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Recap: RNN basics

* Process a sequence of vectors by applying
recurrence formula at every time step :

h,
@xh
—_ ° @hh
ht — f(ht—lyxta@) {  fo
New state Old state Input
vector at
time step t

Function parameterized by @
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Recap: Vanilla RNN

e Simple RNN
* The state consists of a single “hidden” vector h;

* Vanilla RNN (or sometimes called ElIman RNN)
h; = f(ht—laxt§ @) Ony
| h;
@:ph

h; = tanh(@hhht_l -+ @xhxt)

fe
Yt — @hyht ‘
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Why do we develop RNN architectures?

* For vanilla RNN, it is difficult to capture long-term dependency

* Vanishing gradient problem in vanilla RNN
* The gradient vanishes over time
* Which relates to optimization difficulties in CNN
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Why do we develop RNN architectures?

* Many real-world temporal data is intrinsically long-term
* Natural language
* Speech
* Video

* In order to solve much complicated real-world problems we need a better RNN
architecture to capture long-term dependency in the data
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RNN Architectures: LSTM

* Long Short-Term Memory (LSTM)
e A special type of RNN unit
* j.e., LSTM networks = RNN composed of LSTM units
* Originally proposed by [Hochreiter and Schmidhuber, 1997]
* Explicitly designed RNN to
* Capture long-term dependency
* More robust to vanishing gradient problem

* Composed of a cell, an input gate, an output gate, and a forget gate
(will be covered in detail soon)
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RNN Architectures: LSTM

* A very old model, but why so popular?

* Popularized by series of following works
[Graves et al, 2013][Sutskever et al., 2014], ...

* Work very well in variety of problems
e Speech recognition
* Machine translation
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Next, comparison with Vanilla RNN
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RNN Architectures: Vanilla RNN

e Vanilla RNN (unrolled)
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RNN Architectures: Vanilla RNN

* Repeating modules in Vanilla RNN contains a single layer

h, = tanh(@hhht_l —+ @xhxt)
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RNN Architectures: LSTM

* Repeating modules in LSTM 4 N
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RNN Architectures: LSTM

* The core idea behind LSTM
* Able to control how much information to preserve from previous state

* The horizontal line running through the top of the diagram
(i.e., the cell state or memory)
* Only linear interactions from the output of each “gates” (prevent vanishing gradient)
e Control how much to remove or add information to the cell state
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Next, LSTM step-by-step computation

Algorithmic Intelligence Lab *reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 13



RNN Architectures: LSTM

Step 1 : Decide what information we’re going to throw away from the cell state
* Asigmoid layer called “Forget gate” f;

* Looks at h;_1,x; and outputs a number between 0 and 1 for each cell state C};_1
* If 1: completely keep, if 0: completely remove

* e.g., language model trying to predict the next word based on all previous ones
* The cell state might include the gender of the present subject
* so that the correct pronouns can be used

* When we see a new subject, we want to forget the gender of the old subject

fe=0Wyg - [h—1, 2] + bf)
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RNN Architectures: LSTM

Step 2 : Decide what information we’re going to store in the cell state and update
* First, a sigmoid layer called the “Input gate” 2; decides which values to update
* Next, a tanh layer creates a vector of new candidate values C}

it = o (Wi - [hi—1,2¢] + b;)

T |C’t ét = tanh(WC . [ht—17 CEt] -+ bC)

Tt
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RNN Architectures: LSTM

Step 2 : Decide what information we’re going to store in the cell state and update
* First, a sigmoid layer called the “Input gate” 2; decides which values to update
* Next, a tanh layer creates a vector of new candidate values C}

* Then, update the old cell state C;_; into the new cell state C}
¢ Multiply the old state by f:
* Add i; x C';, new candidate values scaled by how much to update

Ci—1 _ Ct 1 = U<Wz‘ : [ht—la xt] + bi)

X +
ftT Zt’—~¥a ét = tanh(We¢ - [he—1, 2] + bc)

Cy = fex Cr_1 + iy x C,

)
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RNN Architectures: LSTM

Step 3 : Decide what we’re going to output
* Asigmoid layer called “Output gate” o;

e First go through o: which decides what parts of the cell state to output

* Then, put the cell state C}; through tanh (push the values to be between -1 and 1)
and multiply it by o

