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• Given training set 
• Prediction function                            parameterized by 
• Empirical risk minimization: Find a parameter that minimizes the loss function

where              is  a loss function e.g., MSE, cross entropy, 
• For example, neural network has

Empirical Risk Minimization (ERM)

4

Next, how to solve ERM?
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• Gradient descent (GD) updates parameters iteratively by taking gradient.

• (+) Converges to global (local) minimum for convex (non-convex) problem.
• (−) Not efficient with respect to computation time and memory space for huge #.
• For example, ImageNet dataset has $ =1,281,167 images for training.

Gradient Descent (GD)

6

parameters

learning rate

loss function

Next, efficient GD

1.2M of 256x256 RGB images
≈ 236 GB memory

random initialization
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• Stochastic gradient descent (SGD) use samples to approximate GD

• In practice, minibatch sizes       can be 32/64/128.
• SGD can find the global solution when

1. loss function is convex
2. bounded variance
3. decreasing learning rate

• But, in many practical problems, SGD has some challenges

Stochastic Gradient Descent (SGD)

7*source : https://lovesnowbest.site/2018/02/16/Improving-Deep-Neural-Networks-Assignment-2/
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• Main practical challenges and current solutions:

1. Loss function is nonconvex and includes local minima/critical points

2. SGD can be too noisy and might be unstable

3. hard to find a good learning rate

Hard to optimize practical problems

8*source : http://www.telesens.co/loss-landscape-viz/viewer.html

loss surface of neural net (ResNet-50)

momentum

adaptive learning rate

bad local minima
critical point

Next, momentum
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1. Momentum gradient descent 
• Add decaying previous gradients (momentum).

• Equivalent to moving average with the fraction ! of previous update. 

• (+) Momentum reduces the oscillation and accelerates the convergence.

Momentum Methods 

10

momentum preservation ratio

SGD

friction to vertical fluctuation

acceleration to left
SGD + momentum 
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1. Momentum gradient descent 
• Add decaying previous gradients (momentum).

• (−) Momentum can fail to converge even for simple convex optimizations.
• Nesterov’s accelerated gradient (NAG) [Nesterov’ 1983] use gradient for 

approximate future position, i.e.,   

Momentum Methods: Nesterov’s Momentum

11

momentum preservation ratio

“lookahead” gradient
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1. Momentum gradient descent 
• Add decaying previous gradients (momentum).

• Nesterov’s accelerated gradient (NAG) [Nesterov’ 1983] use gradient for 
approximate future position, i.e.,   

Momentum Methods: Nesterov’s Momentum

12

momentum preservation ratio

Quiz: fill in the pseudo code of Nesterov’ accelerated gradient

SGD
SGD + momentum

NAG
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Adaptive Learning Rate Methods

13

2. Learning rate scheduling
• Learning rate is critical for minimizing loss !

*source : http://cs231n.github.io/neural-networks-3/

Next, learning rate scheduling

Too high → May ignore the narrow valley, can diverge
Too low → May fall into the local minima, slow converge
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2. Learning rate scheduling : decay methods
• A naive choice is the constant learning rate
• Common learning rate schedules include time-based/step/exponential decay

• “Step decay” decreases learning rate by a factor every few epochs
• Typically, it is set       = 0.01 and drops by half ever             = 10 epoch

Time-based Exponential Step (most popular in practice)

Adaptive Learning Rate Methods: Learning rate annealing

14*source : https://towardsdatascience.com/

step decay exponential decay accuracy

https://towardsdatascience.com/


Algorithmic Intelligence Lab

2. Learning rate scheduling : cycling method
• [Smith’ 2015] proposed cycling learning rate (triangular)

• Why “cycling” learning rate?
• Sometimes, increasing learning rate is helpful to escape the saddle points

• It can be combined with exponential decay or periodic decay

Adaptive Learning Rate Methods: Learning rate annealing

15*source : https://github.com/bckenstler/CLR 

cycling (triangular) decay 



Algorithmic Intelligence Lab

2. Learning rate scheduling : cycling method
• [Loshchilov’ 2017] use cosine cycling and restart the maximum at each cycle
• Why “cosine” ?

