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• Neural networks that use convolution in place of general matrix multiplication
• Sharing parameters across multiple image locations
• Translation equivariant (invariant with pooling) operation

• Specialized for processing data that has a known, grid-like topology
• e.g. time-series data (1D grid), image data (2D grid)

Recap: Convolutional neural networks

2

*sources : 
- https://www.cc.gatech.edu/~san37/post/dlhc-cnn/
- http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

https://www.cc.gatech.edu/~san37/post/dlhc-cnn/
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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• CNNs have been tremendously successful in practical applications

Recap: Convolutional neural networks
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Detection [Ren et al., 2015] Segmentation [Farabet et al., 2013]

Classification and retrieval [Krizhevsky et al., 2012]
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• Typically, designing a CNN model requires some effort
• There are a lot of design choices: # layers, # filters, sizes of kernel, pooling, …
• It is costly to measure the performance of each model and choose the best one

• Example: LeNet for handwritten digits recognition [LeCun et al., 1998]

• However, LeNet is not enough to solve real-world problems in AI domain
• CNNs are typically applied to extremely complicated domains, e.g. raw RGB images 
• We need to design a larger model to solve them adequately 

Why do we develop CNN architectures?
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• Problem: The larger the network, the more difficult it is to design
1. Optimization difficulty

• When the training loss is degraded
• Deeper networks are typically much harder to optimize
• Related to gradient vanishing and exploding

2. Generalization difficulty 
• The training is done well, but the testing error is degraded
• Larger networks are more likely to over-fit, i.e., regularization is necessary

• Good architectures should be scalable that solves both of these problems

Why do we develop CNN architectures?
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*sources : 
- He et al. “Deep residual learning for image recognition”. CVPR 2016.
- https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Overfitted_Data.png/300px-Overfitted_Data.png

https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Overfitted_Data.png/300px-Overfitted_Data.png
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• VGGNet and GoogLeNet
• Batch normalization and ResNet

2. Modern CNN Architectures
• Beyond ResNet
• Toward automation of network design

3. Observational Study on Modern Architectures
• ResNets behave like ensembles of relatively shallow nets
• Visualizing the loss landscape of neural nets
• Essentially no barriers in neural network energy landscape
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• ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
• ImageNet dataset: a large database of visual objects

• ~14M labeled images, 20K classes
• Human labels via Amazon MTurk

• Classification: 1,281,167 images for training / 1,000 categories
• Annually ran from 2010 to 2017, and now hosted by Kaggle
• For details, see [Russakovsky et al., 2015]

Evolution of CNN architectures

8*source :  http://visgraph.cse.ust.hk/ilsvrc/files/tesor.png

http://visgraph.cse.ust.hk/ilsvrc/files/tesor.png
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Evolution of CNN architectures
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Trend on ILSVRC classification top-5 error rates

2012 20152013 2014 2016 ~

AlexNet (2012)
• 1st place in 2012
• 8-layer CNN
• GPU acceleration 

for training
• Dropout and ReLU

SIFT + FVs (2012)
• 2nd place in 2012
• SIFT + Fisher Vectors 
• Non-CNN

ZF-Net (2013)
• 3rd place in 2013
• By Zeiler & Fergus
• A variant of AlexNet

VGG-Net (2014)
• 2nd place in 2014
• By Oxford Visual Geometry Group
• 19-layer CNN

GoogLeNet (2014)
• 1st place in 2014
• 24-layer CNN
• Memory efficient 

Batch Normalization (2015)
• By Google
• Preventing internal covariate shift

Residual Network (2016)
• 1st place in 2015
• By MSRA
• > 100 layers CNNs via 

identity skip connections

• ILSVRC contributed greatly to development of CNN architectures
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• The first winner to use CNN in ILSVRC, with an astounding improvement
• Top-5 error is largely improved: 25.8% → 15.3%
• The 2nd best entry at that time was 26.2%

• 8-layer CNN (5 Conv + 3 FC) 
• Utilized 2 GPUs (GTX-580 × 2) for training the network

• Split a single network into 2 parts to distribute them into each GPU

Evolution of CNN architectures: AlexNet [Krizhevsky et al., 2012] 
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Convolutional layer Max pooling Fully-connected layers

*source :  Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012
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• Local response normalization layers (LRN)
• Detects high-frequency features with a big neuron response
• Dampens responses that are uniformly large in a local neighborhood