Ot = U(Wo ) [ht—laxt] + bo)

ht = Ot * tanh(Ct)
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RNN Architectures: LSTM

e Overall LSTM operations

he a ft =o0(Wg - [hi—1, 2] + by)
Coa (. ~ TN o if = o(Wi - [hi—1,2¢] + bi)
- 5 CtaniD - Ct — tanh(WC . [ht_l,:ct] -+ bC)
Je| i - Ot(X) . 3
flt Ct:ft*ct_1+lt*ct
Ol|0]| | tan o
N e e el 0p = 0(Wo « [hy—1, 4] + bo)

S
g

hy = o4 * tanh(C})

Standard LSTM

Next, Variants of LSTM
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RNN Architectures: GRU

* Gated Recurrent Unit (GRU) [cho et.al, 2014]
* Combines the forget and input gates into a single “update gate” =:
* Controls the ratio of information to keep between previous state and new state
* Reset gate r; controls how much information to forget
* Merges the cell state C; and hidden state h;
* (+) Resulting in simpler model (less weights) than standard LSTM

hy
hi_1 a \’\ hy /t = U(Wz . [ht—laxt])
Q @ >
& & ! re = o (W - [he-1, 1))
r Z }Zt -
| trlf tflf tanh hy = tanh(W - [ry x hy_1, 2¢])
xt\ - / ht:(l—zt)*ht_l—i—zt*i{t

Gated Recurrent Unit

*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 19



RNN Architectures: Stacked LSTM

* Standard LSTM

hi 4 Jt = U(Wf - he—1, 2] + bf)
Co1 ( N ¢ i = (Wi - [hi—1, 2¢] + b;)
@ Y || C, = tanh(We - [hy—1, 2¢] + be)
ft i . Ot(X) ) ~
h ol|l|o tan(}.;’lt o h Cy = ft * Cp—1 + i % Cy
t—1 \I [ 1 I I / t: 0, = O(Wo . [ht—laxt] + bo)
Tt ht = Ot * tanh(C’t)

* With simplified diagram

* (' :cell state (or memory) .

* h :hidden state (or output)

* Dashed line indicates identity transformation b
t_

T
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RNN Architectures: Stacked LSTM

e Stacked LSTM [Graves et al, 2013]
* Adds capacity by simply stacking LSTM layers on top of each other
» Qutput of 15t [ayer LSTM goes into 2"d layer LSTM as an input
e But no vertical interactions

2nd layer LSTM

15t layer LSTM

Algorithmic Intelligence Lab *source: https://arxiv.org/pdf/1507.01526.pdf 21



RNN Architectures: Grid LSTM

e Grid LSTM [Kalchbrenner et al., 2016]
e Extended version of stacked LSTM

e LSTM units have memory connections along depth dimension as well as temporal

dimension

2D Grid LSTM

Algorithmic Intelligence Lab

Validation Loss

—— Stacked

LSTM, 3
1.4 layers
—— Stacked
LSTM 6
1.3 layers
Grid LSTM,
3 layers
1.2 —— Grid LSTM,
6 layers
1.1
1
10000 30000 50000 70000 90000
Epoch
| BPC | Parameters | Alphabet Size | Test data
Stacked LSTM (Graves, 2013) 1.67 27TM 205 last 4AMB
MRNN (Sutskever et al., 2011) | 1.60 49M 86 last I0MB
GFRNN (Chung et al., 2015) 1.58 20M 205 last SMB
Tied 2-LSTM 1.47 16.8M 205 last SMB

Performance on wikipedia dataset
(lower the better)

*source: https://github.com/coreylynch/grid-Istm 22



RNN Architectures: Limitation

* What is the limitation of all previous models?
* They learn representations only from previous time steps

* Useful to learn future time steps in order to

e Better understand the context
* Eliminate ambiguity

* Example
* “He said, Teddy bears are on sale”
* “He said, Teddy Roosevelt was a great President”

