examples
* Knowledge distillation (KD) only mimic the output of individual data point

e Author considers two types of relations: distance & angle

Distance: L2 distance

1
Yp(ti,t;) = " 1t: —t5ll5

Input :
: : e LRKD-D = Z ls (¢D(tz’a tj)a ¢D(Si> Sj))>
DNN fT‘ f_g@ fT‘ fS@ fT‘ fS@ (xiaxj)€X2
Output MEREEFECHS BRI MRS Angle: Cosine similarity
.tl & o :_;32‘\’ Va(ti by, ty) = cos Lttt = (e, e™)
g o s ij izt ks Ll
" g 052 ts él ......... 052 where e’ = ———— = .
w0 “tz - tj HQ Htk - tj “2
0 S3 0%
Point to Point Structure to Structure

ERKD—A — Z l(s(wA(tiatj?tk))lpA(SiaSjask'))a

Conventional KD Relational KD (zi,2,2)EX3

ls: feature matching loss (Huber, L2 etc.)
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Relational Knowledge Distillation: Experimental Results

* Apply three types of relational knowledge distillation (RKD)
* RKD-D: only considers distance relationship

* RKD-A: only considers angular relationship
* RKD-DA: considers both, distance and angular relationship

(ngfgg‘[ne ) | FitNet[27] | Attention [+7] | DarkRank [7] [ems—s R%l)r_s - TOE
£2 normalization O O O O O/ X O/ X O / X
ResNet18-16 37.71 42.74 37.68 46.84 46.34/48.09 4559/48.60 45.76/48.14
ResNet18-32 44.62 48.60 45.37 53.53 52.68/55.72 53.43/55.15 53.58/54.88
ResNet18-64 51.55 51.92 50.81 56.30 56.92/5827 56.77/58.44 57.01/58.68
ResNet18-128 53.92 54.52 55.03 57.17 58.31/60.31 58.41/60.92 59.69/60.67
ResNet50-512 | 6124 |

Recall@1 on CUB-200 dataset. The teacher is ResNet50-512 (model-d refers dimension)

CIFAR-100 [15] | Tiny ImageNet [40]

Baseline 71.26 54.45

~ RKD-D | 127 | 5497
RKD-DA 72.97 56.36

____HKDJ[II] | 7426 | 57.65

HKD+RKD-DA 74.66 58.15 |

FitNet [27] 70.81 55.59
FitNet+RKD-DA 72.98 55.54

~ Attention [47] | 7268 | 5551
Attention+RKD-DA 73.53 56.55
Teacher | 77.76 61.55

Algorithmic Intelligence Lab

Accuracy (%) on CIFAR-100 and Tiny ImageNet.

Teacher: ResNet-50, student: VGG11

HKD: Conventional knowledge distillation
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Learning What and Where to Transfer

* Previous methods transfer hand-crafted and fixed source knowledge

* Hand-crafted matching formulations

* E.g., KL divergence [Hinton et al., 2015] between output layers, attention map
[Zagoruyko et al. 2017] between hidden feature maps

* Hand-crafted matching connections
* Transfer on output activations of each group of residual/convolutional blocks

[Jang et al., 2019] automatically find what and where to transfer based on
meta-learning for maximizing transfer effect

Previous methods Learning What and Where to Transfer (L2T-ww)

Where to Transfer What to Transfer

[]Source L] Target ﬁ Layer [ _|Feature map

Algorithmic Intelligence Lab * source: [Jang et al., 2019] 36



Learning What and Where to Transfer

e [Jang et al., 2019] use meta-weighted feature matching for transfer

* Meta-network f decides useful channels to transfer

Weight for channel ¢

atn (0], 0™")

:HWC

Sm(.’L') = RC’XHXW

Feature maps of
mthsource layer

m,n
c

(2]

ro(T5 (€)) ey — S™ (%) eig)

L2 distance at channel ¢

" (=)

Tg(Tn(ZU)) = RCXHXWFEE
- — H Feature maps of
nthtarget layer
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Learning What and Where to Transfer

e [Jang et al., 2019] use meta-weighted feature matching for transfer

* Meta-network g decides useful pairs of source/target layers to transfer

Weight for pair (m, n)

£me(9’$,¢) — Z

wfm

AL (O, w™

(m,n)€C Transfer loss on pair (m, n)

S@) e
Target 2.1 I
Samples [ Lutn

i— ----------- M emm——e————————— ->

Tg (.’B )
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Learning What and Where to Transfer

Q) How to learn meta-networks f, g?