• It decays slowly at the half of cycle and drop quickly at the rest

• (+) can climb down and up the loss surface, thus can traverse several local minima
• (+) same as restarting at good points with an initial learning rate

Adaptive Learning Rate Methods: Learning rate annealing

16* source : Loshchilov et al., SGDR: Stochastic Gradient Descent with Warm Restarts. ICLR 2017
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2. Learning rate scheduling : cycling method
• [Loshchilov’ 2017] also proposed warm restart in cycling learning rate

• (+) It help to escape saddle points since it is more likely to stuck in early iteration

Adaptive Learning Rate Methods: Learning rate annealing

17* source : Loshchilov et al., SGDR: Stochastic Gradient Descent with Warm Restarts. ICLR 2017

Next, adaptive learning rate

: step decay : cycling with no restart : cycling with restart

*Warm restart : frequently restart in early iterations

But, there is no perfect learning rate scheduling! It depends on specific task.
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Adaptive Learning Rate Methods: AdaGrad, RMSProp

18

3. Adaptively changing learning rate (AdaGrad, RMSProp)
• AdaGrad [Duchi’ 11] downscales a learning rate by magnitude of previous  gradients.

• (−) the learning rate strictly decreases and becomes too small for large iterations.

• RMSProp [Tieleman’ 12] uses the moving averages of squared gradient.

• Other variants also exist, e.g., Adadelta [Zeiler’ 2012]

sum of all previous squared gradients

preservation ratio
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Adaptive Learning Rate Methods

19* source: animations from from Alec Radford’ blog

optimization on saddle point optimization on local optimum

• Visualization of algorithms

• Adaptive learning-rate methods, i.e., Adadelta and RMSprop are most suitable and 
provide the best convergence for these scenarios 

Next, momentum + adaptive learning rate
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1 + 2.  Combination of momentum and adaptive learning rate

• Adam (ADAptive Moment estimation) [Kingma’ 2015] 

• Can be seen as momentum + RMSprop update.

• Other variants exist, e.g., Adamax [Kingma’ 14], Nadam [Dozat’ 16] 

Adaptive Learning Rate Methods: ADAM

20

average of squared gradients

momentum

* source : Kingma and Ba. Adam: A method for stochastic optimization. ICLR 2015
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• In practice, SGD + Momentum and Adam works well in many applications.
• But, scheduling learning rates is still critical! (should be decay appropriately)
• [Smith’ 2017] shows that decaying learning rate = increasing batch size,

• (+) A large batch size allows fewer parameter updates, leading to parallelism!

Decaying the Learning Rate = Increasing the Batch Size

21* source : Smith et al., "Don't Decay the Learning Rate, Increase the Batch Size.“, ICLR 2017

Next, decoupled SGD with momentum
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• Many learning problems optimize the loss with !" norm penalty 

• It is sometimes called “weight decay” since its gradient decays weight:

• However, both are different when SGD with momentum methods (check!)
• [Loshchilov 2019’] proposes decoupled weight decay with momentum.

• For example, decoupled SGD with momentum iterates (also applicable to Adam)

SGD/Adam with decoupled weight decay

22

(details in later)

weight decaySGD on L2-norm penalty

gradient of loss with L2 penalty

weight decay



Algorithmic Intelligence Lab

• Many learning problems optimize the loss with !" norm penalty 

• It is sometimes called “weight decay” since its gradient decays weight.

• However, both are different when SGD with momentum methods
• [Loshchilov 2019’] proposes decoupled weight decay with improved results than 

standard Adam

SGD/Adam with decoupled weight decay

23* source : Loshchilov et al., " Decoupled Weight Decay Regularization.“, ICLR 2019

(details in later)
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• Overfitting is a central problem in machine learning 

• Why overfitting? model capacity (number of parameters) is too large

• Regularization: any modification to reduce the generalization error
• The main challenge is to find a right model complexity for a given task
• There is no universal model working for all tasks (no free lunch theorem)

Regularization

25*source : https://www.deeplearningbook.org/contents/ml.html

regularization

?

https://www.deeplearningbook.org/contents/ml.html
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Regularization

26

• Practical regularizations in Neural Networks

Regularizations

Loss penalty
• Parameter norm penalty (L2/L1/L0-norm decay)
• Directly approximately regularizing complexity
• …