* |In above two sentences, only seeing previous words is not enough to understand
the sentence

e Solution
* Also look ahead =2 Bidirectional RNNs

Algorithmic Intelligence Lab  *reference: https://towardsdatascience.com/introduction-to-sequence-models-rnn-bidirectional-rnn-Istm-gru-73927ec9df15 23



RNN Architectures: Bidirectional RNNs

* We can also extend RNNs into bi-directional models
* The repeating blocks A could be any types of RNNS (Vanilla RNN, LSTM, or GRU)
* The only difference is that there are additional paths from future time steps

e L T B @

o @

@
@
@

Next, Comparison of Variants

Algorithmic Intelligence Lab  *reference: https://towardsdatascience.com/introduction-to-sequence-models-rnn-bidirectional-rnn-Istm-gru-73927ec9df15 24



RNN Architectures: Comparisons

* Which architecture is the best?
* There is no clear winner; it depends largely on the task

* More empirical exploration of RNNs can be found here [Jozefowicz et al., 2015]

Model Advantages Disadvantages
- Capable of modeling long-term sequential . .
dependencies better than simple RNN - Increases computational complexity

LSTM P P - Higher memory requirement than RNN due to

- More robust to vanishing gradients than
simple RNN

multiple memory cells

Stacked LSTM

- Models long-term sequential dependencies
due to deeper architecture

- Higher memory requirement and
computational complexity than LSTM due to
stack of LSTM cells

Bidirectional LSTM

- Predicts both in the future and past context
of the input sequence better than LSTM

- Increases computational complexity than LSTM

- Capable of modeling long-term sequential

- Higher computational complexity and memory

GRU dependencies requirements than RNN due to multiple hidden
- Less memory requirements than LSTM state vectors
- . . - Higher memory requirement and
- Model I I h .
Grid LSTM odels multidimensional sequences wit computational complexity than LSTM due to

increased grid size

multiple recurrent connections

*source: https://arxiv.org/pdf/1801.01078.pdf 25
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Machine Translation

* What is machine translation?
* Task of automatically converting source text in one language to another language
* No single answer due to ambiguity/flexibility of human language (challenging)

English Spanish French Detect language ~ - Spanish English Romanian ~
"

{=
B

e Classical machine translation methods
* Rule-based machine translation (RBMT)
 Statistical machine translation (SMT; use of statistical model)

* Neural Machine Translation (NMT)
e Use of neural network models to learn a statistical model for machine translation

Algorithmic Intelligence Lab

27



Breakthroughs in NMT: Sequence-to-Sequence Learning

 Difficulties in Neural Machine Translation
* Intrinsic difficulties of MT (ambiguity of language)
* Variable length of input and output sequence (difficult to learn a single model)

* The core idea of sequence-to-sequence model [Sutskever et al., 2014]
* Encoder-Decoder architecture (input = vector = output)

* Use one RNN network (Encoder) to read input sequence at a time to obtain large
fixed-length vector representation

* Use another RNN (Decoder) to extract the output sequence from that vector
W
T T T

A B C <EOS> W

<EOS>

» X

» N
—>

l
l
l

X —» > <
>
—>

Input sequence “ABC” and output sequence “WXYZ”

Algorithmic Intelligence Lab
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Breakthroughs in NMT: Sequence-to-Sequence Learning

* Encoder

* Reads the input sentence, a sequence of vectors x = (x1,...,x7) into a vector ¢

e Use RNNssuch that hy = f(z¢,ht—1) and ¢ = q({h1,...,hr}) , where f and ¢
are some non-linear functions

* LSTMsas f and q({h1,...,hr}) = hr (in the original seq2seq model)

 Decoder

* Trained to predict the next word y:/ given the context vector ¢ and the previously
predicted words {¥1,---,¥r—1}

* Defines a probability over the translation y by decomposing the joint probability into

the ordered conditionals:
T

p(y) = Hp(yt\{yla o Yr-1},0),

t=1
where 'y = (y1,-..,97).
* The conditional probability is modeled as
p(yt‘{yla c o 7yt’—1}7 C) — g(yt—la St C)a

where ¢ is a nonlinear, potentially multi-layered function that outputs the probability
of ¥+ and s; is the hidden state of the RNN

