
Algorithmic Intelligence Lab

Algorithmic Intelligence Lab

RNN Architectures

EE807: Recent Advances in Deep Learning
Lecture 4

Slide made by

Hyungwon Choi, Jongheon Jeong, and Sangwoo Mo
KAIST EE

Algorithmic Intelligence Lab

• Process a sequence of vectors by applying
recurrence formula at every time step :

Recap: RNN basics

2

New state Old state Input
vector at
time step t

Function parameterized by

*reference: http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Lab

• Simple RNN
• The state consists of a single “hidden” vector
• Vanilla RNN (or sometimes called Elman RNN)

Recap: Vanilla RNN

3*reference: http://cs231n.stanford.edu/2017/

Algorithmic Intelligence Lab

• For vanilla RNN, it is difficult to capture long-term dependency

• Vanishing gradient problem in vanilla RNN
• The gradient vanishes over time
• Which relates to optimization difficulties in CNN

Why do we develop RNN architectures?

4*source: https://mediatum.ub.tum.de/doc/673554/file.pdf

Algorithmic Intelligence Lab

• Many real-world temporal data is intrinsically long-term
• Natural language
• Speech
• Video

• In order to solve much complicated real-world problems we need a better RNN
architecture to capture long-term dependency in the data

Why do we develop RNN architectures?

5

Algorithmic Intelligence Lab

1. RNN Architectures and Comparisons
• LSTM (Long Short-Term Memory) and their variants

• GRU (Gated Recurrent Unit)
• Stacked LSTM
• Grid LSTM
• Bi-directional LSTM

2. Breakthroughs of RNNs in Machine Translation
• Sequence to Sequence Learning with Neural Networks
• Neural Machine Translation with Attention
• Google’s Neural Machine Translation (GNMT)
• Transformer (self-attention) and BERT

3. Overcoming the heavy computations of RNNs
• Convolutional Sequence to Sequence Learning
• Exploring Sparsity in Recurrent Neural Networks

Table of Contents

6

Algorithmic Intelligence Lab

1. RNN Architectures and Comparisons
• LSTM (Long Short-Term Memory) and their variants

• GRU (Gated Recurrent Unit)
• Stacked LSTM
• Grid LSTM
• Bi-directional LSTM

2. Breakthroughs of RNNs in Machine Translation
• Sequence to Sequence Learning with Neural Networks
• NMT with Attention Mechanism
• Google’s Neural Machine Translation (GNMT)
• Transformer (self-attention) and BERT

3. Overcoming the heavy computations of RNNs
• Convolutional Sequence to Sequence Learning
• Exploring Sparsity in RNNs

Table of Contents

7

Algorithmic Intelligence Lab

• Long Short-Term Memory (LSTM)
• A special type of RNN unit

• i.e., LSTM networks = RNN composed of LSTM units
• Originally proposed by [Hochreiter and Schmidhuber, 1997]

• Explicitly designed RNN to
• Capture long-term dependency
• More robust to vanishing gradient problem

• Composed of a cell, an input gate, an output gate, and a forget gate
(will be covered in detail soon)

RNN Architectures: LSTM

8*source: https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:The_LSTM_cell.png

Algorithmic Intelligence Lab

• A very old model, but why so popular?
• Popularized by series of following works

[Graves et al, 2013][Sutskever et al., 2014], ...

• Work very well in variety of problems
• Speech recognition
• Machine translation
• …

RNN Architectures: LSTM

9

Next, comparison with Vanilla RNN
*source: https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:The_LSTM_cell.png

Algorithmic Intelligence Lab

• Vanilla RNN (unrolled)

RNN Architectures: Vanilla RNN

10*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Algorithmic Intelligence Lab

• Repeating modules in Vanilla RNN contains a single layer

RNN Architectures: Vanilla RNN

11*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Algorithmic Intelligence Lab

• Repeating modules in LSTM

RNN Architectures: LSTM

12*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Layer Pointwise
operation

Vector
Transfer

concatenate Copy

Algorithmic Intelligence Lab

• The core idea behind LSTM
• Able to control how much information to preserve from previous state
• The horizontal line running through the top of the diagram

(i.e., the cell state or memory)
• Only linear interactions from the output of each “gates” (prevent vanishing gradient)
• Control how much to remove or add information to the cell state