Parameter sharing
• Convolutional neural networks
• Skip connections 
• …

Noise robustness
• Noises on hidden units (Dropout)
• Noises on gradients (Shake-shake)
• …

Data augmentation
• Making new data by local masking (CutOut)
• Mixing two samples in dataset (mixup)
• …
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• Adding a parameter penalty Ω " ≥ 0 to the objective loss

• λ ∈ 0,∞ : a hyperparameter that controls the relative power of Ω "
• Different penalty Ω results in a different solution being preferred 

Loss Penalty

27*source : https://www.deeplearningbook.org/contents/ml.html

https://www.deeplearningbook.org/contents/ml.html
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• Parameter norm penalty: constraint on the search space of parameters !

Loss Penalty

28*source : https://www.deeplearningbook.org/contents/ml.html

search space

(for some " > 0) 

Next, %& and %' regularization

https://www.deeplearningbook.org/contents/ml.html
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• Parameter norm penalty: Penalizing on the search space of parameters !
• The two most commonly used forms: "# and "$ penalty

• The solution maps to the maximum a posteriori (MAP) estimation under a 
certain prior on weights

Parameter norm penalty 

29

"# (“weight decay”) "$

Ω !

Nickname Ridge regression LASSO

MAP Prior
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• If      is quadratic with diagonal Hessian ! = #$ $$, we get the analytic solutions 
from each regularization [Goodfellow et al., 2016]:

Parameter norm penalty 

30

Next, %&-regularization
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• We typically use the popular !"-regularization to induce sparsity
• Sparse models are advantageous on computational efficiency
• Of course, it is a nice policy for regularization as well

• Why don’t we use #$-penalty?
• Ω & = & ( ≔ *+: *+ ≠ 0
• A more direct measure of sparsity
• It does not shrink the non-sparse weights

Parameter norm penalty: #$-regularization [Louizos et al., 2018]

31*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017
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• We typically use the popular !"-regularization to induce sparsity
• Sparse models are advantageous on computational efficiency
• Of course, it is a nice policy for regularization as well

• Why don’t we use #$-penalty?
• Ω & = & ( ≔ *+: *+ ≠ 0
• A more direct measure of sparsity
• It does not shrink the non-sparse weights

• Problem: Optimization with !(-penalty is intractable in general
• Discrete optimization with 2 & possible states
• Standard gradient-based methods are not applicable

• Can we relax this problem so that to an efficient continuous optimization?

Parameter norm penalty: #$-regularization [Louizos et al., 2018]

32*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017
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• Idea: Regard ! as a random variable, where " ! # is differentiable

1. Consider a simple re-parametrization of !:

• Then, the $#-penalty becomes 

Parameter norm penalty: %&-regularization [Louizos et al., 2018]

33*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017

smoothing
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• Idea: Regard ! as a random variable, where " ! # is differentiable

2. Letting $ %&|(& = Bernoulli (& , we define the expected loss     :

• However, optimizing                 is still hard

• Estimating                                    is not easy due to the discrete nature of 2

Parameter norm penalty: 34-regularization [Louizos et al., 2018]

34*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017

smoothing
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• Idea: Regard ! as a random variable, where " ! # is differentiable
3. Smoothing the discrete random variables $ via a continuous random variables %:

• Since                                                       , we get:

Parameter norm penalty: &'-regularization [Louizos et al., 2018]

35*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017

smoothing
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• Idea: Regard ! as a random variable, where " ! # is differentiable
• Finally, the original loss     is transformed by:

• We can optimize this via minibatch-based gradient estimation methods
• For details, see [Kingma et al., 2013]

Parameter norm penalty: $%-regularization [Louizos et al., 2018]

36

smoothing

*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017
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• !"-regularization leads the networks to a sparse solution, with a good 
regularization as well on MNIST and CIFAR-10/100

Parameter norm penalty: #$-regularization [Louizos et al., 2018]

37*source : Louizos et al. “Learning Sparse Neural Networks through $L_0$ Regularization”, ICLR 2017

Next, complexity regularization

WRN-28-10

MLP
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• Reducing complexity of a model might be a direct way of regularization
• But, how do we know whether a model is complex or not?
• Computational learning theory provides a way for it

• Suppose we have a model , i.e. a set of hypothesis functions
• DARC attempts to reduce the Rademacher complexity of     :