* [Jang et al., 2019] propose a bilevel scheme for training meta-parameters ¢ of

meta-networks f, g

3. Evaluation:

1. Knowledge transfer:fort =1, ..., T,

0111 =0, — aVo Ly (0|2, ¢) < Transfer loss

2. One-step adaption:

0T+2 = 9T-|—1 — av0£org<9T+l ’xa y)

Leta(P) = Eorg<9T+2‘xay>-l Task-specific los

4. Update ¢ based on V,Lyueta(¢) using second-order gradients

* Effective for learning ¢ with a small number of steps T
* A popular bilevel scheme [Franceschi et al., 2018] requires many steps

* Joint-learning 8 and ¢ without separate meta-learning phase

Algorithmic Intelligence Lab
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Learning What and Where to Transfer

* L2T-ww outperforms previous methods on various datasets, architectures

Source task TinyImageNet ImageNet
Target task CIFAR-100  STL-10  CUB200 MIT67  Stanford40 Stanford Dogs
Scratch 67.69+022  65.18+091 42.15+075 48911053  36.93+068 58.08+026
LwF(°] 69.23+009  68.64+058 45.52+066 53.73+214  39.73+163 66.33 1045
AT (one-to-one) 67.541040 741940220 57.74+117  59.18+157  59.291091 69.70-+0.08
LwFlL AT (one-to-one) ~ 68.75+000  75.06+057 58.90+13 61.42+168  60.20+134 72.67 +026
FMP! (single) 69.40+067  75.00+03¢ 47.60+031 55.15+093  42.93+148 66.05+076
FMB! (one-to-one) 69.97+024  76.38+118  48.93+1040 54.88+124  44.50+0.96 67.25+0s3s8
L2T-w (single) 702741000  74.35+092 51951083 60.41+037  46.25+366 69.16+070
L2T-w (one-to-one) 70.02+019  76.42+052  56.614020 59.78+100  48.19414 69.84 1145
L2T-ww (all-to-all) 70.96+061  78.31+021 65.05+119 64.85+275  63.08+0.88 78.08+0.96

* L2T-ww can aggregate multiple source knowledge (left)

* L2T-ww can transfer knowledge effectively on limited-data regime

First source

TinyImageNet (ResNet32)

Second source None TinyImageNet (ResNet20) TinyImageNet (ResNet32) CIFAR-10 (ResNet32)
Scratch 65.18+0.91 65.18+091 65.18+091 65.18+091
LwFl®] 68.64+0.58 68.564224 68.05+2.12 69.51+063

AT 74.19+022 73.24+0.12 73.78+1.16 73.99+051
LwFIol4 AT 75.06+0.57 T4.72+046 74.77 +030 74.41+151
FMB! (single) 75.00+034 75.83+056 75.99+0.11 74.60+073

FMB! (one-to-one)  76.38-+1.1s 77.45+048 77.69+0.79 77.15+041
L2T-ww (all-to-all)  78.31+0.21 79.35+0.41 79.80-+0.52 80.52+029

Algorithmic Intelligence Lab
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Contrastive Representation Distillation

e [Tian et al., 2020] transfers the output similarity of data points
* Maximize the similarity of same data point, and minimize between other points

T,

|:| .: fT(x) and £5(x;) ?s similz?r (-same sample)

— PERN— fT(x;) and f3(x;) is not similar (other N — 1 samples)
" -

Te;;her Student

e Contrastive-object maximize the mutual information between models

I(T;S) =2 1og(N) + Ey(r,s1c=1)log " (T, )] + NEy(1,s|c=0)log(1l — h* (T, 5))]

Maximize similarity Minimize similarity

e9 (1) g°(S)/7 h(T,S) € [0, 1] is a similarity measure
hT,S) = e (1) g5 (S)/7 L N Where T = fT(x;), S = fS(xj) is the representation
and g7, g° is a linear layer of teacher and student, respectively

Algorithmic Intelligence Lab * source: [Tian et al., 2020] 41



Contrastive Representation Distillation: Experimental Results

* CRD consistently outperforms previous methods on various architectures

 Visualization: difference of correlation matrices of student and teacher logits.