RNN Architectures: LSTM

13*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell state

Gates : Way to optionally let
information through

Next, LSTM step-by-step computation

Algorithmic Intelligence Lab

Step 1 : Decide what information we’re going to throw away from the cell state
• A sigmoid layer called “Forget gate”
• Looks at and outputs a number between 0 and 1 for each cell state

• If 1: completely keep, if 0: completely remove

• e.g., language model trying to predict the next word based on all previous ones
• The cell state might include the gender of the present subject
• so that the correct pronouns can be used
• When we see a new subject, we want to forget the gender of the old subject

RNN Architectures: LSTM

14*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Algorithmic Intelligence Lab

Step 2 : Decide what information we’re going to store in the cell state and update
• First, a sigmoid layer called the “Input gate” decides which values to update
• Next, a tanh layer creates a vector of new candidate values

RNN Architectures: LSTM

15*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Algorithmic Intelligence Lab

Step 2 : Decide what information we’re going to store in the cell state and update
• First, a sigmoid layer called the “Input gate” decides which values to update
• Next, a tanh layer creates a vector of new candidate values

• Then, update the old cell state into the new cell state
• Multiply the old state by
• Add , new candidate values scaled by how much to update

RNN Architectures: LSTM

16*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Algorithmic Intelligence Lab

Step 3 : Decide what we’re going to output
• A sigmoid layer called “Output gate”
• First go through which decides what parts of the cell state to output
• Then, put the cell state through tanh (push the values to be between -1 and 1)

and multiply it by

RNN Architectures: LSTM

17*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Algorithmic Intelligence Lab

• Overall LSTM operations

RNN Architectures: LSTM

18

Standard LSTM

*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Next, Variants of LSTM

Algorithmic Intelligence Lab

• Gated Recurrent Unit (GRU) [Cho et.al, 2014]

• Combines the forget and input gates into a single “update gate”
• Controls the ratio of information to keep between previous state and new state

• Reset gate controls how much information to forget
• Merges the cell state and hidden state
• (+) Resulting in simpler model (less weights) than standard LSTM

RNN Architectures: GRU

19

Gated Recurrent Unit

*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Algorithmic Intelligence Lab

• Standard LSTM

• With simplified diagram
• : cell state (or memory)
• : hidden state (or output)
• Dashed line indicates identity transformation

RNN Architectures: Stacked LSTM

20*source: https://arxiv.org/pdf/1507.01526.pdf

Algorithmic Intelligence Lab

• Stacked LSTM [Graves et al, 2013]

• Adds capacity by simply stacking LSTM layers on top of each other
• Output of 1st layer LSTM goes into 2nd layer LSTM as an input
• But no vertical interactions

RNN Architectures: Stacked LSTM

21*source: https://arxiv.org/pdf/1507.01526.pdf

1st layer LSTM

2nd layer LSTM

Algorithmic Intelligence Lab

• Grid LSTM [Kalchbrenner et al., 2016]

• Extended version of stacked LSTM
• LSTM units have memory connections along depth dimension as well as temporal

dimension

RNN Architectures: Grid LSTM

22

2D Grid LSTM

*source: https://github.com/coreylynch/grid-lstm

Performance on wikipedia dataset
(lower the better)

Algorithmic Intelligence Lab

• What is the limitation of all previous models?
• They learn representations only from previous time steps
• Useful to learn future time steps in order to

• Better understand the context
• Eliminate ambiguity

• Example
• “He said, Teddy bears are on sale”
• “He said, Teddy Roosevelt was a great President”
• In above two sentences, only seeing previous words is not enough to understand

the sentence

• Solution
• Also look ahead è Bidirectional RNNs

RNN Architectures: Limitation

23*reference: https://towardsdatascience.com/introduction-to-sequence-models-rnn-bidirectional-rnn-lstm-gru-73927ec9df15

Algorithmic Intelligence Lab

• We can also extend RNNs into bi-directional models
• The repeating blocks could be any types of RNNS (Vanilla RNN, LSTM, or GRU)
• The only difference is that there are additional paths from future time steps

RNN Architectures: Bidirectional RNNs

24

Next, Comparison of Variants
*reference: https://towardsdatascience.com/introduction-to-sequence-models-rnn-bidirectional-rnn-lstm-gru-73927ec9df15