• !", … , !%: i.i.d. random variables, 
• High                    ⇒ is more expressive on 
• It can be used to give a bound of the generalization error in ERM

• For details, see [Shalev-Shwartz et al., 2014]

Directly approximately regularizing complexity (DARC) [Kawaguchi et al., 2017]

39*source : Kawaguchi et al. “Generalization in Deep Learning”, Arxiv 2017

sample size
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• DARC attempts to reduce the Rademacher complexity of     :

• Of course, computing                    is intractable when      is a family of NNs
• Instead, DARC uses a rough approximation of it:

• : the model to optimize (e.g. neural network)
• In other words, here     is approximated by 

Directly approximately regularizing complexity (DARC) [Kawaguchi et al., 2017]

40

sample size

mini-batch size

*source : Kawaguchi et al. “Generalization in Deep Learning”, Arxiv 2017



Algorithmic Intelligence Lab

• Despite its simplicity, DARC improves state-of-the-art level models
• Results on MNIST and CIFAR-10 are presented

• Comparisons in the values of DARC penalty 
• Data augmentation by itself implicitly regularize the DARC penalty

Directly approximately regularizing complexity (DARC) [Kawaguchi et al., 2017]

41

(ND) = no data augmentation 
Next, Noise robustness

*source : Kawaguchi et al. “Generalization in Deep Learning”, Arxiv 2017
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• Prior: Most AI tasks have certain levels of resilience on noise
• One can incorporate such prior by injecting noises to the network

• Noise robustness is also related to adversarial examples
• We will discuss this topic more in detail later

Noise robustness

43

*sources : 
- Chatbri, Houssem et al. “Using scale space filtering to make thinning algorithms 

robust against noise in sketch images.” Pattern Recognition Letters 42 (2014): 1-10.
- https://www.deeplearningbook.org/contents/ml.html

https://www.deeplearningbook.org/contents/ml.html
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• Prior: Most AI tasks have certain levels of resilience on noise
• One can incorporate such prior by injecting noises to the network 

• There can be many ways to impose noises:
1. On inputs or hidden units (e.g. Dropout)

• Noise with infinitesimal variance at the input is equivalent to imposing 
a penalty on the norm of the weights for some models [Bishop, 1995a,b] 

2. On model parameters (e.g. Variational dropout)
• A stochastic implementation of a Bayesian inference over the weights

3. On gradients during optimization (e.g. Shake-shake regularization)
• In practice, SGD can generalize better than full GD in training DNNs 

[Keskar et al., 2016]

Noise robustness

44

Next, Dropout
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• Dropout [Srivastava et al., 2014] randomly drops a neuron with probability !
during training
• Same as multiplying a noise " ∼ Bernulli(!) to each neuron

• At testing, each weights are scaled by !

• Dropout is applied to hidden units typically
• Destruction of high-level information e.g. edges, nose, …

Noises on inputs or hidden units: Dropout [Srivastava et al., 2014] 

45*source : Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. JMLR 2014
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Why dropout generalizes well? 
1. It can be thought of as ensemble of 2" subnets with parameter sharing

2. Dropout prevents co-adaptation of neurons
• Noisy neurons are less reliable
• Each neuron must be prepared on which other neurons are dropped

Noises on inputs or hidden units: Dropout [Srivastava et al., 2014] 

46*source : Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. JMLR 2014
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The fully understanding on why dropout works is still an open question

• Stochasticity might not be necessary
• Fast dropout [Wang et al., 2013]: A deterministic version of dropout with analytic 

marginalization

• Dropout as an ensemble is not enough
• Dropout offers additional improvements to generalization error beyond those 

obtained by ensembles of independent models [Warde-Farley et al., 2013]

• Dropping neurons are not necessary
• In principle, any kind of random modification is admissible
• Gaussian dropout, i.e.                             , can work as well as the original dropout 

with probability !, or even work better

Noises on inputs or hidden units: Dropout [Srivastava et al., 2014] 

47

Next, Variational dropout

*source : Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. JMLR 2014
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• In dropout, one have to find the best ! manually
• What if we want different rates for each of neurons?

