
Algorithmic Intelligence Lab

Algorithmic Intelligence Lab

AI602: Recent Advances in Deep Learning
Lecture 2

Slide made by

Insu Han
KAIST EE

Optimization and Regularization

Algorithmic Intelligence Lab

1. Introduction
• Empirical risk minimization (ERM)

2. Stochastic Gradient Descent
• Gradient descent (GD) and stochastic gradient descent (SGD)
• Momentum and adaptive learning rate methods

3. Regularization
• Loss penalty with L2/L1/L0 norm
• Directly approximately regularizing complexity
• Noises on hidden units/gradients
• Data augmentations

4. Summary

Table of Contents

2

Algorithmic Intelligence Lab

1. Introduction
• Empirical risk minimization (ERM)

2. Stochastic Gradient Descent
• Gradient descent (GD) and stochastic gradient descent (SGD)
• Momentum and adaptive learning rate methods

3. Regularization
• Loss penalty with L2/L1/L0 norm
• Directly approximately regularizing complexity
• Noises on hidden units/gradients
• Data augmentations

4. Summary

Table of Contents

3

Algorithmic Intelligence Lab

• Given training set
• Prediction function parameterized by
• Empirical risk minimization: Find a parameter that minimizes the loss function

where is a loss function e.g., MSE, cross entropy,
• For example, neural network has

Empirical Risk Minimization (ERM)

4

Next, how to solve ERM?

Algorithmic Intelligence Lab

1. Introduction
• Empirical risk minimization (ERM)

2. Stochastic Gradient Descent
• Gradient descent (GD) and stochastic gradient descent (SGD)
• Momentum and adaptive learning rate methods

3. Regularization
• Loss penalty with L2/L1/L0 norm
• Directly approximately regularizing complexity
• Noises on hidden units/gradients
• Data augmentations

4. Summary

Table of Contents

5

Algorithmic Intelligence Lab

• Gradient descent (GD) updates parameters iteratively by taking gradient.

• (+) Converges to global (local) minimum for convex (non-convex) problem.
• (−) Not efficient with respect to computation time and memory space for huge #.
• For example, ImageNet dataset has $ =1,281,167 images for training.

Gradient Descent (GD)

6

parameters

learning rate

loss function

Next, efficient GD

1.2M of 256x256 RGB images
≈ 236 GB memory

random initialization

Algorithmic Intelligence Lab

• Stochastic gradient descent (SGD) use samples to approximate GD

• In practice, minibatch sizes can be 32/64/128.
• SGD can find the global solution when

1. loss function is convex
2. bounded variance
3. decreasing learning rate

• But, in many practical problems, SGD has some challenges

Stochastic Gradient Descent (SGD)

7*source : https://lovesnowbest.site/2018/02/16/Improving-Deep-Neural-Networks-Assignment-2/

Algorithmic Intelligence Lab

• Main practical challenges and current solutions:

1. Loss function is nonconvex and includes local minima/critical points

2. SGD can be too noisy and might be unstable

3. hard to find a good learning rate

Hard to optimize practical problems

8*source : http://www.telesens.co/loss-landscape-viz/viewer.html

loss surface of neural net (ResNet-50)

momentum

adaptive learning rate

bad local minima
critical point

Next, momentum

Algorithmic Intelligence Lab

1. Introduction
• Empirical risk minimization (ERM)

2. Stochastic Gradient Descent
• Gradient descent (GD) and stochastic gradient descent (SGD)
• Momentum and adaptive learning rate methods

3. Regularization
• Loss penalty with L2/L1/L0 norm
• Directly approximately regularizing complexity
• Noises on hidden units/gradients
• Data augmentations

4. Summary

Table of Contents

9

Algorithmic Intelligence Lab

1. Momentum gradient descent
• Add decaying previous gradients (momentum).

• Equivalent to moving average with the fraction ! of previous update.

• (+) Momentum reduces the oscillation and accelerates the convergence.

Momentum Methods

10

momentum preservation ratio

SGD

friction to vertical fluctuation

acceleration to left
SGD + momentum

Algorithmic Intelligence Lab

1. Momentum gradient descent
• Add decaying previous gradients (momentum).

• (−) Momentum can fail to converge even for simple convex optimizations.
• Nesterov’s accelerated gradient (NAG) [Nesterov’ 1983] use gradient for

approximate future position, i.e.,

Momentum Methods: Nesterov’s Momentum

11

momentum preservation ratio

“lookahead” gradient

Algorithmic Intelligence Lab

1. Momentum gradient descent
• Add decaying previous gradients (momentum).

• Nesterov’s accelerated gradient (NAG) [Nesterov’ 1983] use gradient for
approximate future position, i.e.,

Momentum Methods: Nesterov’s Momentum

12

momentum preservation ratio

Quiz: fill in the pseudo code of Nesterov’ accelerated gradient

SGD
SGD + momentum

NAG

Algorithmic Intelligence Lab

Adaptive Learning Rate Methods

13

2. Learning rate scheduling
• Learning rate is critical for minimizing loss !

*source : http://cs231n.github.io/neural-networks-3/

Next, learning rate scheduling

Too high → May ignore the narrow valley, can diverge
Too low → May fall into the local minima, slow converge