Algorithmic Intelligence Lab

• Which architecture is the best?
• There is no clear winner; it depends largely on the task
• More empirical exploration of RNNs can be found here [Jozefowicz et al., 2015]

RNN Architectures: Comparisons

25

Model Advantages Disadvantages

LSTM

- Capable of modeling long-term sequential
dependencies better than simple RNN
- More robust to vanishing gradients than
simple RNN

- Increases computational complexity
- Higher memory requirement than RNN due to
multiple memory cells

Stacked LSTM - Models long-term sequential dependencies
due to deeper architecture

- Higher memory requirement and
computational complexity than LSTM due to
stack of LSTM cells

Bidirectional LSTM - Predicts both in the future and past context
of the input sequence better than LSTM - Increases computational complexity than LSTM

GRU
- Capable of modeling long-term sequential
dependencies
- Less memory requirements than LSTM

- Higher computational complexity and memory
requirements than RNN due to multiple hidden
state vectors

Grid LSTM - Models multidimensional sequences with
increased grid size

- Higher memory requirement and
computational complexity than LSTM due to
multiple recurrent connections

*source: https://arxiv.org/pdf/1801.01078.pdf

Algorithmic Intelligence Lab

1. RNN Architectures and Comparisons
• LSTM (Long Short-Term Memory) and their variants

• GRU (Gated Recurrent Unit)
• Stacked LSTM
• Grid LSTM
• Bi-directional LSTM

2. Breakthroughs of RNNs in Machine Translation
• Sequence to Sequence Learning with Neural Networks
• Neural Machine Translation with Attention
• Google’s Neural Machine Translation (GNMT)
• Transformer (self-attention) and BERT

3. Overcoming the heavy computations of RNNs
• Convolutional Sequence to Sequence Learning
• Exploring Sparsity in RNNs

Table of Contents

26

Algorithmic Intelligence Lab

• What is machine translation?
• Task of automatically converting source text in one language to another language
• No single answer due to ambiguity/flexibility of human language (challenging)

• Classical machine translation methods
• Rule-based machine translation (RBMT)
• Statistical machine translation (SMT; use of statistical model)

• Neural Machine Translation (NMT)
• Use of neural network models to learn a statistical model for machine translation

Machine Translation

27

Algorithmic Intelligence Lab

• Difficulties in Neural Machine Translation
• Intrinsic difficulties of MT (ambiguity of language)
• Variable length of input and output sequence (difficult to learn a single model)

• The core idea of sequence-to-sequence model [Sutskever et al., 2014]

• Encoder-Decoder architecture (input à vector à output)
• Use one RNN network (Encoder) to read input sequence at a time to obtain large

fixed-length vector representation
• Use another RNN (Decoder) to extract the output sequence from that vector

Breakthroughs in NMT: Sequence-to-Sequence Learning

28

Input sequence “ABC” and output sequence “WXYZ”

Algorithmic Intelligence Lab

• Encoder
• Reads the input sentence, a sequence of vectors into a vector
• Use RNNs such that and , where and

are some non-linear functions
• LSTMs as and (in the original seq2seq model)

• Decoder
• Trained to predict the next word given the context vector and the previously

predicted words
• Defines a probability over the translation by decomposing the joint probability into

the ordered conditionals:

where
• The conditional probability is modeled as

where is a nonlinear, potentially multi-layered function that outputs the probability
of and is the hidden state of the RNN

Breakthroughs in NMT: Sequence-to-Sequence Learning

29

Algorithmic Intelligence Lab

• Example of the seq2seq model
• For English à French task
• With 2-layer LSTM for encoder and encoder

Breakthroughs in NMT: Sequence-to-Sequence Learning

30*source: https://towardsdatascience.com/seq2seq-model-in-tensorflow-ec0c557e560f

Algorithmic Intelligence Lab

• Results on WMT’14 English to French dataset
• Measure : BLEU(Bilingual Evaluation Understudy) score

• Widely used quantitative measure for MT task
• On par with the state-of-the-art SMT system (without any neural network)
• Achieved better results than the previous baselines

• Simple but very powerful in MT task

Breakthroughs in NMT: Sequence-to-Sequence Learning

31*source: http://papers.nips.cc/paper/5346-sequence-to-sequence-learning

Next, Seq2seq with attention

Algorithmic Intelligence Lab

• NMT by Joint Learning to Align and Translate [Bahdanau et al., 2015]