• Variational dropout (VD) allows to learn the dropout rates separately

• Unlike Dropout, VD imposes noises on model parameters ":

• A Bayesian generalization of Gaussian dropout [Srivastava et al., 2014]
• The random vector                     is adapted to data in Bayesian sense by 

updating # and "

• Re-parametrization trick allows $ to be learned via minibatch-based gradient 
estimation methods [Kingma et al., 2013]
• # and " can be “optimized” separated from noises

Noises on model parameters: Variational dropout [Kingma et al., 2015]

48*source : Kingma et al. “Variational dropout and the local reparametrization trick”. NIPS 2015
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• VD lead to a better model than dropout
• VD could also improve CNN as well, while dropout could not(1b)

Noises on model parameters: Variational dropout [Kingma et al., 2015]

49

Next, Shake-shake regularization
*source : Kingma et al. “Variational dropout and the local reparametrization trick”. NIPS 2015
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• Noises can be injected even in gradients during back-propagation
• Shake-shake regularization considers a 3-branch ResNeXt [Xie et al., 2017]

• Here, notice that α" and β" are independent random variables
• α" stochastically blends the outputs from two branches
• β" randomly re-distributes the returning gradient between two branches

• Those re-scaling are done in channel-wise

Noises on gradients: Shake-shake regularization [Gastaldi, 2017]

50

Forward Backward At test

*source : Gastaldi, X. “Shake-Shake regularization”. Arxiv 2017
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• Shake-shake shows one of the current state-of-the-art result on CIFAR-10/100

• Shake-shake reduces layer-wise correlations between two branches 

Noises on gradients: Shake-shake regularization [Gastaldi, 2017]

51*source : Gastaldi, X. “Shake-Shake regularization”. Arxiv 2017
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• Prior: The best way to generalize better is to gain more data

• Create fake data and add it to the training set
• Requires some knowledge on making good “fakes”

• Particularly effective for classification tasks
• Some tasks may not be readily applicable, e.g. density estimation

• Example: Rigid transformation symmetries
• Translation, dilation, rotation, mirror symmetry, …

• Forms an affine group on pixels:

Dataset augmentation

53

Translation Dilation Rotation Mirror symmetry

Next, CutOut
*source : https://github.com/joanbruna/MathsDL-spring18/blob/master/lectures/lecture2.pdf

https://github.com/joanbruna/MathsDL-spring18/blob/master/lectures/lecture2.pdf
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• Dropout appears to be less powerful when used with convolutional layers
• Dropping pixels randomly may disturb gradients due to parameter sharing
• Neighboring pixels in CNNs would contains much of the dropped information

• Channel-wise dropout [Tompson et al., 2015] may alleviate these issues
• However, the network capacity may be considerably reduced 

• What do we expect by performing dropout on images? 
• Preventing co-adaptation on high-level objects (nose, eyes, …)
• For images, this can be also done by just using local masking

Making new data by local masking: CutOut [Devries et al., 2017] 

54*source : Devries & Taylor. “Improved Regularization of Convolutional Neural Networks with Cutout”, Arxiv 2017
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• What do we expect by performing dropout on images? 
• Preventing co-adaptation on high-level objects (nose, eyes, …)
• For images, this can be also done by just using local masking

• CutOut directly brings this into data augmentation
• Data augmentation via square-masking randomly on images

Making new data by local masking: CutOut [Devries et al., 2017] 

55*source : Devries & Taylor. “Improved Regularization of Convolutional Neural Networks with Cutout”, Arxiv 2017
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• CutOut further improved Shake-shake regularization [Gastaldi, 2017] achieving 
the state-of-the-art result on CIFAR-10/100

• The size of the square should be set as a hyperparameter

Making new data by local masking: CutOut [Devries et al., 2017] 

56

Next, Mixup
*source : Devries & Taylor. “Improved Regularization of Convolutional Neural Networks with Cutout”, Arxiv 2017
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• In mixup, a new training example is constructed by:

• , where    : hyperparameter
• ’s are uniformly sampled from the training data

• Surprisingly, this simple scheme outperforms empirical risk minimization (ERM)
• A new state-of-art performance on CIFAR-10/100 and ImageNet
• Robustness when learning from corrupt labels
• Handling adversarial examples
• Stabilizing GANs
• …

Mixing two samples in dataset: mixup [Zhang et al., 2018]