Algorithmic Intelligence Lab

2. Learning rate scheduling : decay methods
• A naive choice is the constant learning rate
• Common learning rate schedules include time-based/step/exponential decay

• “Step decay” decreases learning rate by a factor every few epochs
• Typically, it is set = 0.01 and drops by half ever = 10 epoch

Time-based Exponential Step (most popular in practice)

Adaptive Learning Rate Methods: Learning rate annealing

14*source : https://towardsdatascience.com/

step decay exponential decay accuracy

https://towardsdatascience.com/

Algorithmic Intelligence Lab

2. Learning rate scheduling : cycling method
• [Smith’ 2015] proposed cycling learning rate (triangular)

• Why “cycling” learning rate?
• Sometimes, increasing learning rate is helpful to escape the saddle points

• It can be combined with exponential decay or periodic decay

Adaptive Learning Rate Methods: Learning rate annealing

15*source : https://github.com/bckenstler/CLR

cycling (triangular) decay

Algorithmic Intelligence Lab

2. Learning rate scheduling : cycling method
• [Loshchilov’ 2017] use cosine cycling and restart the maximum at each cycle
• Why “cosine” ?

• It decays slowly at the half of cycle and drop quickly at the rest

• (+) can climb down and up the loss surface, thus can traverse several local minima
• (+) same as restarting at good points with an initial learning rate

Adaptive Learning Rate Methods: Learning rate annealing

16* source : Loshchilov et al., SGDR: Stochastic Gradient Descent with Warm Restarts. ICLR 2017

Algorithmic Intelligence Lab

2. Learning rate scheduling : cycling method
• [Loshchilov’ 2017] also proposed warm restart in cycling learning rate

• (+) It help to escape saddle points since it is more likely to stuck in early iteration

Adaptive Learning Rate Methods: Learning rate annealing

17* source : Loshchilov et al., SGDR: Stochastic Gradient Descent with Warm Restarts. ICLR 2017

Next, adaptive learning rate

: step decay : cycling with no restart : cycling with restart

*Warm restart : frequently restart in early iterations

But, there is no perfect learning rate scheduling! It depends on specific task.

Algorithmic Intelligence Lab

Adaptive Learning Rate Methods: AdaGrad, RMSProp

18

3. Adaptively changing learning rate (AdaGrad, RMSProp)
• AdaGrad [Duchi’ 11] downscales a learning rate by magnitude of previous gradients.

• (−) the learning rate strictly decreases and becomes too small for large iterations.

• RMSProp [Tieleman’ 12] uses the moving averages of squared gradient.

• Other variants also exist, e.g., Adadelta [Zeiler’ 2012]

sum of all previous squared gradients

preservation ratio

Algorithmic Intelligence Lab

Adaptive Learning Rate Methods

19* source: animations from from Alec Radford’ blog

optimization on saddle point optimization on local optimum

• Visualization of algorithms

• Adaptive learning-rate methods, i.e., Adadelta and RMSprop are most suitable and
provide the best convergence for these scenarios

Next, momentum + adaptive learning rate

Algorithmic Intelligence Lab

1 + 2. Combination of momentum and adaptive learning rate

• Adam (ADAptive Moment estimation) [Kingma’ 2015]

• Can be seen as momentum + RMSprop update.

• Other variants exist, e.g., Adamax [Kingma’ 14], Nadam [Dozat’ 16]

Adaptive Learning Rate Methods: ADAM

20

average of squared gradients

momentum

* source : Kingma and Ba. Adam: A method for stochastic optimization. ICLR 2015

Algorithmic Intelligence Lab

• In practice, SGD + Momentum and Adam works well in many applications.
• But, scheduling learning rates is still critical! (should be decay appropriately)
• [Smith’ 2017] shows that decaying learning rate = increasing batch size,

• (+) A large batch size allows fewer parameter updates, leading to parallelism!

Decaying the Learning Rate = Increasing the Batch Size

21* source : Smith et al., "Don't Decay the Learning Rate, Increase the Batch Size.“, ICLR 2017

Next, decoupled SGD with momentum

Algorithmic Intelligence Lab

• Many learning problems optimize the loss with !" norm penalty

• It is sometimes called “weight decay” since its gradient decays weight:

• However, both are different when SGD with momentum methods (check!)
• [Loshchilov 2019’] proposes decoupled weight decay with momentum.

• For example, decoupled SGD with momentum iterates (also applicable to Adam)

SGD/Adam with decoupled weight decay

22

(details in later)

weight decaySGD on L2-norm penalty

gradient of loss with L2 penalty

weight decay

Algorithmic Intelligence Lab

• Many learning problems optimize the loss with !" norm penalty

• It is sometimes called “weight decay” since its gradient decays weight.

