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• Process a sequence of vectors by applying  
recurrence formula at every time step :

Recap: RNN basics
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New state Old state Input 
vector at 
time step t 

Function parameterized by 

*reference: http://cs231n.stanford.edu/2017/
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• Simple RNN 
• The state consists of a single “hidden” vector 
• Vanilla RNN (or sometimes called Elman RNN)

Recap: Vanilla RNN

3*reference: http://cs231n.stanford.edu/2017/
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• For vanilla RNN, it is difficult to capture long-term dependency 

• Vanishing gradient problem in vanilla RNN
• The gradient vanishes over time 
• Which relates to optimization difficulties in CNN

Why do we develop RNN architectures? 

4*source: https://mediatum.ub.tum.de/doc/673554/file.pdf
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• Many real-world temporal data is intrinsically long-term 
• Natural language
• Speech
• Video 

• In order to solve much complicated real-world problems we need a better RNN 
architecture to capture long-term dependency in the data

Why do we develop RNN architectures? 
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1. RNN Architectures and Comparisons
• LSTM (Long Short-Term Memory) and their variants 

• GRU (Gated Recurrent Unit)
• Stacked LSTM
• Grid LSTM
• Bi-directional LSTM

2. Breakthroughs of RNNs in Machine Translation 
• Sequence to Sequence Learning with Neural Networks
• Neural Machine Translation with Attention
• Google’s Neural Machine Translation (GNMT)
• Transformer (self-attention) and BERT

3. Overcoming the heavy computations of RNNs
• Convolutional Sequence to Sequence Learning
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• Long Short-Term Memory (LSTM)
• A special type of RNN unit 

• i.e., LSTM networks = RNN composed of LSTM units
• Originally proposed by [Hochreiter and Schmidhuber, 1997]

• Explicitly designed RNN to 
• Capture long-term dependency
• More robust to vanishing gradient problem 

• Composed of a cell, an input gate, an output gate, and a forget gate 
(will be covered in detail soon)

RNN Architectures: LSTM 

8*source: https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:The_LSTM_cell.png
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• A very old model, but why so popular? 
• Popularized by series of following works

[Graves et al, 2013][Sutskever et al., 2014], ...

• Work very well in variety of problems 
• Speech recognition 
• Machine translation 
• …

RNN Architectures: LSTM 
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Next, comparison with Vanilla RNN
*source: https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:The_LSTM_cell.png
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• Vanilla RNN (unrolled)

RNN Architectures: Vanilla RNN 

10*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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• Repeating modules in Vanilla RNN contains a single layer 

RNN Architectures: Vanilla RNN 

11*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Algorithmic Intelligence Lab

• Repeating modules in LSTM

RNN Architectures: LSTM 

12*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Layer Pointwise 
operation

Vector 
Transfer 

concatenate Copy
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• The core idea behind LSTM
• Able to control how much information to preserve from previous state
• The horizontal line running through the top of the diagram  

(i.e., the cell state or memory)
• Only linear interactions from the output of each “gates” (prevent vanishing gradient)
• Control how much to remove or add information to the cell state 

RNN Architectures: LSTM 

13*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell state 

Gates : Way to optionally let 
information through 

Next, LSTM step-by-step computation
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Step 1 : Decide what information we’re going to throw away from the cell state 
• A sigmoid layer called “Forget gate”
• Looks at                  and outputs a number between 0 and 1 for each cell state  

• If 1: completely keep, if 0: completely remove

• e.g., language model trying to predict the next word based on all previous ones 
• The cell state might include the gender of the present subject
• so that the correct pronouns can be used 
• When we see a new subject, we want to forget the gender of the old subject 

RNN Architectures: LSTM 

14*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Step 2 : Decide what information we’re going to store in the cell state and update
• First, a sigmoid layer called the “Input gate”         decides which values to update 
• Next, a tanh layer creates a vector of new candidate values 

RNN Architectures: LSTM 

15*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Step 2 : Decide what information we’re going to store in the cell state and update
• First, a sigmoid layer called the “Input gate”         decides which values to update 
• Next, a tanh layer creates a vector of new candidate values 

• Then, update the old cell state             into the new cell state  
• Multiply the old state by 
• Add                 , new candidate values scaled by how much to update 

RNN Architectures: LSTM 

16*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Algorithmic Intelligence Lab

Step 3 : Decide what we’re going to output
• A sigmoid layer called “Output gate”
• First go through        which decides what parts of the cell state to output
• Then, put the cell state         through tanh (push the values to be between -1 and 1) 

and multiply it by  

RNN Architectures: LSTM 

17*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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• Overall LSTM operations 