57*source : Zhang, H. et al. “mixup: Beyond Empirical Risk Minimization”, ICLR 2018
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• In mixup, a new training example is constructed by:

• , where    : hyperparameter
• ’s are uniformly sampled from the training data

• What is mixup doing?
• Incorporating prior knowledge: the model should 

behave linearly in-between training examples
• It reduces the amount of undesirable oscillations 

when predicting outside the training examples

Mixing two samples in dataset: mixup [Zhang et al., 2018]

58*source : Zhang, H. et al. “mixup: Beyond Empirical Risk Minimization”, ICLR 2018
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• mixup significantly improves generalization in CIFIAR-10/100 and ImageNet

• mixup also shows robustness on corrupted labels while improving 
memorization [Zhang et al., 2016]

Mixing two samples in dataset: mixup [Zhang et al., 2018]

59*source : Zhang, H. et al. “mixup: Beyond Empirical Risk Minimization”, ICLR 2018
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• SGD have been used as essential algorithms to deep learning as back-propagation.
• Momentum methods improve the performance of gradient descend algorithms.
• Annealing learning rates are critical for training loss functions

• In practice, SGD + momentum shows successful results, outperforming Adam!
• For example, NLP (Huang et al., 2017) or machine translation (Wu et al., 2016)

• Reducing the test error, possibly at the expense of increased training error
• No free lunch theorem says that there is no best form of regularization

• Developing effective regularizations is one of the major research in the field

• Nevertheless, as we are focusing on AI tasks, there could be some general strategies 
for a wide range of our problems
• Loss penalty
• Parameter sharing
• Noise robustness
• Dataset augmentation
• … there can be many other ways!

Summary

60
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link: http://mpawankumar.info/teaching/cdt-big-data/nesterov83.pdf

• [Duchi et al 2011], “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
link : http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

• [Tieleman’ 2012] Geoff Hinton’s Lecture 6e of Coursera Class
link : http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

• [Zeiler’ 2012] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method
link : https://arxiv.org/pdf/1212.5701.pdf

• [Smith’ 2015] Smith, Leslie N. "Cyclical learning rates for training neural networks.”
link : https://arxiv.org/pdf/1506.01186.pdf

• [Kingma and Ba., 2015] Kingma and Ba. Adam: A method for stochastic optimization. ICLR 2015
link : https://arxiv.org/pdf/1412.6980.pdf

• [Dozat’ 2016] Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. ICLR Workshop,
link : http://cs229.stanford.edu/proj2015/054_report.pdf

• [Smith et al., 2017] Smith, Samuel L., Pieter-Jan Kindermans and Quoc V. Le. Don't Decay the Learning Rate, Increase 
the Batch Size. ICLR 2017.
link : https://openreview.net/pdf?id=B1Yy1BxCZ

• [Loshchilov et al., 2017] Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic Gradient Descent with Warm Restarts. ICLR 
2017.
link : https://arxiv.org/pdf/1608.03983.pdf

• [Loshchilov et al., 2019] Loshchilov, I., & Hutter, F. (2019). Decoupled Weight Decay Regularization. ICLR 2019.
link : https://arxiv.org/pdf/1711.05101.pdf

References

61

https://arxiv.org/pdf/1212.5701.pdf
https://arxiv.org/pdf/1506.01186.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://cs229.stanford.edu/proj2015/054_report.pdf
https://openreview.net/pdf?id=B1Yy1BxCZ
https://arxiv.org/pdf/1608.03983.pdf
https://arxiv.org/pdf/1711.05101.pdf


Algorithmic Intelligence Lab

References

62

• [Bishop, 1995a] Bishop, C. (1995). Regularization and Complexity Control in Feed-forward Networks. In 
Proceedings International Conference on Artificial Neural Networks (pp. 141–148). 
link : https://www.microsoft.com/en-us/research/publication/regularization-and-complexity-control-in-feed-
forward-networks/

• [Bishop, 1995b] Bishop, C. (1995). Training with Noise is Equivalent to Tikhonov Regularization. Neural 
Computation, 7, 108–116.
link : https://ieeexplore.ieee.org/document/6796505/

• [Wolpert et al., 1997] Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE 
Transactions on Evolutionary Computation, 1(1), 67–82.
link : https://ieeexplore.ieee.org/document/585893/