Algorithmic Intelligence Lab 29



Breakthroughs in NMT: Sequence-to-Sequence Learning

* Example of the seq2seq model
* For English = French task
e With 2-layer LSTM for encoder and encoder

target output words

\

A

Je suis étudiant </s> Iloss layer

projection layer

> > > i I i i Ihidden layer 2
3 3 = Ihidden layer 1

embedding layer

| am a student <s> suns etudlant
encoding decodmg

Algorithmic Intelligence Lab *source: https://towardsdatascience.com/seq2seq-model-in-tensorflow-ecOc557e560f 30



Breakthroughs in NMT: Sequence-to-Sequence Learning

e Results on WMT’14 English to French dataset
* Measure : BLEU(Bilingual Evaluation Understudy) score
* Widely used quantitative measure for MT task
e On par with the state-of-the-art SMT system (without any neural network)
* Achieved better results than the previous baselines

Method test BLEU score (ntst14)
Baseline System [29] 33.30
Cho et al. [5] 34.54
State of the art [9] 37.0
Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
| Oracle Rescoring of the Baseline 1000-best lists | ~45

* Simple but very powerful in MT task

Next, Seq2seq with attention

Algorithmic Intelligence Lab *source: http://papers.nips.cc/paper/5346-sequence-to-sequence-learning 31



Breakthroughs in NMT: Joint Learning to Align and Translate

* NMT by Joint Learning to Align and Translate [Bahdanau et al., 2015]

* Problem of original encoder-decoder (or seq2seq) model
* Need to compress all the necessary information of a source sentence into a
fixed-length vector

* Very difficult to cope with long sentences, especially when the test sequence is
longer than the sentences in the training corpus

e Extension of encoder-decoder model + attention mechanism
* Encode input sentence into a sequence of vectors
* And chooses a subset of these vectors adaptively while decoding the translation

* Frees the neural network model from having to squash all the information into a
single fixed-length vector

32



Breakthroughs in NMT: Joint Learning to Align and Translate

Define each conditional probability as:
pwiliyi, - yi-1}, %) = g(Yi-1, 86, ¢:),

where s; is an RNN hidden state for time ¢ computed by s;

 Distinct context vector c¢; for each target word v;

* The context vector ¢; is computed as weighted sum of h;
T
C; — Z aijhjo
j=1

* The weight «i; of each h; is computed by

exp(e;;)

Oéij

= f(Si—l,yz'—hCi)-

o> — — —
- — o
h, 1 h, [ h, hy

S iy exp(en)

where e€;; = a(si—1, ;) is an alignment model which
scores how well the inputs around position; and the
output position : match.

Algorithmic Intelligence Lab
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X X X X

[llustration of the model
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Breakthroughs in NMT: Joint Learning to Align and Translate

e Graphical illustration of seq2seq with attention
* e.g., Chinese to English

l 1 | l | | !

Encoder €@ |/ €1 |/ €2 |/ €3 |/ €4 |/ €5 |—/>| e
Decoder do _— d; —_— dz S da
l l ! !

Algorithmic Intelligence Lab *source: https://google.github.io/seq2seq/ 34



Breakthroughs in NMT: Joint Learning to Align and Translate

e Results

* RNNsearch (proposed) is better than RNNenc (vanilla seq2seq)

* RNNsearch-50: model trained with sentences of length up to 50 words

BLEU score

L
accord

sur

la

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>

30 T T
25 i
20 by ; :
15
10Hl— RNNsearch-50|f................ RTINSO \\\ AAAAAAAAAAAA
----- RNNsearch-30|f g R
5H = = RNNenc-50  foooooeieiiinnnn ................................. o
- RNNenc-30 : b
(] 1 l 1 l
0 10 20 30 10 50 60
Sentence length
] 52 = g
£ o E - 2 A ] @
g 825,22 3o T £ £
Egsez8féecis ¥ S 3,.88 .s8 ¢
=G8E8E55EGuE28%60

(a)

1l
convient
de

noter
que

I
environnement
marin

est

le

moins

connu

de
I
environnement

<end>

(b)

Sample alighment results

<end>

Next, Google’s NMT
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Google’s Neural Machine Translation (GNMT)