• Useful when using neurons with unbounded activations (e.g. ReLU)

Evolution of CNN architectures: AlexNet [Krizhevsky et al., 2012] 

12*source :  Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012

Next, ZFNet
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• A simple variant of AlexNet, placing the 3rd in ILSVRC’13 (15.3% → 13.5%)
• Smaller kernel at input: 11 × 11 → 7 × 7
• Smaller stride at input: 4 → 2
• The # of hidden filters are doubled

• Lessons:
1. Design principle: Use smaller kernel, and smaller stride
2. CNN architectures can be very sensitive on hyperparameters

Evolution of CNN architectures: ZFNet [Zeiler et al., 2014] 

13*source :  Zeiler et al., “Visualizing and understanding convolutional networks”. ECCV 2014
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• Networks were getting deeper 
• AlexNet: 8 layers
• VGGNet: 19 layers
• GoogleNet: 24 layers

• Both focused on parameter efficiency of each block
• Mainly to allow larger networks computable at that time

Evolution of CNN architectures: VGGNet and GoogleNet

15

AlexNet

VGGNet

GoogLeNet

*sources : 
- Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012
- Simonyan et al., “Very deep convolutional networks for large-scale image recognition”. arXiv 2014. 
- Szegedy et al., “Going deeper with convolutions”. CVPR 2015

Next, VGGNet
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• The 2nd place in ILSVRC’14 (11.7% → 7.33%)

• Designed using only 3 × 3 kernels for convolutions

• Lesson: Stacking multiple 3 × 3 is advantageous than using other kernels

• Example: ( 3×3 ×3) v.s. (7×7)
• Essentially, they get the same receptive field
• ( 3×3 ×3) have less # parameters

• 3× C× 3×3 ×C = 𝟐𝟕𝐂𝟐

• C× 7×7 ×C = 𝟒𝟗𝐂𝟐

• ( 3×3 ×3) gives more non-linearities

Evolution of CNN architectures: VGGNet [Simonyan et al., 2014]

16*source : Simonyan et al., “Very deep convolutional networks for large-scale image recognition”. arXiv 2014. 

Next, GoogLeNet



Algorithmic Intelligence Laboratory

• The winner of ILSVRC’14 (11.7% → 6.66%)

• Achieved 12× fewer parameters than AlexNet

• Inception module
• Multiple operation paths with different receptive fields
• Each of the outputs are concatenated in filter-wise
• Capturing sparse patterns in a stack of features

Evolution of CNN architectures: GoogleNet [Szegedy et al., 2015]

17*source : Szegedy et al., “Going deeper with convolutions”. CVPR 2015
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• The winner of ILSVRC’14 (11.7% → 6.66%)

• Achieved 12× fewer parameters than AlexNet

• Use of 1 × 1 convolutions
• Naïve inceptions can be too expensive to scale up
• Dimension reduction before expensive convolutions
• They also gives more non-linearities

Evolution of CNN architectures: GoogleNet [Szegedy et al., 2015]

18*source : Szegedy et al., “Going deeper with convolutions”. CVPR 2015
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• The winner of ILSVRC’14 (11.7% → 6.66%)

• Achieved 12× fewer parameters than AlexNet

• cf. 1 × 1 convolutions
• Linear transformation done in pixel-wise
• Can be represented by a matrix
• Useful for changing # channels efficiently

Evolution of CNN architectures: GoogleNet [Szegedy et al., 2015]

19

*sources : 
- Szegedy et al., “Going deeper with convolutions”. CVPR 2015
- Lana Lazebnik, “Convolutional Neural Network Architectures: from LeNet to ResNet”.
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Evolution of CNN architectures
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• Training a deep network well had been a delicate task
• It requires a careful initialization, with adequately low learning rate
• Gradient vanishing: networks containing saturating non-linearity

• Ioffe et al. (2015): Such difficulties are come from internal covariate shift

• Motivation: “The cup game analogy”

• Similar problem happens during training of deep neural networks
• Updates in early layers may shift the inputs of later layers too much 

Evolution of CNN architectures: Batch normalization [Ioffe et al., 2015]
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“Go water 
the plants!”

“Got water 
in your pants!”