• However, both are different when SGD with momentum methods
• [Loshchilov 2019’] proposes decoupled weight decay with improved results than

standard Adam

SGD/Adam with decoupled weight decay

23* source : Loshchilov et al., " Decoupled Weight Decay Regularization.“, ICLR 2019

(details in later)

Algorithmic Intelligence Lab

1. Introduction
• Empirical risk minimization (ERM)

2. Stochastic Gradient Descent
• Gradient descent (GD) and stochastic gradient descent (SGD)
• Momentum and adaptive learning rate methods

3. Regularization
• Loss penalty with L2/L1/L0 norm
• Directly approximately regularizing complexity
• Noises on hidden units/gradients
• Data augmentations

4. Summary

Table of Contents

24

Algorithmic Intelligence Lab

• Overfitting is a central problem in machine learning

• Why overfitting? model capacity (number of parameters) is too large

• Regularization: any modification to reduce the generalization error
• The main challenge is to find a right model complexity for a given task
• There is no universal model working for all tasks (no free lunch theorem)

Regularization

25*source : https://www.deeplearningbook.org/contents/ml.html

regularization

?

https://www.deeplearningbook.org/contents/ml.html

Algorithmic Intelligence Lab

Regularization

26

• Practical regularizations in Neural Networks

Regularizations

Loss penalty
• Parameter norm penalty (L2/L1/L0-norm decay)
• Directly approximately regularizing complexity
• …

Parameter sharing
• Convolutional neural networks
• Skip connections
• …

Noise robustness
• Noises on hidden units (Dropout)
• Noises on gradients (Shake-shake)
• …

Data augmentation
• Making new data by local masking (CutOut)
• Mixing two samples in dataset (mixup)
• …

Algorithmic Intelligence Lab

• Adding a parameter penalty Ω " ≥ 0 to the objective loss

• λ ∈ 0,∞ : a hyperparameter that controls the relative power of Ω "
• Different penalty Ω results in a different solution being preferred

Loss Penalty

27*source : https://www.deeplearningbook.org/contents/ml.html

https://www.deeplearningbook.org/contents/ml.html

Algorithmic Intelligence Lab

• Parameter norm penalty: constraint on the search space of parameters !

Loss Penalty

28*source : https://www.deeplearningbook.org/contents/ml.html

search space

(for some " > 0)

Next, %& and %' regularization

https://www.deeplearningbook.org/contents/ml.html

Algorithmic Intelligence Lab

• Parameter norm penalty: Penalizing on the search space of parameters !
• The two most commonly used forms: "# and "$ penalty

• The solution maps to the maximum a posteriori (MAP) estimation under a
certain prior on weights

Parameter norm penalty

29

"# (“weight decay”) "$

Ω !

Nickname Ridge regression LASSO

MAP Prior

Algorithmic Intelligence Lab

• If is quadratic with diagonal Hessian ! = #$ $$, we get the analytic solutions
from each regularization [Goodfellow et al., 2016]:

Parameter norm penalty

30

Next, %&-regularization

'∗

)*

)+

,'-. =
#$

#$ + #
)$∗

$

'∗

)*

)+

,'-0 = sgn)$∗ max)$∗ −
#
#$
, 0

$

“sparse” solution“rescaling” eigenvalues

Algorithmic Intelligence Lab

• We typically use the popular !"-regularization to induce sparsity
• Sparse models are advantageous on computational efficiency
• Of course, it is a nice policy for regularization as well

• Why don’t we use #$-penalty?
• Ω & = & (≔ *+: *+ ≠ 0
• A more direct measure of sparsity
• It does not shrink the non-sparse weights

Parameter norm penalty: #$-regularization [Louizos et al., 2018]

31*source : Louizos et al. “Learning Sparse Neural Networks through L_0 Regularization”, ICLR 2017

Algorithmic Intelligence Lab

• We typically use the popular !"-regularization to induce sparsity
• Sparse models are advantageous on computational efficiency
• Of course, it is a nice policy for regularization as well

• Why don’t we use #$-penalty?
• Ω & = & (≔ *+: *+ ≠ 0
• A more direct measure of sparsity
• It does not shrink the non-sparse weights

• Problem: Optimization with !(-penalty is intractable in general
• Discrete optimization with 2 & possible states
• Standard gradient-based methods are not applicable

• Can we relax this problem so that to an efficient continuous optimization?