RNN Architectures: LSTM 
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Standard LSTM

*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Next, Variants of LSTM
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• Gated Recurrent Unit (GRU) [Cho et.al, 2014]

• Combines the forget and input gates into a single “update gate” 
• Controls the ratio of information to keep between previous state and new state 

• Reset gate controls how much information to forget 
• Merges the cell state        and hidden state 
• (+) Resulting in simpler model (less weights) than standard LSTM

RNN Architectures: GRU 
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Gated Recurrent Unit

*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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• Standard LSTM 

• With simplified diagram 
• : cell state (or memory)
• : hidden state (or output)
• Dashed line indicates identity transformation

RNN Architectures: Stacked LSTM 

20*source: https://arxiv.org/pdf/1507.01526.pdf
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• Stacked LSTM [Graves et al, 2013]

• Adds capacity by simply stacking LSTM layers on top of each other 
• Output of 1st layer LSTM goes into 2nd layer LSTM as an input
• But no vertical interactions 

RNN Architectures: Stacked LSTM 

21*source: https://arxiv.org/pdf/1507.01526.pdf

1st layer LSTM

2nd layer LSTM
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• Grid LSTM [Kalchbrenner et al., 2016]

• Extended version of stacked LSTM 
• LSTM units have memory connections along depth dimension as well as temporal 

dimension

RNN Architectures: Grid LSTM 
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2D Grid LSTM

*source: https://github.com/coreylynch/grid-lstm

Performance on wikipedia dataset
(lower the better) 
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• What is the limitation of all previous models? 
• They learn representations only from previous time steps
• Useful to learn future time steps in order to

• Better understand the context
• Eliminate ambiguity

• Example 
• “He said, Teddy bears are on sale” 
• “He said, Teddy Roosevelt was a great President” 
• In above two sentences, only seeing previous words is not enough to understand 

the sentence 

• Solution 
• Also look ahead è Bidirectional RNNs

RNN Architectures: Limitation

23*reference: https://towardsdatascience.com/introduction-to-sequence-models-rnn-bidirectional-rnn-lstm-gru-73927ec9df15
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• We can also extend RNNs into bi-directional models 
• The repeating blocks       could be any types of RNNS (Vanilla RNN, LSTM, or GRU)
• The only difference is that there are additional paths from future time steps 

RNN Architectures: Bidirectional RNNs 

24

Next, Comparison of Variants
*reference: https://towardsdatascience.com/introduction-to-sequence-models-rnn-bidirectional-rnn-lstm-gru-73927ec9df15
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• Which architecture is the best? 
• There is no clear winner; it depends largely on the task
• More empirical exploration of RNNs can be found here [Jozefowicz et al., 2015]

RNN Architectures: Comparisons

25

Model Advantages Disadvantages

LSTM

- Capable of modeling long-term sequential 
dependencies better than simple RNN
- More robust to vanishing gradients than  
simple RNN

- Increases computational complexity
- Higher memory requirement than RNN due to 
multiple memory cells

Stacked LSTM - Models long-term sequential dependencies 
due to deeper architecture

- Higher memory requirement and
computational complexity than LSTM due to 
stack of LSTM cells

Bidirectional LSTM - Predicts both in the future and past context 
of the input sequence better than LSTM - Increases computational complexity than LSTM

GRU
- Capable of modeling long-term sequential 
dependencies 
- Less memory requirements than LSTM

- Higher computational complexity and memory 
requirements than RNN due to multiple hidden 
state vectors 

Grid LSTM - Models multidimensional sequences with 
increased grid size

- Higher memory requirement and
computational complexity than LSTM due to 
multiple recurrent connections 

*source: https://arxiv.org/pdf/1801.01078.pdf
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• What is machine translation? 
• Task of automatically converting source text in one language to another language
• No single answer due to ambiguity/flexibility of human language (challenging)

• Classical machine translation methods 
• Rule-based machine translation (RBMT)
• Statistical machine translation (SMT; use of statistical model)

• Neural Machine Translation (NMT)
• Use of neural network models to learn a statistical model for machine translation 

Machine Translation 

27
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• Difficulties in Neural Machine Translation 
• Intrinsic difficulties of MT (ambiguity of language)
• Variable length of input and output sequence (difficult to learn a single model)

• The core idea of sequence-to-sequence model [Sutskever et al., 2014]

• Encoder-Decoder architecture  (input à vector à output) 
• Use one RNN network (Encoder) to read input sequence at a time to obtain large 

fixed-length vector representation 
• Use another RNN (Decoder) to extract the output sequence from that vector 