* Google’s NMT [Wu et al., 2016]
* Improves over previous NMT systems on accuracy and speed
8-layer LSTMS for encoder/decoder with attention
Achieve model parallelism by assigning each LSTM layer into different GPUs
Add residual connections in standard LSTM
... and lots of domain-specific details to apply it to production model

Y; —>y2—> e g

8§Iayers
‘ GPU3
GPU2 GPU3
GPU2 GPU2
GPU1 GPU1
i

Algorithmic Intelligence Lab
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Google’s Neural Machine Translation (GNMT)

e Adding residuals connections in stacked LSTM
* |n practice, LSTM has also problem of vanishing gradient when stacking more layers
* Empirically, 4-layer works okay, 6-layer has problem, 8-layer does not work at all
* Apply residual connections with 8-layer stacked LSTM worked best

Standard stacked LSTM Stacked LSTM with residual connections

Algorithmic Intelligence Lab 37



Google’s Neural Machine Translation (GNMT)

e Results

e State-of-the-art results on various MT datasets

e Also comparable with Human expert

Table 5: Single model results on WMT En—De (newstest2014)

Table 10: Mean of side-by-side scores on production data

PBMT GNMT Human

Relative
Improvement

Model BLEU CPU decoding time
per sentence (s)

Word ~ 23.12 0.2972

Character (512 nodes)  22.62 0.8011

WPM-8K  23.50 0.2079

WPM-16K  24.36 0.1931

WPM-32K  24.61 0.1882

Mixed Word/Character  24.17 0.3268
PBMT [6] 20.7
RNNSearch [37]  16.5
RNNSearch-LV [37]  16.9
RNNSearch-LV [37]  16.9
Deep-Att [45]  20.6

English — Spanish
English — French
English — Chinese
Spanish — English
French — English
Chinese — English

4.885 5.428 5.504
4.932 5.295 5.496
4.035 4.594 4.987
4.872 5.187 5.372
5.046 5.343 5.404
3.694 4.263 4.636

87%
64%
58%
63%
83%
60%

Algorithmic Intelligence Lab
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Google’s Multilingual Neural Machine Translation (Multilingual GNMT)

* Further improved in [Johnson et al., 2016]

* Extensions to make this model to be Multilingual NMT system by adding
artificial token to indicate the required target language

* e.g., the token “<2es>" indicates that the target sentence is in Spanish
* Can do multilingual NMT using a single model w/o increasing the parameters

y:l —_> Y, —> —> <[5>
...................................................................................... “.\\\‘\.\Ik'\.\ /,f'/ 7
8 layers “\ 5
i Encoder LSTMs
| I T AP .
4 A 1 -” Detoder LSTMS ™« _
H ' | 1
| GPus C - P ) —>D GPUS
t 1 1 t 1
: + + + : A +
/'\ '\ /\ —.—> Attention
L Gpu3 ' GPU3
GPU2 GPU2
: 7y

i GPU2 |

i GPUL |

Next, Transformer (self-attention)
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Transformer (Self-attention)

* Motivation:

* Prior works use RNN/CNN to solve sequence-to-sequence problems

* Attention already handles arbitrary length of sequences, easy to parallelize, and
not suffer from forgetting problems... Why should one use RNN/CNN modules?

* |dea:
e Design architecture only using attention modules

* To extract features, the authors use self-attention, that features attend on itself
» Self-attention has many advantages over RNN/CNN blocks

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) O(1) 0O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

n: sequence length, d: feature dimension, k: (conv) kernel size, r: window size to consider
Maximum path length: maximum traversal between any two input/outputs (lower is better)

*Cf. Now self-attention is widely used in other architectures, e.g., CNN [Wang et al., 2018] or GAN [Zhang et al., 2018]
Algorithmic Intelligence Lab
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Transformer (Self-attention)

* Multi-head attention: The building block of the Transformer

* |In previous slide, we introduced additive attention [Bahdanau et al., 2015]

n
Ct = E at,ihz’
i=1

Here, the context vector is a linear combination of

* weight a, ;, a function of inputs [x;] and output y,

 and input hidden states [h;]

In general, attention is a function of key K, value I/, and query Q

* key [x;] and query y, defines weights a; ;, which are applied to value [h;]
* For sequence length T and feature dimension d, (K,V, Q) are TXd, TXd, and 1Xd matrices

Transformer use scaled dot-product attention

Attention(@, K, V') = softmax (

In addition, transformer use multi-head attention,
ensemble of attentions

QK"

Vd

)v

Concat

!