• [Hinton et al., 2012] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). 
Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
link : https://arxiv.org/abs/1207.0580

• [Kingma et al., 2013] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint 
arXiv:1312.6114.
link : https://arxiv.org/abs/1312.6114

• [Wang et al., 2013] Wang, S., & Manning, C. (2013). Fast dropout training. In Proceedings of the 30th International 
Conference on Machine Learning (Vol. 28, pp. 118–126). Atlanta, Georgia, USA: PMLR. 
link : http://proceedings.mlr.press/v28/wang13a.html

• [Warde-Farley et al., 2013] Warde-Farley, D., Goodfellow, I. J., Courville, A., & Bengio, Y. (2013). An empirical 
analysis of dropout in piecewise linear networks. ArXiv Preprint ArXiv:1312.6197.
link : https://arxiv.org/abs/1312.6197

https://www.microsoft.com/en-us/research/publication/regularization-and-complexity-control-in-feed-forward-networks/
https://ieeexplore.ieee.org/document/6796505/
https://ieeexplore.ieee.org/document/585893/
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1312.6114
http://proceedings.mlr.press/v28/wang13a.html
https://arxiv.org/abs/1312.6197


Algorithmic Intelligence Lab

References

63

• [Dauphin et al., 2014] Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014). Identifying 
and attacking the saddle point problem in high-dimensional non-convex optimization. Advances in Neural 
Information Processing Systems 27 (pp. 2933–2941).
link : https://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-
non-convex-optimization

• [Goodfellow et al., 2014] Goodfellow, I. J., & Vinyals, O. (2014). Qualitatively characterizing neural network 
optimization problems. CoRR, abs/1412.6544.
link : https://arxiv.org/abs/1412.6544

• [Shalev-Shwartz et al., 2014] Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning: From 
Theory to Algorithms. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107298019
link : https://www.cambridge.org/core/books/understanding-machine-
learning/3059695661405D25673058E43C8BE2A6

• [Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: 
A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15, 1929–1958.
link : http://jmlr.org/papers/v15/srivastava14a.html

• [Tompson et al., 2015] Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C. (2015). Efficient object 
localization using convolutional networks. In Computer Vision and Pattern Recognition (pp. 648–656).
link : https://arxiv.org/abs/1411.4280

• [Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press, pp.221-265.
link : https://www.deeplearningbook.org/

• [Kingma et al., 2015] Kingma, D. P., Salimans, T., & Welling, M. (2015). Variational dropout and the local 
reparameterization trick. In Advances in Neural Information Processing Systems (pp. 2575-2583).
link : https://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick

https://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-optimization
https://arxiv.org/abs/1412.6544
https://www.cambridge.org/core/books/understanding-machine-learning/3059695661405D25673058E43C8BE2A6
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1411.4280
https://www.deeplearningbook.org/
https://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick


Algorithmic Intelligence Lab

References

64

• [Maddison et al. 2016] Maddison, C. J., Mnih, A., & Teh, Y. W. (2016). The concrete distribution: A continuous 
relaxation of discrete random variables. In International Conference on Learning Representations. 
link : https://openreview.net/forum?id=S1jE5L5gl

• [Keskar et al., 2016] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2016). On large-batch 
training for deep learning: Generalization gap and sharp minima. In International Conference on Learning 
Representations. 
link : https://openreview.net/forum?id=H1oyRlYgg

• [Zhang et al., 2016] Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2016). Understanding deep learning 
requires rethinking generalization. CoRR, abs/1611.03530. 
link : https://arxiv.org/abs/1611.03530

• [Ravanbakhsh et al., 2017] Ravanbakhsh, S., Schneider, J., & Póczos, B. (2017). Equivariance Through Parameter-
Sharing. In Proceedings of the 34th International Conference on Machine Learning (Vol. 70, pp. 2892–2901). 
International Convention Centre, Sydney, Australia: PMLR. 
link : http://proceedings.mlr.press/v70/ravanbakhsh17a.html

• [Devries et al., 2017] Devries, T., & Taylor, G. W. (2017). Improved Regularization of Convolutional Neural 
Networks with Cutout. CoRR, abs/1708.04552. Retrieved from http://arxiv.org/abs/1708.04552
link : https://arxiv.org/abs/1708.04552