“kite bang eat 
face monkey…”

*sources : 
- Ioffe et al., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015
- http://pages.cs.wisc.edu/~shavlik/cs638/lectureNotes/Batch_Normalization.pptx
- https://www.quora.com/Why-does-batch-normalization-help

http://pages.cs.wisc.edu/~shavlik/cs638/lectureNotes/Batch_Normalization.pptx
https://www.quora.com/Why-does-batch-normalization-help
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• Batch normalization (BN) accelerates neural network training by eliminating 
internal covariate shift inside the network

• Idea: A normalization layer that behaves differently in training and testing

1. During training, input distribution of     only depends on γ and 𝛽
• Training mini-batches are always normalized into mean 0, variance 1

2. There is some gap between       and             (      , resp.) 
• Noise injection effect for each mini-batch ⇒ Regularization effect

Evolution of CNN architectures: Batch normalization [Ioffe et al., 2015]

22

Normalize Affine transform

Trainable

Training

Testing

*source :  Ioffe et al., “Batch Normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift”. ICML 2015
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• Batch normalization (BN) accelerates neural network training by eliminating 
internal covariate shift inside the network
• BN allows much higher learning rates, i.e. faster training
• BN stabilizes gradient vanishing on saturating non-linearities
• BN also has its own regularization effect, so that it allows to reduce weight decay, 

and to remove dropout layers

• BN makes GoogLeNet much easier to train with great improvements

Evolution of CNN architectures: Batch normalization [Ioffe et al., 2015]

23
*source :  Ioffe et al., “Batch Normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift”. ICML 2015

Next, ResNet
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• The winner of ILSVRC’15 (6.66% → 3.57%)

• ResNet is the first architecture succeeded to train >100-layer networks
• Prior works could until ~30 layers, but failed for the larger nets

What was the problem?

• 56-layer net gets higher training error than 20-layers network

• Deeper networks are much harder to optimize even if we use BNs
• It’s not due to overfitting, but optimization difficulty

• Quiz: Why is that?

Evolution of CNN architectures: ResNet [He et al., 2016a]

24

20-layers 36-layers

56-layers

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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• The winner of ILSVRC’15 (6.66% → 3.57%)

• ResNet is the first architecture succeeded to train >100-layer networks
• Prior works could until ~30 layers, but failed for the larger nets

What was the problem?

• It’s not due to overfitting, but optimization difficulty
• Quiz: Why is that?

• If the 56-layer model optimized well, then it must be better than the 20-layer
• There is a trivial solution for the 36-layer: identity

Evolution of CNN architectures: ResNet [He et al., 2016a]
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20-layers 36-layers

56-layers

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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• Motivation: A non-linear layer may struggle to represent an identity function
• Due to its internal non-linearities, e.g. ReLU
• This may cause the optimization difficulty on large networks

• Idea: Reparametrize each layer to make them easy to represent an identity
• When all the weights are set to zero, the layer represents an identity

Evolution of CNN architectures: ResNet [He et al., 2016a]

26*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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Evolution of CNN architectures: ResNet [He et al., 2016a]

27

• Plain nets v.s. ResNets

• Deeper ResNets can be trained without any difficulty

*sources :  
- He et al., “Deep residual learning for image recognition”. CVPR 2016
- He, Kaiming, "Deep Residual Networks: Deep Learning Gets Way Deeper.” 2016.
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Evolution of CNN architectures: ResNet [He et al., 2016a] 

28

• Identity connection resolved a major difficulty on optimizing large networks

• Revolution of depth: Training >100-layer network without difficulty
• Later, ResNet is revised to allow to train up to >1000 layers [He et al., 2016b] 

• ResNet also shows good generalization ability as well

Revolution of 
depth 

*sources :  
- He et al., “Deep residual learning for image recognition”. CVPR 2016
- Kaiming He, "Deep Residual Networks: Deep Learning Gets Way Deeper.” 2016.
- He et al. "Identity mappings in deep residual networks.", ECCV 2016
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Evolution of CNN architectures

29

• Comparisons on ImageNet for a single model of popular CNNs

*source :  https://towardsdatascience.com/neural-network-architectures-156e5bad51ba

https://towardsdatascience.com/neural-network-architectures-156e5bad51ba
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Beyond ResNet

31

• Various architectures now are based on ResNet
• ResNet with stochastic depth [Huang et al., 2016]
• Wide ResNet [Zagoruyko et al., 2016]
• ResNet in ResNet [Targ et al., 2016]
• ResNeXt [Xie et al., 2016]
• PyramidNet [Han et al., 2016]
• Inception-v4  [Szegedy et al., 2017]
• DenseNet [Huang et al., 2017]
• Dual Path Network [Chen et al., 2017]

• Transition of design paradigm: Optimization ⇒ Generalization 
• People are now less concerned about optimization problems in a model 
• Instead, they now focus more on its generalization ability
• “How well does an architecture generalize as its scale grows?”