• Problem of original encoder-decoder (or seq2seq) model
• Need to compress all the necessary information of a source sentence into a

fixed-length vector
• Very difficult to cope with long sentences, especially when the test sequence is

longer than the sentences in the training corpus

• Extension of encoder-decoder model + attention mechanism
• Encode input sentence into a sequence of vectors
• And chooses a subset of these vectors adaptively while decoding the translation
• Frees the neural network model from having to squash all the information into a

single fixed-length vector

Breakthroughs in NMT: Joint Learning to Align and Translate

32

Algorithmic Intelligence Lab

• Define each conditional probability as:

where is an RNN hidden state for time computed by

• Distinct context vector for each target word

• The context vector is computed as weighted sum of

• The weight of each is computed by

where is an alignment model which
scores how well the inputs around position and the
output position match.

Breakthroughs in NMT: Joint Learning to Align and Translate

33

Illustration of the model

Algorithmic Intelligence Lab

• Graphical illustration of seq2seq with attention
• e.g., Chinese to English

Breakthroughs in NMT: Joint Learning to Align and Translate

34*source: https://google.github.io/seq2seq/

Algorithmic Intelligence Lab

• Results
• RNNsearch (proposed) is better than RNNenc (vanilla seq2seq)
• RNNsearch-50: model trained with sentences of length up to 50 words

Breakthroughs in NMT: Joint Learning to Align and Translate

35Sample alignment results
Next, Google’s NMT

Algorithmic Intelligence Lab

• Google’s NMT [Wu et al., 2016]
• Improves over previous NMT systems on accuracy and speed
• 8-layer LSTMS for encoder/decoder with attention
• Achieve model parallelism by assigning each LSTM layer into different GPUs
• Add residual connections in standard LSTM
• … and lots of domain-specific details to apply it to production model

Google’s Neural Machine Translation (GNMT)

36

Algorithmic Intelligence Lab

• Adding residuals connections in stacked LSTM
• In practice, LSTM has also problem of vanishing gradient when stacking more layers
• Empirically, 4-layer works okay, 6-layer has problem, 8-layer does not work at all
• Apply residual connections with 8-layer stacked LSTM worked best

Google’s Neural Machine Translation (GNMT)

37

Standard stacked LSTM Stacked LSTM with residual connections

Algorithmic Intelligence Lab

• Results
• State-of-the-art results on various MT datasets
• Also comparable with Human expert

Google’s Neural Machine Translation (GNMT)

38

GNMT with different configurations

Algorithmic Intelligence Lab

• Further improved in [Johnson et al., 2016]

• Extensions to make this model to be Multilingual NMT system by adding
artificial token to indicate the required target language
• e.g., the token “<2es>” indicates that the target sentence is in Spanish
• Can do multilingual NMT using a single model w/o increasing the parameters

Google’s Multilingual Neural Machine Translation (Multilingual GNMT)

39

Next, Transformer (self-attention)

Algorithmic Intelligence Lab

Transformer (Self-attention)

• Motivation:
• Prior works use RNN/CNN to solve sequence-to-sequence problems
• Attention already handles arbitrary length of sequences, easy to parallelize, and

not suffer from forgetting problems… Why should one use RNN/CNN modules?

• Idea:
• Design architecture only using attention modules
• To extract features, the authors use self-attention, that features attend on itself

• Self-attention has many advantages over RNN/CNN blocks

40

𝑛: sequence length, 𝑑: feature dimension, 𝑘: (conv) kernel size, 𝑟: window size to consider
Maximum path length: maximum traversal between any two input/outputs (lower is better)

*Cf. Now self-attention is widely used in other architectures, e.g., CNN [Wang et al., 2018] or GAN [Zhang et al., 2018]

Algorithmic Intelligence Lab

Transformer (Self-attention)

• Multi-head attention: The building block of the Transformer
• In previous slide, we introduced additive attention [Bahdanau et al., 2015]
• Here, the context vector is a linear combination of

• weight 𝛼',), a function of inputs [𝑥)] and output 𝑦'
• and input hidden states [ℎ)]