Parameter norm penalty: #$-regularization [Louizos et al., 2018]

32*source : Louizos et al. “Learning Sparse Neural Networks through L_0 Regularization”, ICLR 2017

Algorithmic Intelligence Lab

• Idea: Regard ! as a random variable, where " ! # is differentiable

1. Consider a simple re-parametrization of !:

• Then, the $#-penalty becomes

Parameter norm penalty: %&-regularization [Louizos et al., 2018]

33*source : Louizos et al. “Learning Sparse Neural Networks through L_0 Regularization”, ICLR 2017

smoothing

Algorithmic Intelligence Lab

• Idea: Regard ! as a random variable, where " ! # is differentiable

2. Letting $ %&|(& = Bernoulli (& , we define the expected loss :

• However, optimizing is still hard

• Estimating is not easy due to the discrete nature of 2

Parameter norm penalty: 34-regularization [Louizos et al., 2018]

34*source : Louizos et al. “Learning Sparse Neural Networks through L_0 Regularization”, ICLR 2017

smoothing

Algorithmic Intelligence Lab

• Idea: Regard ! as a random variable, where " ! # is differentiable
3. Smoothing the discrete random variables $ via a continuous random variables %:

• Since , we get:

Parameter norm penalty: &'-regularization [Louizos et al., 2018]

35*source : Louizos et al. “Learning Sparse Neural Networks through L_0 Regularization”, ICLR 2017

smoothing

Algorithmic Intelligence Lab

• Idea: Regard ! as a random variable, where " ! # is differentiable
• Finally, the original loss is transformed by:

• We can optimize this via minibatch-based gradient estimation methods
• For details, see [Kingma et al., 2013]

Parameter norm penalty: $%-regularization [Louizos et al., 2018]

36

smoothing

*source : Louizos et al. “Learning Sparse Neural Networks through L_0 Regularization”, ICLR 2017

Algorithmic Intelligence Lab

• !"-regularization leads the networks to a sparse solution, with a good
regularization as well on MNIST and CIFAR-10/100

Parameter norm penalty: #$-regularization [Louizos et al., 2018]

37*source : Louizos et al. “Learning Sparse Neural Networks through L_0 Regularization”, ICLR 2017

Next, complexity regularization

WRN-28-10

MLP

Algorithmic Intelligence Lab

1. Introduction
• Empirical risk minimization (ERM)

2. Stochastic Gradient Descent
• Gradient descent (GD) and stochastic gradient descent (SGD)
• Momentum and adaptive learning rate methods

3. Regularization
• Loss penalty with L2/L1/L0 norm
• Directly approximately regularizing complexity
• Noises on hidden units/gradients
• Data augmentations

4. Summary

Table of Contents

38

Algorithmic Intelligence Lab

• Reducing complexity of a model might be a direct way of regularization
• But, how do we know whether a model is complex or not?
• Computational learning theory provides a way for it

• Suppose we have a model , i.e. a set of hypothesis functions
• DARC attempts to reduce the Rademacher complexity of :

• !", … , !%: i.i.d. random variables,
• High ⇒ is more expressive on
• It can be used to give a bound of the generalization error in ERM

• For details, see [Shalev-Shwartz et al., 2014]

Directly approximately regularizing complexity (DARC) [Kawaguchi et al., 2017]

39*source : Kawaguchi et al. “Generalization in Deep Learning”, Arxiv 2017

sample size

Algorithmic Intelligence Lab

• DARC attempts to reduce the Rademacher complexity of :

• Of course, computing is intractable when is a family of NNs
• Instead, DARC uses a rough approximation of it:

• : the model to optimize (e.g. neural network)
• In other words, here is approximated by

Directly approximately regularizing complexity (DARC) [Kawaguchi et al., 2017]

40

sample size

mini-batch size

*source : Kawaguchi et al. “Generalization in Deep Learning”, Arxiv 2017

Algorithmic Intelligence Lab

• Despite its simplicity, DARC improves state-of-the-art level models
• Results on MNIST and CIFAR-10 are presented

• Comparisons in the values of DARC penalty
• Data augmentation by itself implicitly regularize the DARC penalty

Directly approximately regularizing complexity (DARC) [Kawaguchi et al., 2017]

41

(ND) = no data augmentation
Next, Noise robustness

*source : Kawaguchi et al. “Generalization in Deep Learning”, Arxiv 2017

Algorithmic Intelligence Lab

1. Introduction
• Empirical risk minimization (ERM)

2. Stochastic Gradient Descent
• Gradient descent (GD) and stochastic gradient descent (SGD)
• Momentum and adaptive learning rate methods

3. Regularization
• Loss penalty with L2/L1/L0 norm
• Directly approximately regularizing complexity
• Noises on hidden units/gradients
• Data augmentations

4. Summary

Table of Contents

42

Algorithmic Intelligence Lab

• Prior: Most AI tasks have certain levels of resilience on noise
• One can incorporate such prior by injecting noises to the network

• Noise robustness is also related to adversarial examples
• We will discuss this topic more in detail later

Noise robustness

43

*sources :
- Chatbri, Houssem et al. “Using scale space filtering to make thinning algorithms

robust against noise in sketch images.” Pattern Recognition Letters 42 (2014): 1-10.
- https://www.deeplearningbook.org/contents/ml.html

https://www.deeplearningbook.org/contents/ml.html

Algorithmic Intelligence Lab

• Prior: Most AI tasks have certain levels of resilience on noise
• One can incorporate such prior by injecting noises to the network

• There can be many ways to impose noises:
1. On inputs or hidden units (e.g. Dropout)

• Noise with infinitesimal variance at the input is equivalent to imposing
a penalty on the norm of the weights for some models [Bishop, 1995a,b]

2. On model parameters (e.g. Variational dropout)
• A stochastic implementation of a Bayesian inference over the weights

3. On gradients during optimization (e.g. Shake-shake regularization)
• In practice, SGD can generalize better than full GD in training DNNs

[Keskar et al., 2016]

Noise robustness

44

Next, Dropout

Algorithmic Intelligence Lab

• Dropout [Srivastava et al., 2014] randomly drops a neuron with probability !
during training
• Same as multiplying a noise " ∼ Bernulli(!) to each neuron

• At testing, each weights are scaled by !