~

Scaled Dot-Product
Attention

~

|

A 4 4
[ Linear],][ Linear],][ Lin

ear

K Q
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Transformer (Self-attention)

* Transformer:

* The final transformer model is built upon the (multi-head) attention blocks

* First, extract features with self-attention (see lower part of the biock)

Output
Probabilities
* Then decode feature with usual attention (see middle part of the block) *m
r 2
* Since the model don’t have a sequential structure, ==
the authors give position embedding (some handcrafted i
feature that represents the location in sequence i h
P auence)
I Feed I Attention N
orwart X
7 77| |
\——
"
f—b
Multi-Head Multi-Head
Attention Attention
LI S
N y ——l
Positional Positional
Encoding ®_€_ ¢ Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
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Transformer (Self-attention)

e Results: Transformer architecture shows good performance for languages

Model BLEU Training Cost (FLOPs)
oce EN-DE EN-FR  EN-DE  EN-FR
ByteNet [15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0-
GNMT + RL [31] 24.6 39.92 2.3-10° 14.
ConvS2S [8] 25.16 40.46 9.6-10% 1.5.
MoE [26] 26.03 40.56 2.0-101% 1.2
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 - 1020
GNMT + RL Ensemble [31] 2630  41.16 1.8-102° 1.1-10%
ConvS2S Ensemble [8] 26.36  41.29 7.7-109  1.2.10%!
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.0 2.3-10'°
S
5 8 83 - g § a4
§§§§8§ §2§%8§§9§§g2 EE'g.@g
A \ J ‘
§§§§8§ gfgé%g‘ggﬂgggg 'EE.é'é%
c S 8 < 2 @ a w &
o £ o \"
&
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BERT (Bidirectional Encoder Representations from Transformers)

* Motivation:

* Many success of CNN comes from ImageNet-pretrained networks

e Can train a universal encoder for natural languages?

e Method:

* Pretrain a bidirectional transformer with two self-supervised tasks

* Tasks: masked language model, next sentence prediction

» Cf. While BERT is encoder-only, one can also train encoder-decoder (e.g., GPT-2)

* Use fixed BERT encoder, and fine-tune simple 1-layer decoder for each task

BERT (Ours)
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BERT (Bidirectional Encoder Representations from Transformers)

e Results:

* Even without task-specific complex architectures, BERT achieves SOTA for 11 NLP
tasks, including classification, question answering, tagging, etc.

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE |Average
392k 363k 108k 67k 8.5k 57k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 81.0 860 61.7| 74.0
BiLSTM+ELMo+Attn  76.4/76.1 648 799 904 360 733 849 56.8| 71.0
OpenAl GPT 82.1/81.4 70.3 88.1 913 454 80.0 823 56.0| 752
BERTgAsE 84.6/83.4 712 90.1 935 52.1 858 889 664| 79.6
BERT ARGE 86.7/85.9 721 911 949 605 865 893 70.1| 81.9
System Dev Test
System Dev Fl Test Fl ESIM+GloVe 51.9 527
ELMo+BiLSTM+CRF 95.7 922 ESIM+ELMo 59.1 59.2
CVT+Multi (Clark et al., 2018) - 92.6 BERTgASE 81.6 -
BERTgASE 96.4 92.4 BERT ARGE 86.6 86.3
BERTARGE 96.6 92.8 Human (expert)! - 85.0
Human (5 annotations)’ -  88.0
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3. Overcoming the heavy computations of RNNs
* Convolutional Sequence to Sequence Learning
* Exploring Sparsity in RNNs
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Problem in RNNs

* The most fundamental problem of RNNs
* Require heavy computations (slow)
* Especially when we stack multiple layers
* GNMT solved this by model parallelism

* How to alleviate this issue in terms of architectures?
* CNN encoder
* CNN encoder + decoder
* Optimizing RNNs (pruning approach)

Algorithmic Intelligence Lab
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Solution 1-1. CNN encoder