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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• Wide Residual Networks [Zagoruyko et al., 2016]
• Residuals can also work to enlarge the width, not only its depth
• Residual blocks with ×k wider filters 
• Increasing width instead of depth can be more computationally efficient

• GPUs are much better on handling "wide-but-shallow" than "thin-but-deep“
• WRN-50 outperforms ResNet-152

• Deep Networks with Stochastic Depth [Huang et al., 2016]
• Randomly drop a subset of layers during training
• Bypassing via identity connections
• Reduces gradient vanishing, and training time as well

Beyond ResNet: Improving ResNet

32*source :  Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University
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• ResNeXt [Xie et al., 2016]
• Aggregating multiple parallel paths inside a 

residual block (“cardinality”)
• Increasing cardinality is more effective than 

going deeper or wider

• DenseNet [Huang et al. 2017]
• Passing all the previous representation 

directly via concatenation of features
• Strengthens feature propagation and 

feature reuse

Beyond ResNet

33*source :  Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University
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• ResNeXt [Xie et al., 2016]
• Aggregating multiple parallel paths inside a residual block (“cardinality”)
• Increasing cardinality is more effective than going deeper or wider

• DenseNet [Huang et al. 2017]
• Passing all the previous representation directly via concatenation of features
• Strengthens feature propagation and feature reuse

Beyond ResNet

34

Next, automation of design
*source :  Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University
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• Although the CNN architecture has evolved greatly, our design principles are 
still relying on heuristics
• Smaller kernel and smaller stride, increase cardinality instead of width ...

• Recently, there have been works on automatically finding a structure which can 
outperform existing human-crafted architectures

1. Search space: Naïvely searching every model is nearly impossible
2. Searching algorithm: Evaluating each model is very costly, and black-boxed

Toward automation of network design

35

A sample architecture found in [Brock et al., 2018] Next, NASNet

*source :  Brock et al., “SMASH: One-Shot Model Architecture Search through HyperNetworks”, ICLR 2018
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• Designing a good search space is important in architecture searching

• NASNet reduces the search space by incorporating our design principles

• Motivation: modern architectures are built simply: a repeated modules
• Try not to search the whole model, but only cells modules
• Normal cell and Reduction cell (cell w/ stride 2)

Toward automation of network design: NASNet [Zoph et al., 2018]

36

CIFAR

ImageNet

*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018



Algorithmic Intelligence Laboratory

• Designing a good search space is important in architecture searching

• NASNet reduces the search space by incorporating our design principles

• Each cell consists of 𝐵 blocks

• Each block is determined by selecting methods
1. Select two hidden states from ℎ4, ℎ456 or of existing block
2. Select methods to process for each of the selected states
3. Select a method to combine the two states

• (1) element-wise addition or (2) concatenation

Toward automation of network design: NASNet [Zoph et al., 2018]

37*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• Designing a good search space is important in architecture searching

• NASNet reduces the search space by incorporating our design principles

• Each cell consists of 𝐵 blocks
• Example: 𝐵 = 4

Toward automation of network design: NASNet [Zoph et al., 2018]

38*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• Designing a good search space is important in architecture searching

• NASNet reduces the search space by incorporating our design principles

• Set of methods to be selected based on their prevalence in the CNN literature

• Any searching methods can be used
• Random search [Bergstra et al., 2012] could also work
• RL-based search [Zoph et al., 2016] is mainly used in this paper

Toward automation of network design: NASNet [Zoph et al., 2018]

39*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• The pool of workers consisted of 500 GPUs, processing over 4 days 
• All architecture searches are performed on CIFAR-10

• NASNet-A: State-of-the-art error rates could be achieved
• NASNet-B/C: Extremely parameter-efficient models were also found

Toward automation of network design: NASNet [Zoph et al., 2018]

40*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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NASNet-A
*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• The pool of workers consisted of 500 GPUs, processing over 4 days 
• All architecture searches are performed on CIFAR-10

• Cells found in CIFAR-10 could also transferred well into ImageNet

Toward automation of network design: NASNet [Zoph et al., 2018]

42*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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43*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• Architecture searching is still an active research area
• AmoebaNet [Real et al., 2018]
• Efficient-NAS (ENAS) [Pham et al., 2018]
• NAONet [Luo et al., 2018]

Toward automation of network design

44*source : Luo et al., “Neural Architecture Optimization”, Arxiv 2018
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• ResNet improved generalization by revolution of depth
Quiz: But, does it fully explain why deep ResNets generalize well?