• In general, attention is a function of key 𝐾, value 𝑉, and query 𝑄
• key [𝑥)] and query 𝑦' defines weights 𝛼',), which are applied to value [ℎ)]
• For sequence length 𝑇 and feature dimension 𝑑, (𝐾, 𝑉, 𝑄) are 𝑇×𝑑, 𝑇×𝑑, and 1×𝑑 matrices

• Transformer use scaled dot-product attention

• In addition, transformer use multi-head attention,
ensemble of attentions

41

Algorithmic Intelligence Lab

Transformer (Self-attention)

• Transformer:
• The final transformer model is built upon the (multi-head) attention blocks

• First, extract features with self-attention (see lower part of the block)

• Then decode feature with usual attention (see middle part of the block)

• Since the model don’t have a sequential structure,
the authors give position embedding (some handcrafted
feature that represents the location in sequence)

42

Algorithmic Intelligence Lab

Transformer (Self-attention)

• Results: Transformer architecture shows good performance for languages

43

Next, BERT

Algorithmic Intelligence Lab

BERT (Bidirectional Encoder Representations from Transformers)

• Motivation:
• Many success of CNN comes from ImageNet-pretrained networks
• Can train a universal encoder for natural languages?

• Method:
• Pretrain a bidirectional transformer with two self-supervised tasks

• Tasks: masked language model, next sentence prediction
• Cf. While BERT is encoder-only, one can also train encoder-decoder (e.g., GPT-2)

• Use fixed BERT encoder, and fine-tune simple 1-layer decoder for each task

44

Sentence classification Question answering

Algorithmic Intelligence Lab

BERT (Bidirectional Encoder Representations from Transformers)

• Results:
• Even without task-specific complex architectures, BERT achieves SOTA for 11 NLP

tasks, including classification, question answering, tagging, etc.

45

Algorithmic Intelligence Lab

1. RNN Architectures and Comparisons
• LSTM (Long Short-Term Memory) and their variants

• GRU (Gated Recurrent Unit)
• Stacked LSTM
• Grid LSTM
• Bi-directional LSTM

2. Breakthroughs of RNNs in Machine Translation
• Sequence to Sequence Learning with Neural Networks
• Neural Machine Translation with Attention
• Google’s Neural Machine Translation (GNMT)
• Transformer (self-attention) and BERT

3. Overcoming the heavy computations of RNNs
• Convolutional Sequence to Sequence Learning
• Exploring Sparsity in RNNs

Table of Contents

46

Algorithmic Intelligence Lab

• The most fundamental problem of RNNs
• Require heavy computations (slow)
• Especially when we stack multiple layers
• GNMT solved this by model parallelism

• How to alleviate this issue in terms of architectures?
• CNN encoder
• CNN encoder + decoder
• Optimizing RNNs (pruning approach)

Problem in RNNs

47

Algorithmic Intelligence Lab

• A convolutional encoder model for Neural Machine Translation [Gehring et al., 2016]
• CNN encoder + RNN decoder
• Replace the RNN encoder with stack of 1-D convolutions with nonlinearities

• Two different CNNs for attention score computation and conditional input aggregation
• More parallelizable than using RNN

Solution 1-1. CNN encoder

48

Algorithmic Intelligence Lab

• Convolutional sequence to sequence learning [Gehring et al., 2017]
• CNNs for both encoder and encoder

Solution 1-2. CNN encoder + decoder

49

Performance

Generation speed

Algorithmic Intelligence Lab

• Exploring Sparsity in Recurrent Neural Networks [Narang et al., 2017]
• Pruning RNNs to improve inference time with marginal performance drop

• Simple heuristics to calculate the threshold
• And apply that threshold to every binary mask corresponds to each weight

• Reduces the size of the model by 90%
• Significant inference time speed-up using sparse matrix multiply around to

Solution 2. Optimizing RNNs

50GEMM (General Matrix-Matrix Multiply) times comparison

Algorithmic Intelligence Lab

• RNN architectures have developed in a way that
• Can better model long-term dependency
• Robust to vanishing gradient problems
• While having less memory or computational costs

• Breakthroughs in machine translation
• Seq2seq model with attention
• Transformer with self-attention (and BERT)

• Alleviating the problem of RNNs’ heavy computations
• Convolutional sequence to sequence learning
• Pruning approach