• Dropout is applied to hidden units typically
• Destruction of high-level information e.g. edges, nose, …

Noises on inputs or hidden units: Dropout [Srivastava et al., 2014]

45*source : Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. JMLR 2014

Algorithmic Intelligence Lab

Why dropout generalizes well?
1. It can be thought of as ensemble of 2" subnets with parameter sharing

2. Dropout prevents co-adaptation of neurons
• Noisy neurons are less reliable
• Each neuron must be prepared on which other neurons are dropped

Noises on inputs or hidden units: Dropout [Srivastava et al., 2014]

46*source : Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. JMLR 2014

Algorithmic Intelligence Lab

The fully understanding on why dropout works is still an open question

• Stochasticity might not be necessary
• Fast dropout [Wang et al., 2013]: A deterministic version of dropout with analytic

marginalization

• Dropout as an ensemble is not enough
• Dropout offers additional improvements to generalization error beyond those

obtained by ensembles of independent models [Warde-Farley et al., 2013]

• Dropping neurons are not necessary
• In principle, any kind of random modification is admissible
• Gaussian dropout, i.e. , can work as well as the original dropout

with probability !, or even work better

Noises on inputs or hidden units: Dropout [Srivastava et al., 2014]

47

Next, Variational dropout

*source : Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. JMLR 2014

Algorithmic Intelligence Lab

• In dropout, one have to find the best ! manually
• What if we want different rates for each of neurons?

• Variational dropout (VD) allows to learn the dropout rates separately

• Unlike Dropout, VD imposes noises on model parameters ":

• A Bayesian generalization of Gaussian dropout [Srivastava et al., 2014]
• The random vector is adapted to data in Bayesian sense by

updating # and "

• Re-parametrization trick allows $ to be learned via minibatch-based gradient
estimation methods [Kingma et al., 2013]
• # and " can be “optimized” separated from noises

Noises on model parameters: Variational dropout [Kingma et al., 2015]

48*source : Kingma et al. “Variational dropout and the local reparametrization trick”. NIPS 2015

Algorithmic Intelligence Lab

• VD lead to a better model than dropout
• VD could also improve CNN as well, while dropout could not(1b)

Noises on model parameters: Variational dropout [Kingma et al., 2015]

49

Next, Shake-shake regularization
*source : Kingma et al. “Variational dropout and the local reparametrization trick”. NIPS 2015

Algorithmic Intelligence Lab

• Noises can be injected even in gradients during back-propagation
• Shake-shake regularization considers a 3-branch ResNeXt [Xie et al., 2017]

• Here, notice that α" and β" are independent random variables
• α" stochastically blends the outputs from two branches
• β" randomly re-distributes the returning gradient between two branches

• Those re-scaling are done in channel-wise

Noises on gradients: Shake-shake regularization [Gastaldi, 2017]

50

Forward Backward At test

*source : Gastaldi, X. “Shake-Shake regularization”. Arxiv 2017

Algorithmic Intelligence Lab

• Shake-shake shows one of the current state-of-the-art result on CIFAR-10/100

• Shake-shake reduces layer-wise correlations between two branches

Noises on gradients: Shake-shake regularization [Gastaldi, 2017]

51*source : Gastaldi, X. “Shake-Shake regularization”. Arxiv 2017

Algorithmic Intelligence Lab

1. Introduction
• Empirical risk minimization (ERM)

2. Stochastic Gradient Descent
• Gradient descent (GD) and stochastic gradient descent (SGD)
• Momentum and adaptive learning rate methods

3. Regularization
• Loss penalty with L2/L1/L0 norm
• Directly approximately regularizing complexity
• Noises on hidden units/gradients
• Data augmentations

4. Summary

Table of Contents

52

Algorithmic Intelligence Lab

• Prior: The best way to generalize better is to gain more data

• Create fake data and add it to the training set
• Requires some knowledge on making good “fakes”

• Particularly effective for classification tasks
• Some tasks may not be readily applicable, e.g. density estimation

• Example: Rigid transformation symmetries
• Translation, dilation, rotation, mirror symmetry, …

• Forms an affine group on pixels:

Dataset augmentation

53

Translation Dilation Rotation Mirror symmetry

Next, CutOut
*source : https://github.com/joanbruna/MathsDL-spring18/blob/master/lectures/lecture2.pdf

https://github.com/joanbruna/MathsDL-spring18/blob/master/lectures/lecture2.pdf

Algorithmic Intelligence Lab

• Dropout appears to be less powerful when used with convolutional layers
• Dropping pixels randomly may disturb gradients due to parameter sharing
• Neighboring pixels in CNNs would contains much of the dropped information

• Channel-wise dropout [Tompson et al., 2015] may alleviate these issues
• However, the network capacity may be considerably reduced

• What do we expect by performing dropout on images?
• Preventing co-adaptation on high-level objects (nose, eyes, …)
• For images, this can be also done by just using local masking

Making new data by local masking: CutOut [Devries et al., 2017]

54*source : Devries & Taylor. “Improved Regularization of Convolutional Neural Networks with Cutout”, Arxiv 2017

Algorithmic Intelligence Lab

• What do we expect by performing dropout on images?
• Preventing co-adaptation on high-level objects (nose, eyes, …)
• For images, this can be also done by just using local masking

• CutOut directly brings this into data augmentation
• Data augmentation via square-masking randomly on images

Making new data by local masking: CutOut [Devries et al., 2017]

55*source : Devries & Taylor. “Improved Regularization of Convolutional Neural Networks with Cutout”, Arxiv 2017

Algorithmic Intelligence Lab

• CutOut further improved Shake-shake regularization [Gastaldi, 2017] achieving
the state-of-the-art result on CIFAR-10/100

• The size of the square should be set as a hyperparameter

Making new data by local masking: CutOut [Devries et al., 2017]

56

Next, Mixup
*source : Devries & Taylor. “Improved Regularization of Convolutional Neural Networks with Cutout”, Arxiv 2017

Algorithmic Intelligence Lab

• In mixup, a new training example is constructed by:

• , where : hyperparameter
• ’s are uniformly sampled from the training data

• Surprisingly, this simple scheme outperforms empirical risk minimization (ERM)
• A new state-of-art performance on CIFAR-10/100 and ImageNet
• Robustness when learning from corrupt labels
• Handling adversarial examples
• Stabilizing GANs
• …

Mixing two samples in dataset: mixup [Zhang et al., 2018]

57*source : Zhang, H. et al. “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Algorithmic Intelligence Lab

• In mixup, a new training example is constructed by:

• , where : hyperparameter
• ’s are uniformly sampled from the training data

• What is mixup doing?
• Incorporating prior knowledge: the model should

behave linearly in-between training examples
• It reduces the amount of undesirable oscillations

when predicting outside the training examples

Mixing two samples in dataset: mixup [Zhang et al., 2018]

58*source : Zhang, H. et al. “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Algorithmic Intelligence Lab

• mixup significantly improves generalization in CIFIAR-10/100 and ImageNet

• mixup also shows robustness on corrupted labels while improving
memorization [Zhang et al., 2016]

Mixing two samples in dataset: mixup [Zhang et al., 2018]

59*source : Zhang, H. et al. “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Algorithmic Intelligence Lab

• SGD have been used as essential algorithms to deep learning as back-propagation.
• Momentum methods improve the performance of gradient descend algorithms.
• Annealing learning rates are critical for training loss functions

• In practice, SGD + momentum shows successful results, outperforming Adam!
• For example, NLP (Huang et al., 2017) or machine translation (Wu et al., 2016)

• Reducing the test error, possibly at the expense of increased training error
• No free lunch theorem says that there is no best form of regularization

• Developing effective regularizations is one of the major research in the field

• Nevertheless, as we are focusing on AI tasks, there could be some general strategies
for a wide range of our problems
• Loss penalty
• Parameter sharing
• Noise robustness
• Dataset augmentation
• … there can be many other ways!

Summary

60

Algorithmic Intelligence Lab

• [Nesterov’ 1983] Nesterov. A method of solving a convex programming problem with convergence rate O(1/k^2). 1983
link: http://mpawankumar.info/teaching/cdt-big-data/nesterov83.pdf

• [Duchi et al 2011], “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
link : http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

• [Tieleman’ 2012] Geoff Hinton’s Lecture 6e of Coursera Class
link : http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

• [Zeiler’ 2012] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method
link : https://arxiv.org/pdf/1212.5701.pdf

• [Smith’ 2015] Smith, Leslie N. "Cyclical learning rates for training neural networks.”
link : https://arxiv.org/pdf/1506.01186.pdf

• [Kingma and Ba., 2015] Kingma and Ba. Adam: A method for stochastic optimization. ICLR 2015
link : https://arxiv.org/pdf/1412.6980.pdf

• [Dozat’ 2016] Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. ICLR Workshop,
link : http://cs229.stanford.edu/proj2015/054_report.pdf

• [Smith et al., 2017] Smith, Samuel L., Pieter-Jan Kindermans and Quoc V. Le. Don't Decay the Learning Rate, Increase
the Batch Size. ICLR 2017.
link : https://openreview.net/pdf?id=B1Yy1BxCZ