• Increasing depth does not always mean better generalization
• Naïve CNNs are very easy to overfit on deeper networks [Eigen et al., 2014]

ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

46*source : Eigen et al., “Understanding Deep Architectures using a Recursive Convolutional Network”, Arxiv 2014
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• Veit et al. (2016): ResNet can be viewed as a collection of many paths, instead 
of a single ultra-deep network
• Each module in a ResNet receives a mixture of 𝟐𝒏5𝟏 different distributions

ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

47*source : Veit et al., “ResNets behave like ensembles of relatively shallow nets”, NIPS 2016
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• Veit et al. (2016): ResNet can be viewed as a collection of many paths, instead 
of a single ultra-deep network
• Deleting a module in ResNet has a minimal effect on performance
• Similar effect as removing 2;56 paths out of 2;: still 2;56 paths alive!

ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

48

Next, visualizing loss functions in CNN

*source : Veit et al., “ResNets behave like ensembles of relatively shallow nets”, NIPS 2016
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• Trainability of neural nets is highly dependent on network architecture

• However, the effect of each choice on the underlying loss surface is unclear
• Why are we able to minimize highly non-convex neural loss?
• Why do the resulting minima generalize?

• Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

• 𝛿 and 𝜂 are sampled from a random Gaussian distribution
• To remove some scaling effect, 𝛿 and 𝜂 are normalized filter-wise

Visualizing the loss landscape of neural nets [Li et al., 2018]

49

Local minima Random directions

𝒊𝐭𝐡 layer, 𝒋𝐭𝐡 filter

*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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• Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

• Modern architectures prevent the loss to be chaotic as depth increases

Visualizing the loss landscape of neural nets [Li et al., 2018]

50

ResNet-56

*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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• Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

• Modern architectures prevent the loss to be chaotic as depth increases

Visualizing the loss landscape of neural nets [Li et al., 2018]

51*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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• Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

• Modern architectures prevent the loss to be chaotic as depth increases

Visualizing the loss landscape of neural nets [Li et al., 2018]
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ResNet, no shortcuts ⇒ sharp minima

ResNet ⇒ flat minima

*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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• Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

• Wide-ResNet lead the network toward more flat minimizer
• WideResNet-56 with width-multiplier 𝑘 = 1, 2, 4, 8
• Increased width flatten the minimizer in ResNet

Visualizing the loss landscape of neural nets [Li et al., 2018]
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WRN-56

WRN-56, no shortcuts

Next, minimum energy paths in CNNs
*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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• Draxler et al. (2018) analyzes minimum energy paths [Jónsson et al., 1998] 
between two local minima 𝜃6 and  𝜃G of a given model: 

- They found a path 𝜃6 → 𝜃G with almost zero barrier
• A path that keeps low loss constantly both in training and test

- The gap vanishes as the model grows, especially on modern architectures
• e.g. ResNet, DenseNet

• Minima of a loss of deep neural networks 
are perhaps on a single connected manifold

Essentially no barriers in neural network energy landscape [Draxler et al., 2018]
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DenseNet-40-12

*source : Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018
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• For a given model with two local minima 𝜃6 and 𝜃G, they applied AutoNEB
[Kolsbjerg et al., 2016] to find a minimum energy path 
• A state-of the-art for connecting minima from molecular statistical mechanics

• The deeper and wider an architecture, 
the lower are the saddles between minima 

• They essentially vanish for current-day 
deep architectures

• The test accuracy is also preserved
• CIFAR-10: < +0.5%
• CIFAR-100: < +2.2%

Essentially no barriers in neural network energy landscape [Draxler et al., 2018]
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• The deeper and wider an architecture, the lower are the barriers 

• They essentially vanish for current-day deep architectures

• Why do this phenomenon happen?
• Parameter redundancy may help to flatten the neural loss

Essentially no barriers in neural network energy landscape [Draxler et al., 2018]
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• The larger the network, the more difficult it is to design
1. Optimization difficulty
2. Generalization difficulty