• There are various applications combining RNNs with other networks
• Image caption generation, visual question answering(VQA), etc.
• Will be covered in later lectures

Summary

51

Algorithmic Intelligence Lab

[Hochreiter and Schmidhuber, 1997] "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.
link: http://www.bioinf.jku.at/publications/older/2604.pdf

[Graves et al., 2005] "Framewise phoneme classification with bidirectional LSTM and other neural network
architectures." Neural Networks 18.5-6 (2005): 602-610.
Link: ftp://ftp.idsia.ch/pub/juergen/nn_2005.pdf

[Graves et al, 2013] "Speech recognition with deep recurrent neural networks." Acoustics, speech and signal
processing (icassp), 2013 ieee international conference on. IEEE, 2013.
Link: https://www.cs.toronto.edu/~graves/icassp_2013.pdf

[Cho et al., 2014] "Learning phrase representations using RNN encoder-decoder for statistical machine
translation." arXiv preprint arXiv:1406.1078 (2014).
Link: https://arxiv.org/pdf/1406.1078v3.pdf

[Sutskever et al., 2014] "Sequence to sequence learning with neural networks." NIPS 2014.
link : http://papers.nips.cc/paper/5346-sequence-to-sequence-learnin

[Sutskever et al., 2014] "Sequence to sequence learning with neural networks.“ NIPS 2014.

[Bahdanau et al., 2015] “"Neural machine translation by jointly learning to align and translate.“, ICLR 2015
Link: https://arxiv.org/pdf/1409.0473.pdf

[Jozefowicz et al., 2015] "An empirical exploration of recurrent network architectures." ICML 2015.
Link: http://proceedings.mlr.press/v37/jozefowicz15.pdf

[Bahdanau et al., 2015] Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning
to align and translate." ICLR 2015
link : https://arxiv.org/pdf/1409.0473.pdf

References

52

http://www.bioinf.jku.at/publications/older/2604.pdf
ftp://ftp.idsia.ch/pub/juergen/nn_2005.pdf
https://www.cs.toronto.edu/~graves/icassp_2013.pdf
https://arxiv.org/pdf/1406.1078v3.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learnin
https://arxiv.org/pdf/1409.0473.pdf
http://proceedings.mlr.press/v37/jozefowicz15.pdf
https://arxiv.org/pdf/1409.0473.pdf

Algorithmic Intelligence Lab

[Kalchbrenner et al., 2016] "Grid long short-term memory." ICLR 2016
Link: https://arxiv.org/pdf/1507.01526.pdf

[Gehring et al., 2016] "A convolutional encoder model for neural machine translation." arXiv preprint
arXiv:1611.02344 (2016).
Link: https://arxiv.org/pdf/1611.02344.pdf

[Wu et al., 2016] "Google's neural machine translation system: Bridging the gap between human and machine
translation." arXiv preprint arXiv:1609.08144 (2016).
link: https://arxiv.org/pdf/1609.08144.pdf

[Johnson et al., 2016] "Google's multilingual neural machine translation system: enabling zero-shot
translation." arXiv preprint arXiv:1611.04558 (2016).
Link: https://arxiv.org/pdf/1611.04558.pdf

[Gehring et al., 2017] "Convolutional sequence to sequence learning." arXiv preprint arXiv:1705.03122 (2017).
Link: https://arxiv.org/pdf/1705.03122.pdf

[Narang et al., 2017] "Exploring sparsity in recurrent neural networks.“, ICLR 2017
Link: https://arxiv.org/pdf/1704.05119.pdf

[Fei-Fei and Karpathy, 2017] “CS231n: Convolutional Neural Networks for Visual Recognition”, 2017. (Stanford
University)
link : http://cs231n.stanford.edu/2017/

[Salehinejad et al., 2017] "Recent Advances in Recurrent Neural Networks." arXiv preprint arXiv:1801.01078 (2017).
Link: https://arxiv.org/pdf/1801.01078.pdf

References

53

https://arxiv.org/pdf/1507.01526.pdf
https://arxiv.org/pdf/1611.02344.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1611.04558.pdf
https://arxiv.org/pdf/1705.03122.pdf
https://arxiv.org/pdf/1704.05119.pdf
http://cs231n.stanford.edu/2017/
https://arxiv.org/pdf/1801.01078.pdf