• [Gastaldi, 2017] Gastaldi, X. (2017). Shake-Shake regularization. CoRR, abs/1705.07485. 
link : http://arxiv.org/abs/1705.07485

• [Kawaguchi et al., 2017] Kawaguchi, K., Kaelbling, L. P., & Bengio, Y. (2017). Generalization in deep learning. arXiv
preprint arXiv:1710.05468.
link : https://arxiv.org/abs/1710.05468

https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=H1oyRlYgg
https://arxiv.org/abs/1611.03530
http://proceedings.mlr.press/v70/ravanbakhsh17a.html
http://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1705.07485
https://arxiv.org/abs/1710.05468


Algorithmic Intelligence Lab

References

65

• [Pereyra et al., 2017] Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., & Hinton, G. (2017). Regularizing neural 
networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548.
link : https://arxiv.org/abs/1701.06548

• [Xie et al., 2017] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for 
deep neural networks. In Computer Vision and Pattern Recognition (pp. 5987–5995).
link : http://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR
_2017_paper.pdf

• [Arora et al., 2018] Arora, S., Cohen, N., & Hazan, E. (2018). On the Optimization of Deep Networks: Implicit 
Acceleration by Overparameterization. In Proceedings of the 35th International Conference on Machine Learning
(Vol. 80, pp. 244–253). Stockholmsmässan, Stockholm Sweden: PMLR. 
link : http://proceedings.mlr.press/v80/arora18a.html

• [Hartford et al., 2018] Hartford, J., Graham, D., Leyton-Brown, K., & Ravanbakhsh, S. (2018). Deep Models of 
Interactions Across Sets. In Proceedings of the 35th International Conference on Machine Learning (Vol. 80, pp. 
1909–1918). Stockholmsmässan, Stockholm Sweden: PMLR. 
Link : http://proceedings.mlr.press/v80/hartford18a.html

• [Louizos et al., 2018] Louizos, C., Welling, M., & Kingma, D. P. (2018). Learning Sparse Neural Networks through 
L_0 Regularization. In International Conference on Learning Representations. 
link : https://openreview.net/forum?id=H1Y8hhg0b

• [Zhang et al., 2018] Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). mixup: Beyond Empirical Risk 
Minimization. In International Conference on Learning Representations.
link : https://openreview.net/forum?id=r1Ddp1-Rb

https://arxiv.org/abs/1701.06548
http://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.pdf
http://proceedings.mlr.press/v80/arora18a.html
http://proceedings.mlr.press/v80/hartford18a.html
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=r1Ddp1-Rb


Algorithmic Intelligence Lab

• [Nesterov’ 1983] Nesterov. A method of solving a convex programming problem with convergence rate O(1/k^2). 
1983
link: http://mpawankumar.info/teaching/cdt-big-data/nesterov83.pdf

• [Duchi et al 2011], “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
link : http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

• [Tieleman’ 2012] Geoff Hinton’s Lecture 6e of Coursera Class
link : http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

• [Zeiler’ 2012] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method
link : https://arxiv.org/pdf/1212.5701.pdf

• [Smith’ 2015] Smith, Leslie N. "Cyclical learning rates for training neural networks.”
link : https://arxiv.org/pdf/1506.01186.pdf

• [Kingma and Ba., 2015] Kingma and Ba. Adam: A method for stochastic optimization. ICLR 2015
link : https://arxiv.org/pdf/1412.6980.pdf

• [Dozat’ 2016] Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. ICLR Workshop,
link : http://cs229.stanford.edu/proj2015/054_report.pdf

• [Smith et al., 2017] Smith, Samuel L., Pieter-Jan Kindermans and Quoc V. Le. Don't Decay the Learning Rate, 
Increase the Batch Size. ICLR 2017.
link : https://openreview.net/pdf?id=B1Yy1BxCZ

• [Loshchilov et al., 2017] Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic Gradient Descent with Warm Restarts. 
ICLR 2017.
link : https://arxiv.org/pdf/1608.03983.pdf

References

66

https://arxiv.org/pdf/1212.5701.pdf
https://arxiv.org/pdf/1506.01186.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://cs229.stanford.edu/proj2015/054_report.pdf
https://openreview.net/pdf?id=B1Yy1BxCZ
https://arxiv.org/pdf/1608.03983.pdf