• [Loshchilov et al., 2017] Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic Gradient Descent with Warm Restarts. ICLR
2017.
link : https://arxiv.org/pdf/1608.03983.pdf

• [Loshchilov et al., 2019] Loshchilov, I., & Hutter, F. (2019). Decoupled Weight Decay Regularization. ICLR 2019.
link : https://arxiv.org/pdf/1711.05101.pdf

References

61

https://arxiv.org/pdf/1212.5701.pdf
https://arxiv.org/pdf/1506.01186.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://cs229.stanford.edu/proj2015/054_report.pdf
https://openreview.net/pdf?id=B1Yy1BxCZ
https://arxiv.org/pdf/1608.03983.pdf
https://arxiv.org/pdf/1711.05101.pdf

Algorithmic Intelligence Lab

References

62

• [Bishop, 1995a] Bishop, C. (1995). Regularization and Complexity Control in Feed-forward Networks. In
Proceedings International Conference on Artificial Neural Networks (pp. 141–148).
link : https://www.microsoft.com/en-us/research/publication/regularization-and-complexity-control-in-feed-
forward-networks/

• [Bishop, 1995b] Bishop, C. (1995). Training with Noise is Equivalent to Tikhonov Regularization. Neural
Computation, 7, 108–116.
link : https://ieeexplore.ieee.org/document/6796505/

• [Wolpert et al., 1997] Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1), 67–82.
link : https://ieeexplore.ieee.org/document/585893/

• [Hinton et al., 2012] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012).
Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
link : https://arxiv.org/abs/1207.0580

• [Kingma et al., 2013] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.
link : https://arxiv.org/abs/1312.6114

• [Wang et al., 2013] Wang, S., & Manning, C. (2013). Fast dropout training. In Proceedings of the 30th International
Conference on Machine Learning (Vol. 28, pp. 118–126). Atlanta, Georgia, USA: PMLR.
link : http://proceedings.mlr.press/v28/wang13a.html

• [Warde-Farley et al., 2013] Warde-Farley, D., Goodfellow, I. J., Courville, A., & Bengio, Y. (2013). An empirical
analysis of dropout in piecewise linear networks. ArXiv Preprint ArXiv:1312.6197.
link : https://arxiv.org/abs/1312.6197

https://www.microsoft.com/en-us/research/publication/regularization-and-complexity-control-in-feed-forward-networks/
https://ieeexplore.ieee.org/document/6796505/
https://ieeexplore.ieee.org/document/585893/
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1312.6114
http://proceedings.mlr.press/v28/wang13a.html
https://arxiv.org/abs/1312.6197

Algorithmic Intelligence Lab

References

63

• [Dauphin et al., 2014] Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014). Identifying
and attacking the saddle point problem in high-dimensional non-convex optimization. Advances in Neural
Information Processing Systems 27 (pp. 2933–2941).
link : https://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-
non-convex-optimization

• [Goodfellow et al., 2014] Goodfellow, I. J., & Vinyals, O. (2014). Qualitatively characterizing neural network
optimization problems. CoRR, abs/1412.6544.
link : https://arxiv.org/abs/1412.6544

• [Shalev-Shwartz et al., 2014] Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning: From
Theory to Algorithms. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107298019
link : https://www.cambridge.org/core/books/understanding-machine-
learning/3059695661405D25673058E43C8BE2A6

• [Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:
A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15, 1929–1958.
link : http://jmlr.org/papers/v15/srivastava14a.html

• [Tompson et al., 2015] Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C. (2015). Efficient object
localization using convolutional networks. In Computer Vision and Pattern Recognition (pp. 648–656).
link : https://arxiv.org/abs/1411.4280

• [Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press, pp.221-265.
link : https://www.deeplearningbook.org/

• [Kingma et al., 2015] Kingma, D. P., Salimans, T., & Welling, M. (2015). Variational dropout and the local
reparameterization trick. In Advances in Neural Information Processing Systems (pp. 2575-2583).
link : https://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick

https://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-optimization
https://arxiv.org/abs/1412.6544
https://www.cambridge.org/core/books/understanding-machine-learning/3059695661405D25673058E43C8BE2A6
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1411.4280
https://www.deeplearningbook.org/
https://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick

Algorithmic Intelligence Lab

References

64

• [Maddison et al. 2016] Maddison, C. J., Mnih, A., & Teh, Y. W. (2016). The concrete distribution: A continuous
relaxation of discrete random variables. In International Conference on Learning Representations.
link : https://openreview.net/forum?id=S1jE5L5gl

• [Keskar et al., 2016] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2016). On large-batch
training for deep learning: Generalization gap and sharp minima. In International Conference on Learning
Representations.
link : https://openreview.net/forum?id=H1oyRlYgg

• [Zhang et al., 2016] Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2016). Understanding deep learning
requires rethinking generalization. CoRR, abs/1611.03530.
link : https://arxiv.org/abs/1611.03530