• ImageNet challenge contributed greatly to development of CNN architectures

• ResNet: Optimization ⇒ Generalization
• Many variants of ResNet have been emerged 

• Very recent trends towards automation of network design

• Many observational study supports the advantages of modern CNN 
architectures

Summary

57



Algorithmic Intelligence Laboratory

[Jónsson et al., 1998] Jónsson, H., Mills, G., & Jacobsen, K. W. (1998). Nudged elastic band method for finding 
minimum energy paths of transitions. In Classical and quantum dynamics in condensed phase simulations (pp. 385-
404).
link : https://www.worldscientific.com/doi/abs/10.1142/9789812839664_0016

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to 
document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
link : https://ieeexplore.ieee.org/abstract/document/726791/

[Bergstra et al., 2012] Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of 
Machine Learning Research, 13(Feb), 281-305.
link : http://www.jmlr.org/papers/v13/bergstra12a.html

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep 
convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
link : http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

[Farabet et al., 2013] Farabet, C., Couprie, C., Najman, L., & LeCun, Y. (2013). Learning hierarchical features for scene 
labeling. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1915-1929.
link : https://ieeexplore.ieee.org/abstract/document/6338939/

[Eigen et al., 2014] Eigen, D., Rolfe, J., Fergus, R., & LeCun, Y. (2013). Understanding Deep Architectures using a 
Recursive Convolutional Network. ArXiv Preprint ArXiv:1312.1847, 1–9. 
link : http://arxiv.org/abs/1312.1847

[Simonyan et al., 2014] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image 
recognition. arXiv preprint arXiv:1409.1556.
link: https://arxiv.org/abs/1409.1556

References

58

https://www.worldscientific.com/doi/abs/10.1142/9789812839664_0016
https://ieeexplore.ieee.org/abstract/document/726791/
http://www.jmlr.org/papers/v13/bergstra12a.html
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://ieeexplore.ieee.org/abstract/document/6338939/
http://arxiv.org/abs/1312.1847
https://arxiv.org/abs/1409.1556


Algorithmic Intelligence Laboratory

[Zeiler et al., 2014] Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In 
European conference on computer vision (pp. 818-833). Springer, Cham.
link : https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53

[Ioffe et al., 2015] Ioffe, S. & Szegedy, C.. (2015). Batch Normalization: Accelerating Deep Network Training by 
Reducing Internal Covariate Shift. Proceedings of the 32nd International Conference on Machine Learning, in PMLR 
37:448-456
link : http://proceedings.mlr.press/v37/ioffe15.html

[Ren et al., 2015] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with 
region proposal networks. In Advances in neural information processing systems(pp. 91-99).
link : http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-
networks

[Russakovsky et al., 2015] Russakovsky, O. et al. (2015). Imagenet large scale visual recognition challenge. 
International Journal of Computer Vision, 115(3), 211-252.
link : https://link.springer.com/article/10.1007/s11263-015-0816-y

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). 
Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition 
(pp. 1-9).
link : https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_
CVPR_paper.html

[Han et al., 2016] Han, D., Kim, J., & Kim, J. (2017, July). Deep pyramidal residual networks. In Computer Vision and 
Pattern Recognition (CVPR), 2017 IEEE Conference on (pp. 6307-6315). IEEE. 
link : https://ieeexplore.ieee.org/document/8100151/

References

59

https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
http://proceedings.mlr.press/v37/ioffe15.html
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
https://link.springer.com/article/10.1007/s11263-015-0816-y
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://ieeexplore.ieee.org/document/8100151/


Algorithmic Intelligence Laboratory

[He et al., 2016a] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 
Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
link : https://ieeexplore.ieee.org/document/7780459/

[He et al., 2016b] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. In 
European conference on computer vision (pp. 630-645). Springer, Cham.
link : https://link.springer.com/chapter/10.1007/978-3-319-46493-0_38

[Huang et al., 2016] Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016). Deep networks with stochastic 
depth. In European Conference on Computer Vision (pp. 646-661).
link : https://link.springer.com/chapter/10.1007/978-3-319-46493-0_39

[Kolsbjerg et al., 2016] Kolsbjerg, E. L., Groves, M. N., & Hammer, B. (2016). An automated nudged elastic band 
method. The Journal of chemical physics, 145(9), 094107.
link : https://aip.scitation.org/doi/abs/10.1063/1.4961868