Breakthroughs in NMT: Sequence-to-Sequence Learning

28

Input sequence “ABC” and output sequence “WXYZ”
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• Encoder 
• Reads the input sentence, a sequence of vectors                                  into a vector  
• Use RNNs such that                                   and                                         , where     and      

are some non-linear functions 
• LSTMs as      and                                             (in the original seq2seq model)

• Decoder 
• Trained to predict the next word        given the context vector     and the previously 

predicted words 
• Defines a probability over the translation     by decomposing the joint probability into 

the ordered conditionals: 

where    
• The conditional probability is modeled as

where     is a nonlinear, potentially multi-layered function that outputs the probability 
of       and       is the hidden state of the RNN

Breakthroughs in NMT: Sequence-to-Sequence Learning

29
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• Example of the seq2seq model 
• For English à French task
• With 2-layer LSTM for encoder and encoder 

Breakthroughs in NMT: Sequence-to-Sequence Learning

30*source: https://towardsdatascience.com/seq2seq-model-in-tensorflow-ec0c557e560f



Algorithmic Intelligence Lab

• Results on WMT’14 English to French dataset 
• Measure : BLEU(Bilingual Evaluation Understudy) score 

• Widely used quantitative measure for MT task
• On par with the state-of-the-art SMT system (without any neural network) 
• Achieved better results than the previous baselines 

• Simple but very powerful in MT task

Breakthroughs in NMT: Sequence-to-Sequence Learning

31*source: http://papers.nips.cc/paper/5346-sequence-to-sequence-learning

Next, Seq2seq with attention
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• NMT by Joint Learning to Align and Translate [Bahdanau et al., 2015]

• Problem of original encoder-decoder (or seq2seq) model
• Need to compress all the necessary information of a source sentence into a 

fixed-length vector
• Very difficult to cope with long sentences, especially when the test sequence is 

longer than the sentences in the training corpus 

• Extension of encoder-decoder model + attention mechanism 
• Encode input sentence into a sequence of vectors 
• And chooses a subset of these vectors adaptively while decoding the translation 
• Frees the neural network model from having to squash all the information into a 

single fixed-length vector 

Breakthroughs in NMT: Joint Learning to Align and Translate 
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• Define each conditional probability as:

where      is an RNN hidden state for time     computed by  

• Distinct context vector       for each target word 

• The context vector      is computed as weighted sum of 

• The weight         of each       is computed by 

where                                is an alignment model which 
scores how well the inputs around position    and the 
output position    match. 

Breakthroughs in NMT: Joint Learning to Align and Translate 

33

Illustration of the model
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• Graphical illustration of seq2seq with attention
• e.g., Chinese to English 

Breakthroughs in NMT: Joint Learning to Align and Translate 

34*source: https://google.github.io/seq2seq/
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• Results 
• RNNsearch (proposed) is better than RNNenc (vanilla seq2seq) 
• RNNsearch-50: model trained with sentences of length up to 50 words

Breakthroughs in NMT: Joint Learning to Align and Translate 

35Sample alignment results
Next, Google’s NMT
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• Google’s NMT [Wu et al., 2016]
• Improves over previous NMT systems on accuracy and speed
• 8-layer LSTMS for encoder/decoder with attention 
• Achieve model parallelism by assigning each LSTM layer into different GPUs
• Add residual connections in standard LSTM 
• … and lots of domain-specific details to apply it to production model

Google’s Neural Machine Translation (GNMT)

36
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• Adding residuals connections in stacked LSTM 
• In practice, LSTM has also problem of vanishing gradient when stacking more layers
• Empirically, 4-layer works okay, 6-layer has problem, 8-layer does not work at all
• Apply residual connections with 8-layer stacked LSTM worked best 

Google’s Neural Machine Translation (GNMT)

37

Standard stacked LSTM Stacked LSTM with residual connections 
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• Results
• State-of-the-art results on various MT datasets 
• Also comparable with Human expert 

Google’s Neural Machine Translation (GNMT)

38

GNMT with different configurations
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• Further improved in [Johnson et al., 2016]

• Extensions to make this model to be Multilingual NMT system by adding 
artificial token to indicate the required target language
• e.g., the token “<2es>” indicates that the target sentence is in Spanish 
• Can do multilingual NMT using a single model w/o increasing the parameters 

Google’s Multilingual Neural Machine Translation (Multilingual GNMT) 

39

Next, Transformer (self-attention)
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Transformer (Self-attention)

• Motivation:
• Prior works use RNN/CNN to solve sequence-to-sequence problems
• Attention already handles arbitrary length of sequences, easy to parallelize, and 

not suffer from forgetting problems… Why should one use RNN/CNN modules?