• [Ravanbakhsh et al., 2017] Ravanbakhsh, S., Schneider, J., & Póczos, B. (2017). Equivariance Through Parameter-
Sharing. In Proceedings of the 34th International Conference on Machine Learning (Vol. 70, pp. 2892–2901).
International Convention Centre, Sydney, Australia: PMLR.
link : http://proceedings.mlr.press/v70/ravanbakhsh17a.html

• [Devries et al., 2017] Devries, T., & Taylor, G. W. (2017). Improved Regularization of Convolutional Neural
Networks with Cutout. CoRR, abs/1708.04552. Retrieved from http://arxiv.org/abs/1708.04552
link : https://arxiv.org/abs/1708.04552

• [Gastaldi, 2017] Gastaldi, X. (2017). Shake-Shake regularization. CoRR, abs/1705.07485.
link : http://arxiv.org/abs/1705.07485

• [Kawaguchi et al., 2017] Kawaguchi, K., Kaelbling, L. P., & Bengio, Y. (2017). Generalization in deep learning. arXiv
preprint arXiv:1710.05468.
link : https://arxiv.org/abs/1710.05468

https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=H1oyRlYgg
https://arxiv.org/abs/1611.03530
http://proceedings.mlr.press/v70/ravanbakhsh17a.html
http://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1705.07485
https://arxiv.org/abs/1710.05468

Algorithmic Intelligence Lab

References

65

• [Pereyra et al., 2017] Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., & Hinton, G. (2017). Regularizing neural
networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548.
link : https://arxiv.org/abs/1701.06548

• [Xie et al., 2017] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for
deep neural networks. In Computer Vision and Pattern Recognition (pp. 5987–5995).
link : http://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR
_2017_paper.pdf

• [Arora et al., 2018] Arora, S., Cohen, N., & Hazan, E. (2018). On the Optimization of Deep Networks: Implicit
Acceleration by Overparameterization. In Proceedings of the 35th International Conference on Machine Learning
(Vol. 80, pp. 244–253). Stockholmsmässan, Stockholm Sweden: PMLR.
link : http://proceedings.mlr.press/v80/arora18a.html

• [Hartford et al., 2018] Hartford, J., Graham, D., Leyton-Brown, K., & Ravanbakhsh, S. (2018). Deep Models of
Interactions Across Sets. In Proceedings of the 35th International Conference on Machine Learning (Vol. 80, pp.
1909–1918). Stockholmsmässan, Stockholm Sweden: PMLR.
Link : http://proceedings.mlr.press/v80/hartford18a.html

• [Louizos et al., 2018] Louizos, C., Welling, M., & Kingma, D. P. (2018). Learning Sparse Neural Networks through
L_0 Regularization. In International Conference on Learning Representations.
link : https://openreview.net/forum?id=H1Y8hhg0b

• [Zhang et al., 2018] Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). mixup: Beyond Empirical Risk
Minimization. In International Conference on Learning Representations.
link : https://openreview.net/forum?id=r1Ddp1-Rb

https://arxiv.org/abs/1701.06548
http://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.pdf
http://proceedings.mlr.press/v80/arora18a.html
http://proceedings.mlr.press/v80/hartford18a.html
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=r1Ddp1-Rb

Algorithmic Intelligence Lab

• [Nesterov’ 1983] Nesterov. A method of solving a convex programming problem with convergence rate O(1/k^2).
1983
link: http://mpawankumar.info/teaching/cdt-big-data/nesterov83.pdf

• [Duchi et al 2011], “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
link : http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

• [Tieleman’ 2012] Geoff Hinton’s Lecture 6e of Coursera Class
link : http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

• [Zeiler’ 2012] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method
link : https://arxiv.org/pdf/1212.5701.pdf

• [Smith’ 2015] Smith, Leslie N. "Cyclical learning rates for training neural networks.”
link : https://arxiv.org/pdf/1506.01186.pdf

• [Kingma and Ba., 2015] Kingma and Ba. Adam: A method for stochastic optimization. ICLR 2015
link : https://arxiv.org/pdf/1412.6980.pdf

• [Dozat’ 2016] Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. ICLR Workshop,
link : http://cs229.stanford.edu/proj2015/054_report.pdf

• [Smith et al., 2017] Smith, Samuel L., Pieter-Jan Kindermans and Quoc V. Le. Don't Decay the Learning Rate,
Increase the Batch Size. ICLR 2017.
link : https://openreview.net/pdf?id=B1Yy1BxCZ

• [Loshchilov et al., 2017] Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic Gradient Descent with Warm Restarts.
ICLR 2017.
link : https://arxiv.org/pdf/1608.03983.pdf

References

66

https://arxiv.org/pdf/1212.5701.pdf
https://arxiv.org/pdf/1506.01186.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://cs229.stanford.edu/proj2015/054_report.pdf
https://openreview.net/pdf?id=B1Yy1BxCZ
https://arxiv.org/pdf/1608.03983.pdf