Teacher WRN-40-2 WRN-40-2 resnet56 resnetl10 resnetl10 resnet32x4 vggl3

Student WRN-16-2 WRN-40-1 resnet20  resnet20  resnet32  resnet8x4 vgg8
Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36
KD* 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet* 73.58 (1) 72.24() 69.21()) 68.99 () 71.06() 73.50(") 71.02(])
AT 74.08 (1) 72.77()) 70.55() 70.22() 7231() 7344 () 71.43())
SP 73.83 () 72.43(]) 69.67 () 70.04 () 72.69(]) 72.94() 72.68(])
CC 7356 (1) 72.21()) 69.63(]) 69.48 () 7148(]) 7297() 70.71(])
VID 7411 () 7330() 7038()) 70.16 () 72.61() 73.09() 71.23())
RKD 7335() 72.22(]) 69.61()) 69.25() 71.82(}) 71.90() 71.48(])
PKT 7454 () 7345() 7034() 7025() 72.61()) 73.64(]) 72.88())
AB 7250 () 72.38() 69.47 () 69.53 () 7098 () 73.17() 7094 ()
FT* 7325() 71.59() 69.84 () 70.22() 7237() 72.86() 70.58(])
FSP* 7291 () n/a 69.95()) 70.11 () 71.89(]) 72.62(l) 70.23(])
NST* 73 .68 (\\V\ 7224 (i\ 69.60 (\\V\ 69,53 (l\ 71.96 (‘I(\ 73.30 (\\V\ 71.53 (V\\
CRD 7548 (1) 7414 (1) 7116 (1) 71.46 (1) 7348 ()) 75.51() 73.94 ()
CRD+KD 75.64 (1) 74.38(1) 71.63(1) 71.56 (1) 73.75(]) 7546 () 74.29())

* CRD shows significant matching between student’s and teacher’s correlations

(a) Student: vanilla

Algorithmic Intelligence Lab

(b) Student: AT

v - 0 - . oy
A 030 g Ao e
' v 124 o Tt
| 16-T1
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‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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(c) Student: KD

wwwwwwwwwwwwwwwwwwwwwwwww

(d) Student: ours (CRD)
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3. Multi-task Learning
e Sharing architectures
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43



Algorithmic Intelligence Lab

What is Multi-task Learning?

e Definition of multi-task learning [Zhang and Yang, 2017]
* Given m learning tasks {7;}1",
* where all the tasks or a subset of them are related,

* Multi-task learning (MTL) aims to improve the learning of a model for 7;
using the knowledge contained in all or some of the m tasks

* |n the view of definition of transfer learning [Pan et al., 2010],
all learning tasks {7:}i~1 are considered as both source and target tasks

Domain D, Task 71

Domain D,,,
Task 7.,

Learn representations which
are useful for arbitrary tasks
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Cross-stitch Networks for Multi-task Learning

* Cross-stitch units [Misra et al., 2016] try to find the best shared representations
for multi-task learning

i ij
TA . [OéAA ars| |TA
1 o OB A OBB ¥
I'p IR

. xf{, ch are activation map (at location i,j) of networks for task A, B, respectively
* « is trained by backpropagation with different learning rates
* Maintain one cross-stitch unit per channel

Input

Output
Activation Maps

CI‘OSS-StltCh unlt Activation Maps convl, pooll conv2, pool2 convd conv4d conv5, pools fcb fe7 fc8

Qs g z
hared 8 - - — Z
Task A »UAA OLBA] > ’?‘aZIieA F‘; >
5< F/ E@ Cross-stitch ﬁ:@y «
”E :M & s units @ }7\ , = \ a
Shared z =
Task B as QBB (A B=—> Task B § iR —*i-
[o9)