* A convolutional encoder model for Neural Machine Translation [Gehring et al., 2016]

* CNN encoder + RNN decoder

* Replace the RNN encoder with stack of 1-D convolutions with nonlinearities
* Two different CNNs for attention score computation and conditional input aggregation
* More parallelizable than using RNN

<p> Die Katze schlief ein <p> <p> Die Katze schlief ein <p>
Convolutional
Encoder Networks
Attention Weights Encoder Words/s BLEU
3 3. 2-layer BILSTM 109.9 236
noeaditional . Deep Conv. 8/4 231.1 23.7
nput Computation
) Deep Conv. 15/5 203.3 24.0
P
LSTM Decoder — LSTM
—{] o >
the cat o f;’ll
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Solution 1-2. CNN encoder + decoder

Convolutional sequence to sequence learning [Gehring et al., 2017]
* CNNs for both encoder and encoder

<p> They agree </s> <p>

Embeddings CH H WMT’14 English-French BLEU
c . Wau et al. (2016) GNMT (Word 80K) 37.90
onvolutions .
Wu et al. (2016) GNMT (Word pieces) 38.95
Wu et al. (2016) GNMT (Word pieces) + RL 39.92
Gated ConvS2S (BPE 40K) 40,51
Units
/:qi Performance
A
Attention ﬂ

BLEU Time (s)

® NG GNMT GPU (K80) 3120 3,028

NE: GNMT CPU 88 cores 3120 1322

Dot products <|? GNMT TPU 31.21 384
S N R ConvS2S GPU (K40) b = 1 33.45 327

ConvS2S GPU (M40) b = 1 33.45 221

Vol ConvS2S GPU (GTX-1080ti) b =1  33.45 142

P [ T T ] ConvS2S CPU 48 cores b = 1 33.45 142

ConvS2S GPU (K40)b =5 34.10 587
ConvS2S CPU 48 cores b = 5 34.10 482
ConvS2S GPU (M40)b =5 34.10 406
ConvS2S GPU (GTX-1080ti) b=5  34.10 256

‘%J JU L Generation speed

H_H H H H | (N N I

<p> <p> <s> Sie stimmen zu Sie stimmen zu </s>
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Solution 2. Optimizing RNNs

* Exploring Sparsity in Recurrent Neural Networks [Narang et al., 2017]

* Pruning RNNs to improve inference time with marginal performance drop
e Simple heuristics to calculate the threshold
* And apply that threshold to every binary mask corresponds to each weight

* Reduces the size of the model by 90%
* Significant inference time speed-up using sparse matrix multiply around 2x to 7x

MODEL #UNITS CER #PARAMS RELATIVE PERF

RNN Dense Baseline 1760 10.67 67 million 0.0%

RNN Dense Small 704 1450 11.6 million -35.89%

RNN Dense Medium 2560 943 141 million  11.85%

RNN Sparse 1760 1760 12.88 83 million  -20.71%

RNN Sparse Medium 2560 10.59 11.1 million 0.75%

RNN Sparse Big 3072 10.25 16.7 million 3.95%

GRU Dense 2560 9.55 115 million  0.0%

GRU Sparse 2560 10.87 13 million -13.82%

GRU Sparse Medium 3568 9.76 17.8 million -2.20%

LAYER SIZE SPARSITY LAYERTYPE TIME (usec) SPEEDUP

1760 0% RNN 56 1
1760 95% RNN 20 2.8
2560 95% RNN 29 1.93
3072 95% RNN 48 1.16
2560 0% GRU 313 1
2560 95% GRU 46 6.80
3568 95% GRU 89 3.5

Algorithmic Intelligence Lab GEMM (General Matrix-Matrix Multiply) times comparison



Summary

RNN architectures have developed in a way that
e Can better model long-term dependency
* Robust to vanishing gradient problems
* While having less memory or computational costs

Breakthroughs in machine translation
* Seq2seq model with attention
* Transformer with self-attention (and BERT)

Alleviating the problem of RNNs’ heavy computations
e Convolutional sequence to sequence learning
* Pruning approach

There are various applications combining RNNs with other networks
* Image caption generation, visual question answering(VQA), etc.
* Will be covered in later lectures
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