• Idea:
• Design architecture only using attention modules
• To extract features, the authors use self-attention, that features attend on itself

• Self-attention has many advantages over RNN/CNN blocks

40

𝑛: sequence length, 𝑑: feature dimension, 𝑘: (conv) kernel size, 𝑟: window size to consider
Maximum path length: maximum traversal between any two input/outputs (lower is better)

*Cf. Now self-attention is widely used in other architectures, e.g., CNN [Wang et al., 2018] or GAN [Zhang et al., 2018] 
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Transformer (Self-attention)

• Multi-head attention: The building block of the Transformer
• In previous slide, we introduced additive attention [Bahdanau et al., 2015]
• Here, the context vector is a linear combination of

• weight 𝛼',), a function of inputs [𝑥)] and output 𝑦'
• and input hidden states [ℎ)]

• In general, attention is a function of key 𝐾, value 𝑉, and query 𝑄
• key [𝑥)] and query 𝑦' defines weights 𝛼',), which are applied to value [ℎ)]
• For sequence length 𝑇 and feature dimension 𝑑, (𝐾, 𝑉, 𝑄) are 𝑇×𝑑, 𝑇×𝑑, and 1×𝑑 matrices

• Transformer use scaled dot-product attention

• In addition, transformer use multi-head attention,
ensemble of attentions

41
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Transformer (Self-attention)

• Transformer:
• The final transformer model is built upon the (multi-head) attention blocks

• First, extract features with self-attention (see lower part of the block)

• Then decode feature with usual attention (see middle part of the block)

• Since the model don’t have a sequential structure,
the authors give position embedding (some handcrafted
feature that represents the location in sequence)

42
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Transformer (Self-attention)

• Results: Transformer architecture shows good performance for languages

43

Next, BERT
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BERT (Bidirectional Encoder Representations from Transformers)

• Motivation:
• Many success of CNN comes from ImageNet-pretrained networks
• Can train a universal encoder for natural languages?

• Method:
• Pretrain a bidirectional transformer with two self-supervised tasks

• Tasks: masked language model, next sentence prediction
• Cf. While BERT is encoder-only, one can also train encoder-decoder (e.g., GPT-2)

• Use fixed BERT encoder, and fine-tune simple 1-layer decoder for each task

44

Sentence classification Question answering



Algorithmic Intelligence Lab

BERT (Bidirectional Encoder Representations from Transformers)

• Results:
• Even without task-specific complex architectures, BERT achieves SOTA for 11 NLP 

tasks, including classification, question answering, tagging, etc.

45
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• The most fundamental problem of RNNs
• Require heavy computations (slow) 
• Especially when we stack multiple layers 
• GNMT solved this by model parallelism 

• How to alleviate this issue in terms of architectures? 
• CNN encoder
• CNN encoder + decoder
• Optimizing RNNs (pruning approach)

Problem in RNNs

47
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• A convolutional encoder model for Neural Machine Translation [Gehring et al., 2016]
• CNN encoder + RNN decoder 
• Replace the RNN encoder with stack of 1-D convolutions with nonlinearities 

• Two different CNNs for attention score computation and conditional input aggregation
• More parallelizable than using RNN

Solution 1-1. CNN encoder 

48
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• Convolutional sequence to sequence learning [Gehring et al., 2017]
• CNNs for both encoder and encoder 

Solution 1-2. CNN encoder + decoder

49

Performance 

Generation speed 
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• Exploring Sparsity in Recurrent Neural Networks [Narang et al., 2017]
• Pruning RNNs to improve inference time with marginal performance drop 

• Simple heuristics to calculate the threshold 
• And apply that threshold to every binary mask corresponds to each weight 

• Reduces the size of the model by 90%
• Significant inference time speed-up using sparse matrix multiply around        to 

Solution 2. Optimizing RNNs

50GEMM (General Matrix-Matrix Multiply) times comparison 
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• RNN architectures have developed in a way that
• Can better model long-term dependency
• Robust to vanishing gradient problems 
• While having less memory or computational costs

• Breakthroughs in machine translation 
• Seq2seq model with attention 
• Transformer with self-attention (and BERT)

• Alleviating the problem of RNNs’ heavy computations
• Convolutional sequence to sequence learning 
• Pruning approach 

• There are various applications combining RNNs with other networks
• Image caption generation, visual question answering(VQA), etc.
• Will be covered in later lectures

Summary

51
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