Algorithmic Intelligence Lab * source: [Misra et al., 2016] 45



Cross-stitch Networks for Multi-task Learning

* Multi-task (Surface Normal / Segmentation) learning on NYU-v2 dataset

* Cross-stitch uses 2 convolutional networks
* Ensemble uses 4 convolutional networks (2 for each task)

* |t shows that sharing information can improve the performance

Surface Normal Segmentation
Angle Distance Within ¢°
(Lower Better) (Higher Better) (Higher Better)
Method Mean Med. 11.25 225 30 pixacc mIU fwIU
348 190 383 535 592 - - -
One-task - - - - 466 184 331
Ensemble 344 185 387 542 59.7 - - -
- - - - - 48.2 189 3338
Split conv4 347 19.1 382 534 592 478 192 338
MTL-shared 347 189 377 535 588 459 16.6 30.1
| Cross-stitch [ours] 34.1 18.2 39.0 544 60.2 472 193 34.0|

 Drawbacks

* Parameter-inefficiency because it requires one CNN per each task

Algorithmic Intelligence Lab
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K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning

One model-patch [Mudrakarta et al., 2019] for each task
* One shared base model for all tasks
* For multi-task learning, train model-patches and shared parts simultaneously
* For transfer learning, freeze the shared parts / train new model-patch only
* Multiple networks share most weights (>95% parameters)

/" Model 1 ) /" Model2 ) /Parameter \
| (et (Emehz) [ iTIN Seerver fEEEN
Task 0: Loss | i i [Task 1: Loss |
FC layer BN layer BN layer FC layer — gradients 1 Fo task O gradients
| | ) FC task 0) FC (task 1
1 FC layer FC layer BN (task 0]
RelLU RelLU FC
1 Base ) ) FC (task 1
arams.
BN layer = BN layer BN (task 0) || params. | BN (task i P .| [ BN (task 1)
) ) Convolutlon FC Convolution
\ Convolution J Convolution \ Confelihon ) TaskO Input \. Convolution ) Task 1: Input

* Two types of model-patch
* Scale-and-bias (S/B) patch: a normalization layer (e.g., BN)
* Depth-wise-convolution (DW) patch: depth-wise separable convolutional layers

Algorithmic Intelligence Lab * source: [Mudrakarta et al., 2019] 47
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K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning

* Despite using much fewer parameters, competitive performance is achieved

Table 4: Multi-task learning with MobilenetV2 on ImageNet and Places-365.

Task S/B patch + last layer | Last layer |Independently trained
Imagenet 70.2% 64.4% 71.8%
Places365 54.3% 51.4% 54.2%

# total parameters 3.97T™M 3.93M 6.05M

One patch for each task
Sharing Most weights One model for each task

n

* When transfer learning, despite fine-tuning much fewer parameters,
it achieves nontrivial performance

Fine-tuned params. | Flowers | Cars | Aircraft

| Acc. #params | Acc. #params | Acc. #params

Last laypr R4 5 208K 55 402K 459 205K
S/B + last layer 90.4 244K 81 437K 70.7 241K
S/B only (random last) | 79.5 36K 33 36K J52.3 36K
All (ours) 93.3 25M 92.3 25M 87.3 25M
All (Cui et al., 2018) 96.3 25M 91.3 25M 82.6 25M
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3. Multi-task Learning

* Loss balancing

Algorithmic Intelligence Lab
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Multi-task Learning Using Task Uncertainty

* The naive approach to combining multi objective losses is to perform a
weighted linear sum of the losses for each individual task.

['total — Zz EE’L

* [Kendall et al., 2018] proposed that homoscedastic (i.e. task-dependent)
uncertainty can be used as a weight for losses in a multi-task learning problem.

* They adapted a likelihood as below, with a noise scalar o . Note that the probability
distribution becomes uniform as o — oc.

For classification tasks p(y|f¥W (x)) = SOftmaX(a—ng(x))

For regression tasks p(y|tW (x)) = N(fW (x),0?)

* Let's assume that the total likelihood can be factorized over the each output, given
some sufficient statistics.

p(y1, - y&lfY (%) = p(y1lfV (%)) ... p(yx [£¥ (x))

Algorithmic Intelligence Lab 50



Multi-task Learning Using Task Uncertainty

* The log likelihood for output can be written as

For classification tasks  log p(y = c[fWV(x)) = SV (x) —log >, exp (%f;‘f"(X))
Las(W) = —log Softmax(y, fW (x))

For regression tasks ~ log p(y|f* (x)) &< —5=|ly — £V (x)[|* —logo
_ﬁreg<W) =y — fW(X)||2
* If there are two regression tasks,
£(W7 01, 02) - 10gp(Y17 yQ‘fW(X))

x sizllys — EV ()2 + e llyz — EV X)|1” + log 710
weighted sum

— ﬁﬁl,reg(w) + %EQ,reg(W) + log 0102

* If the 1st task is a regression task, and the 2nd one is a classification task,

‘E(W70-170-2) — _logp<y17y2 — C|fw(x)>

x 5z /[y1 = EV (X)|* +log o1 — log p(y2 = c[fW (x))

> . €xXp (i%ff,v(x))
= ﬁ |y1 —fW(X) %~ O.Lg log Softmax(ya, i (x))+log o1 +log +

2
92
D . €XP £ (x)
weighted sum

~|_1 1
Algorithmic Intelligence Lab ~ ﬁﬁl,reg (W) + U_g£2,cls (W) + log o1+ log ogp as 02 — 1. 51




Multi-task Learning Using Task Uncertainty

* In practice, the log variance s :=log o? is trained by the network .

* This term is added to weighted sum of original multi-task losses.

* In experiments, there are three tasks:
* Semantic segmentation (classification)
* Instance segmentation (regression)

* Depth regression (regression)

Ry it are fpund by grid search

Task Weights Segmentation Instance Inverse Depth

Loss Seg. Inst.  Depth IoU [%] Mean Error [px] | Mean Error [pz]
Segmentation only 1 0 0 59.4% - -
Instance only 0 1 0 - 4.61 -
Depth only 0 0 | - - 0.640
Unweighted sum of losses | 0.333 0333 0333 | 50.1% | 3.79 | 0.592
Approx. optimal weights | 0.89  0.01 0.1 | 628% | 3.61 | 0.549

2 task uncertainty weighting v 61.0% 3.42 -

2 task uncertainty weighting v v 62.7% - 0.533

2 task uncertainty weighting v - 3.54 0.539

3 task uncertainty weighting | v/ v v | 634% | 3.50 | 0.522

Algorithmic Intelligence Lab
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Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

 Attimet, the weighted average for multi-task learning = > . w; (t)L; ()

* The gradient for a task might be dominant when multi-task learning
* It depends on task difficulties, loss functions, and so on
* Q) What is correct balance for Wip

L E¥E LE"

(GN) (GN)
L. = wye |thdeplh + u kplLkp( + Whormals Lnormals Ly, = Wye pthdepth + w kplLkpt ~+ Whormals Lnormals

T T W 2T
mow e m) om e

L ~—
unbalanced grad <— T
gradients \\x N\
balanced
gradients _
with our
_ GradN lllll
gradient loss I

t
[Chen et al., 2018]

* Key Idea: If a task is not trained enough = norm of its gradient should be large

Algorithmic Intelligence Lab * source: [Chen et al., 2018] 53



Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

* Gradient norm
. Gg})( t) = [|[Vww;(t)L;(t)]|2 : gradient norm of task i
« Gw(t) =E; [G( )(t)] average gradient norm across all tasks

* Training rates for measuring current states of learning of tasks
* Inverse training rates I, (t) = L;(t )/L i(0)
« Relative inverse training rates 7;(t) = L;(t)/E;[L; ()]

* Large r;(t) = need to train more = need large gradients
* Our desired gradient norm:

G () = G (1) x [ri (1))
where « is a hyperparameter
* To balance the norms based on training rates, minimize Lgraq over w;

Lesaa(tiwi(t) = Y |G = Gw (1) x [ri(8))”

Algorithmic Intelligence Lab
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Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

* Train on NYUv2+kepoint/segmentation dataset with 3 different tasks

Algorithmu. ILEIgence Ldv

Model and Depth Seg. Normals Model and Depth Kpt. Normals
Weighting RMS Err. Err. Err. Weighting RMS Err. Err. Err.
Method (m) (100-IoU)  (1-|cos|) Method (m) (%) (1-|cos|)
VGG Backbone ResNet Backbone
Depth Only 1.038 - - Depth Only 0.725 - -
Seg. Only - 70.0 - Kpt Only - 7.90 -
Normals Only - - 0.169 Normals Only - - 0.155
Equal Weights 0.944 70.1 0.192 Equal Weights 0.697 7.80 0.172
GradNorm Static 0.939 67.5 0.171 (Kendall et al., 2017) 0.702 7.96 0.182
GradNorm o = 1.5 0.925 67.8 0.174 GradNorm Static 0.695 7.63 0.156
T GradNorm o = 1.5 0.663 732 0.155

* If using farther weights from GradNorm, then worse results are obtained

Weights during training

3.0

Task Weights w;j(t) fora=1.5
2.5

2.0

—— Keypoint Weight
1.5 Depth Weight
—— Normals Weight

1.0

0.5

Normalized Task Weights (Always Sums to 3)

wahM*hﬁ~(
Iy P I A Y s v A e M

0.0

0 5 10 15 20 25
Epoch

Performance with various weights

0 ®

20 2’ Ao e \
2 ¢ o..; M L .'.l’ * °kgee,  GradNom
23 . AR AR Pl
© :: ... e
E 8 —50 [ ] ... oo
< 3 ° o
Vi .’
cZ E LX)
£ .
E-.100{ O s
e = ¢
32 v .
N~ g rD [ ]
62
=% -150 l
o ©
20
)
z
-200 far - .
0.0 05 1.0 15 20 25 3.0 35

L, Distance to GradNorm Static Weights
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Multi-task Learning as Multi-objective Optimization

The loss function for multi-task learning is generally the weighted summation

ming Z;rzl w L+(0)

For finding weights, expensive grid search or heuristics are required
* Heuristics: [Kendall et al., 2018], [Chen et al., 2018]

Pareto optimality (multi-objective optimization formulation)
« Asolutiong dominates @ if L£;(0) < L;(0) for all tasks ¢
« Asolution §*is called Pareto optimal if there is no § that dominates 0
* The Pareto optimal solution can be considered as a solution for multi-task learning

* Q) How to find the Pareto optimal solutions?

Multiple Gradient Descent Algorithm (MGDA)

2
. T T
MINqy ..o HZt:l Vo, Lt(Osn, 0t) ‘2 Dimiar=10,2>0

* |ts solution gives Pareto stationary (necessary for optimality) solutions or a descent
direction that improves all tasks

* |t can be efficiently solved by Frank-Wolfe algorithm (detail is omitted)
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Multi-task Learning as Multi-objective Optimization

* Issue: MGDA needs to compute Vg_, L:(0sn, 0;) for each task ¢
* Linear scaling of the training time

* Solution: Use encoder-decoder architectures
* One shared encoder for all tasks
* One separate decoder for each task
* Encoder-decoder architectures are typically used for multi-task learning

Decoder 1 64 L1

Encoder O

Representations Decoder T O L

* Then, we can state an upper bound and minimize it efficiently
2 2
T T
|5 Vo, Lo 00| < |22 |, [ 0 2L0(60,0)

< 86511

Independent to oy

Algorithmic Intelligence Lab
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Multi-task Learning as Multi-objective Optimization

* 40 binary tasks on CelebA dataset (lower is better)

* This multi-objective optimization [Sener and Koltun, 2018] outperforms uniform
scaling, heuristic weights [Kendall et al., 2018], [Chen et al., 2018]

* Grid search is not available because there are too many tasks

Uniform Scaling
Kendall et al. 2018
Single Task
GradNorm

Ours

Algorithmic Intelligence Lab
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