[Targ et al., 2016] Targ, S., Almeida, D., & Lyman, K. (2016). Resnet in Resnet: generalizing residual architectures. 
arXiv preprint arXiv:1603.08029.
link : https://arxiv.org/abs/1603.08029

[Veit et al., 2016] Veit, A., Wilber, M. J., & Belongie, S. (2016). Residual networks behave like ensembles of relatively 
shallow networks. In Advances in Neural Information Processing Systems (pp. 550-558).
link : http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks

[Xie et al., 2016] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017, July). Aggregated residual transformations for 
deep neural networks. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on (pp. 5987-5995). 
IEEE.
link : http://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_
CVPR_2017_paper.pdf

References

60

https://ieeexplore.ieee.org/document/7780459/
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_38
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_39
https://aip.scitation.org/doi/abs/10.1063/1.4961868
https://arxiv.org/abs/1603.08029
http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks
http://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.pdf


Algorithmic Intelligence Laboratory

[Zagoruyko et al., 2016] Zagoruyko, S. and Komodakis, N. (2016). Wide Residual Networks. In Proceedings of the 
British Machine Vision Conference (pp. 87.1-87.12).
link : http://www.bmva.org/bmvc/2016/papers/paper087/index.html

[Zoph et al., 2016] Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement learning. arXiv preprint 
arXiv:1611.01578.
link : https://arxiv.org/abs/1611.01578

[Chen et al., 2017] Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., & Feng, J. (2017). Dual path networks. In Advances in Neural 
Information Processing Systems (pp. 4467-4475).
link : https://papers.nips.cc/paper/7033-dual-path-networks

[Huang et al., 2017] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017, July). Densely Connected 
Convolutional Networks. In CVPR (Vol. 1, No. 2, p. 3).
link : http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_
CVPR_2017_paper.pdf

[Szegedy et al., 2017] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017, February). Inception-v4, inception-
resnet and the impact of residual connections on learning. In AAAI (Vol. 4, p. 12).
link : https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14806/14311

[Brock et al., 2018] Brock, A., Lim, T., Ritchie, J. M., & Weston, N. (2018). SMASH: one-shot model architecture search 
through hypernetworks. In International Conference on Learning Representations.
link : https://openreview.net/forum?id=rydeCEhs-

[Draxler et al., 2018] Draxler, F., Veschgini, K., Salmhofer, M. & Hamprecht, F. (2018). Essentially No Barriers in Neural 
Network Energy Landscape. Proceedings of the 35th International Conference on Machine Learning, in PMLR 
80:1309-1318.
link : http://proceedings.mlr.press/v80/draxler18a.html

References

61

http://www.bmva.org/bmvc/2016/papers/paper087/index.html
https://arxiv.org/abs/1611.01578
https://papers.nips.cc/paper/7033-dual-path-networks
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14806/14311
https://openreview.net/forum?id=rydeCEhs-
http://proceedings.mlr.press/v80/draxler18a.html


Algorithmic Intelligence Laboratory

[Luo et al., 2018] Luo, R., Tian, F., Qin, T., Chen, E. & Liu, T. (2018) Neural Architecture Optimization. arXiv preprint 
arXiv:1808.07233.
link : https://arxiv.org/abs/1808.07233

[Li et al., 2018] Li, H., Xu, Z., Taylor, G., & Goldstein, T. (2017). Visualizing the loss landscape of neural nets. arXiv
preprint arXiv:1712.09913.
link : https://arxiv.org/abs/1712.09913

[Pham et al., 2018] Pham, H., Guan, M., Zoph, B., Le, Q. & Dean, J.. (2018). Efficient Neural Architecture Search via 
Parameters Sharing. Proceedings of the 35th International Conference on Machine Learning, in PMLR 80:4095-4104
link : http://proceedings.mlr.press/v80/pham18a.html

[Real et al., 2018] Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2018). Regularized evolution for image classifier 
architecture search. arXiv preprint arXiv:1802.01548.
link : https://arxiv.org/abs/1802.01548

[Zoph et al., 2018] Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2017). Learning transferable architectures for 
scalable image recognition. arXiv preprint arXiv:1707.07012, 2(6).
link : http://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_
CVPR_2018_paper.pdf

References

62

https://arxiv.org/abs/1808.07233
https://arxiv.org/abs/1712.09913
http://proceedings.mlr.press/v80/pham18a.html
https://arxiv.org/abs/1802.01548
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf

