
Algorithmic Intelligence Lab

Algorithmic Intelligence Lab

AI602: Recent Advances in Deep Learning

Lecture 3

KAIST AI

Applications of Large Language Models

Algorithmic Intelligence Lab

Impact of large language models (LLMs); revisited
• LLMs set record for fastest-growing user-base service
• LLMs can generate realistic texts for complex domains
• LLMs can serve as a new effective search engine

Motivation: Are Large Language Models All You Need?

Algorithmic Intelligence Lab

Recent studies explores the potential of LLMs beyond language tasks
• For example, [Brown et al., 2020] tests the ability of GPT-4 in chemistry tasks
• E.g., molecular property prediction, molecule captioning, and molecule design

Motivation: Are Large Language Models All You Need?

Algorithmic Intelligence Lab

Recent studies explores the potential of LLMs beyond language tasks
• However, naïve prompting (with in-context examples) is not quite effective
• XGBoost is better than GPT-4 prompting in some molecular prediction tasks

Motivation: Are Large Language Models All You Need?

Algorithmic Intelligence Lab

LLMs are ‘Generalists’; however, we often need ‘Specialists’ for our purpose
• Question: Can LLMs be adapted (or developed) for a specific domain?
• If so, we can benefit from the reasoning ability and language interface of LLMs

Motivation: Are Large Language Models All You Need?

Drug discovery (Chemistry & Biology) Tabular prediction

Algorithmic Intelligence Lab

1. LLMs for science
• General purpose LLMs for science
• LLMs for Chemistry & Biology
• LLMs for Mathematics

2. LLMs for other datasets
• Tabular data
• Time series

3. LLM agents
• Basic concept & Benchmarks
• Prompting LLMs as agents
• Optimizing LLMs as agents

Table of Contents

6

Algorithmic Intelligence Lab

1. LLMs for science
• General purpose LLMs for science
• LLMs for Chemistry & Biology
• LLMs for Mathematics

2. LLMs for other datasets
• Tabular data
• Time series

3. LLM agents
• Basic concept & Benchmarks
• Prompting LLMs as agents
• Optimizing LLMs as agents

Table of Contents

7

Algorithmic Intelligence Lab

Initially, researchers aimed to develop LLMs covering general science domain
• E.g., chemistry, biology, mathematics, programming, scientific writing, etc.

General Purpose LLMs for Science

8

LLM for science

Chemistry

Biology

Mathematics

Algorithmic Intelligence Lab

• SciBERT: A Pretrained Language Model for Scientific Text [Beltagy et al., 2020]

• Train BERT [Devlin et al., 2019] with a broad range of biomedical literatures
• Follow the pre-training and fine-tuning setups from the original BERT
• E.g., Masked LM and Next Sentence Prediction (NSP)

General Purpose LLMs for Science: SciBERT

9

Algorithmic Intelligence Lab

• SciBERT: A Pretrained Language Model for Scientific Text [Beltagy et al., 2020]

• In various scientific NLP tasks, SciBERT shows its effectiveness compared to BERT
• E.g., Named Entity Recognition (NER), Text Classification (CLS), etc.
• Cons: SciBERT only deals with scientific texts based on human language

• Does not model scientific modalities such as molecules and mathematical expressions

General Purpose LLMs for Science: SciBERT

10

Algorithmic Intelligence Lab

• Galactica: A Large Language Model for Science [Taylor et al., 2022]

• A scientific LLM for various scientific modalities (regarding them as text sequences)
• E.g., Latex mathematical expression, code, molecule, protein, etc.

General Purpose LLMs for Science: Galactica

11

Algorithmic Intelligence Lab

• Galactica: A Large Language Model for Science [Taylor et al., 2022]

• Trained with a large number of tokens (~100B), cf. SciBERT with 3.17B tokens
• Released different sizes of models; up to 120B parameters

General Purpose LLMs for Science: Galactica

12

Algorithmic Intelligence Lab

• Galactica: A Large Language Model for Science [Taylor et al., 2022]

• Performance can be smoothly scaled with the size of models
• Conventional engineering techniques, e.g., Chain of Thought, also work well

General Purpose LLMs for Science: Galactica

13

Latex equation generation

Algorithmic Intelligence Lab

• Galactica: A Large Language Model for Science [Taylor et al., 2022]

• Galactica shows sub-optimal performance compared to modality-specific models
• Minerva [Lewkowycz et al., 2022] highly outperforms Galactica in math problem solving

General Purpose LLMs for Science: Galactica

14

Algorithmic Intelligence Lab

‘Science’ contains various modalities; for example, chemistry or mathematics
• How about focusing on a more specific modality? E.g., chemistry-specific LLMs

Modality-specific Large Language Models in Science

15

LLM for Chemistry LLM for Mathematics

Algorithmic Intelligence Lab

1. LLMs for science
• General purpose LLMs for science
• LLMs for Chemistry & Biology
• LLMs for Mathematics

2. LLMs for other datasets
• Tabular data
• Time series

3. LLM agents
• Basic concept & Benchmarks
• Prompting LLMs as agents
• Optimizing LLMs as agents

Table of Contents

16

Algorithmic Intelligence Lab

• MolT5: Translation between Molecules and Natural Language [Edwards et al., 2022]

• Adapt T5 [Raffel et al., 2019] for chemistry (especially for text-molecule translation)
• Molecules are represented by a sequence of characters, i.e., SMILES representation

LLMs for Chemistry & Biology: MolT5

17

C1CC(=O)C2CC34C(=O) N5C6C(CCC(=O)C6CC5 (C(=O)N3C2C1O)SS4)O

Caption

Molecule

SMILES representation

Algorithmic Intelligence Lab

• MolT5: Translation between Molecules and Natural Language [Edwards et al., 2022]

• Pre-trained on molecules (ZINC-15 100M) and text (C4) corpuses using masked LM
• Fine-tuned with text-molecule pairs to obtain t2m and m2t generative models

LLMs for Chemistry & Biology: MolT5

18

Algorithmic Intelligence Lab

• MolT5: Translation between Molecules and Natural Language [Edwards et al., 2022]

• T2m and m2t models of MolT5 achieved state-of-the-art translation performances
• The performance improves as the size of model increase (i.e., scalable)

LLMs for Chemistry & Biology: MolT5

19

Molecule-to-text

Text-to-molecule

Algorithmic Intelligence Lab

• MolT5: Translation between Molecules and Natural Language [Edwards et al., 2022]

• T2m and m2t models of MolT5 achieved state-of-the-art translation performances
• The performance improves as the size of model increase (i.e., scalable)

LLMs for Chemistry & Biology: MolT5

20

Algorithmic Intelligence Lab

• Unifying Molecular and Textual Representation via Multi-task Language
Modeling [Christofidellis et al., 2023]

• After fine-tuning, MolT5 obtained separate models for t2m and m2t tasks
• This paper suggests to build a single model for t2m, m2t, m2m, and t2t tasks

LLMs for Chemistry & Biology: Text+Chem T5

21

MolT5: Separate models for
(1) Text-to-molecule
(2) Molecule-to-text

Text + Chem T5:
A single model for
(1) Text-to-molecule
(2) Molecule-to-text
(3) Text-to-text
(4) Molecule-to-molecule

Algorithmic Intelligence Lab

• Unifying Molecular and Textual Representation via Multi-task Language
Modeling [Christofidellis et al., 2023]

• Utilizes reactants-products pairs in training phase to better understand molecules
• All tasks are learned simultaneously within a single model, i.e., multi-task learning

LLMs for Chemistry & Biology: Text+Chem T5

22

Algorithmic Intelligence Lab

• Unifying Molecular and Textual Representation via Multi-task Language
Modeling [Christofidellis et al., 2023]

• Outperforms MolT5 due to multi-task learning on various molecule tasks
• ‘Augm’ denotes that the number of training data is balanced between tasks

LLMs for Chemistry & Biology: Text+Chem T5

23

Algorithmic Intelligence Lab

• Unifying Molecular and Textual Representation via Multi-task Language
Modeling [Christofidellis et al., 2023]

• Shows reasonable performance on t2t and m2m tasks (with a single model)
• ‘-’ denotes that the model cannot perform the corresponding task

LLMs for Chemistry & Biology: Text+Chem T5

24

Algorithmic Intelligence Lab

• From Artificially Real to Real: Leveraging Pseudo Data from Large Language
Models for Low-Resource for Molecule Discovery [Chen et al., 2024]

• Motivation: Text-molecule pairs are hard to obtain due to experimental costs
• Utilize GPT and few-shot real samples to generate pseudo text-molecule pairs

LLMs for Chemistry & Biology: AdaT5

25

Algorithmic Intelligence Lab

• From Artificially Real to Real: Leveraging Pseudo Data from Large Language
Models for Low-Resource for Molecule Discovery [Chen et al., 2024]

• (1) Adapt the model with pseudo data, and then (2) train with real data
• Simultaneously using pseudo data and real data shows performance degradation

LLMs for Chemistry & Biology: AdaT5

26

: Aug-T5 : Ada-T5

Algorithmic Intelligence Lab

• From Artificially Real to Real: Leveraging Pseudo Data from Large Language
Models for Low-Resource for Molecule Discovery [Chen et al., 2024]

• Highly outperform MolT5 due to the high-quality pseudo samples from GPT

LLMs for Chemistry & Biology: AdaT5

27

Algorithmic Intelligence Lab

• Data-Efficient Molecular Generation with Hierarchical Textual Inversion [Kim et al.,
2024]

• Adaptation of molecular LLMs, e.g., MolT5, for data-efficient molecular generation
• We only have few-shot molecules in drug discovery; how to learn their distribution?

LLMs for Chemistry & Biology: HI-Mol

28

Algorithmic Intelligence Lab

• Data-Efficient Molecular Generation with Hierarchical Textual Inversion [Kim et al.,
2024]

• Few-shot distribution learning methods in other domains, e.g., Textual Inversion
[Gal et al., 2023], does not work for molecules

• Molecules are more structurally diverse; naïve adoption does not work

LLMs for Chemistry & Biology: HI-Mol

29

Textual Inversion [Gal et al., 2022]: Visually similar images

Molecules with a common property:
Not structurally similar

Generation performance for molecules

Algorithmic Intelligence Lab

• Data-Efficient Molecular Generation with Hierarchical Textual Inversion [Kim et al.,
2024]

• Use ‘hierarchical’ tokens unlike Textual Inversion [Gal et al., 2023] with a single token
• [S], [I], and [D] learn different hierarchical information of few-shot molecules

LLMs for Chemistry & Biology: HI-Mol

30

[S]: A single token for whole dataset, learns overall semantics of target molecules
[I]: Tokens assigned to k-th clsuter, captures cluster-wise semantics
[D]: Tokens assigned to n-th molecule, captures molecule-wise semantics

Algorithmic Intelligence Lab

• Data-Efficient Molecular Generation with Hierarchical Textual Inversion [Kim et al.,
2024]

• Use ‘hierarchical’ tokens unlike Textual Inversion [Gal et al., 2023] with a single token
• From learned hierarchical token embeddings, sample molecules by interpolation

LLMs for Chemistry & Biology: HI-Mol

31

Algorithmic Intelligence Lab

• Data-Efficient Molecular Generation with Hierarchical Textual Inversion [Kim et al.,
2024]

• Achieve superior few-shot generation results compared to previous methods
• Due to the preservation of hierarchical information in training & generation

LLMs for Chemistry & Biology: HI-Mol

32

Algorithmic Intelligence Lab

• Data-Efficient Molecular Generation with Hierarchical Textual Inversion [Kim et al.,
2024]

• Applicable for conditional generation; learn an additional condition embedding

LLMs for Chemistry & Biology: HI-Mol

33

Algorithmic Intelligence Lab

• BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge
and Natural Language Associations [Pei et al., 2023]

• An LLM for chemistry & biology with ‘modality-specific’ token space

LLMs for Chemistry & Biology: BioT5

34

Algorithmic Intelligence Lab

• BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge
and Natural Language Associations [Pei et al., 2023]

• Previous molecular LLMs use the T5 tokenizer with the SMILES representation
• BioT5 regards a SELFIES token as a single token, which is more structure-aware
• It also suggests to utilize FASTA tokens to represent protein data in LLMs

LLMs for Chemistry & Biology: BioT5

35

MolT5 with T5 tokenizer:

BioT5 tokenizer:
Structure-aware

Algorithmic Intelligence Lab

• BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge
and Natural Language Associations [Pei et al., 2023]

• By using more sophisticated token space, achieves state-of-the-art results

LLMs for Chemistry & Biology: BioT5

36

Algorithmic Intelligence Lab

• BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge
and Natural Language Associations [Pei et al., 2023]

• In addition, shows superior performance on biological applications

LLMs for Chemistry & Biology: BioT5

37

Algorithmic Intelligence Lab

• CAMT5: Context-Aware Molecular T5 [Kim et al., 2024]

• Goal: Developing a text-to-molecule generative model.
• Convention: Utilizing atom-wise tokenization based on SMILES or SELFIES.
• MolT5: Based on SMILES, which does not ensure the validity of the generated

molecules.
• BioT5: Based on SEFLIES, where the same token represents various molecular

semantics.

• However, atom-wise tokenization does not reflect chemical functionality.
• Chemical functionalities are encoded through motifs, i.e., functional groups.
• Make the molecule tokens based on functional groups!

LLMs for Chemistry & Biology: CAMT5

38

Algorithmic Intelligence Lab

• How can we embed functional groups into the token space of the text-to-
molecule model?

• Construct “Context-Tree” with pre-defined motifs!
• One can linearize the motif-level tokens via a tree-search algorithm.
• A sequence of motif-level tokens always represents a valid molecule.
• There is a one-to-one correspondence between a motif and a motif-level token.

• Additionally, CAMT5 proposes importance-based pre-training.
• Prioritizing key motifs during pre-training.

LLMs for Chemistry & Biology: CAMT5

39

Algorithmic Intelligence Lab

• How can we embed functional groups into the token space of the text-to-
molecule model?

• Construct “Context-Tree” with pre-defined motifs!
• One can linearize the motif-level tokens via a tree-search algorithm.
• A sequence of motif-level tokens always represents a valid molecule.
• There is a one-to-one correspondence between a motif and a motif-level token.

• Additionally, CAMT5 proposes importance-based pre-training.
• Prioritizing key motifs during pre-training.

LLMs for Chemistry & Biology: CAMT5

40

Algorithmic Intelligence Lab

• Experiment: Context-aware tokenization is beneficial for molecular language
models.

LLMs for Chemistry & Biology: CAMT5

41

Algorithmic Intelligence Lab

1. LLMs for science
• General purpose LLMs for science
• LLMs for Chemistry & Biology
• LLMs for Mathematics

2. LLMs for other datasets
• Tabular data
• Time series

3. LLM agents
• Basic concept & Benchmarks
• Prompting LLMs as agents
• Optimizing LLMs as agents

Table of Contents

42

Algorithmic Intelligence Lab

Why is mathematics hard for LLMs?
• Requires both multi-step task decomposition and accurate calculation
• A single mistake can lead to entirely wrong result
• LLMs are designed to be non-deterministic
• Mathematics require precise, strict rule-based reasoning

Are LLMs still bad at math?
• No
• Various training, inference strategies made LLMs excel at math

LLMs for Mathematics: Introduction

43

Algorithmic Intelligence Lab

Minerva [Lewkowycz et al., 2022]

Further training pretrained language model(PaLM) on mathematical dataset
• Dataset: Collect and process data maintaining mathematical content

• Processing: Extract mathematical content in LaTeX or ASCII-math format
• Maintain symbols essential to mathematical expressions

LLMs for Mathematics: Minerva

44

Algorithmic Intelligence Lab

Minerva [Lewkowycz et al., 2022]

Minerva outperforms the state-of-the-art on math and science benchmarks
• MATH: Middle school and high school mathematics problems written in LaTeX
• MMLU-STEM: Subset of the MMLU dataset focused on science, technology,

engineering, and mathematics (STEM)

LLMs for Mathematics: Minerva

45

Algorithmic Intelligence Lab

Minerva [Lewkowycz et al., 2022]

Inference-Time Techniques
• Few-shot prompting + CoT + Majority Voting (maj@k) [Wang et al., 2022]

• maj@k: Sampling k predictions and selecting the most common answer
• Significantly improves performance over greedy decoding

LLMs for Mathematics: Minerva

46

Algorithmic Intelligence Lab

PAL: Program-aided Language Models [Gao et al., 2023]

Motivation: LLMs often generate reasoning steps correctly, but slips at calculation

Idea: Running the reasoning steps with a Python interpreter
• Leads to multiple variants leveraging external solvers

LLMs for Mathematics: PAL

47

Algorithmic Intelligence Lab

ToRA (Tool Integrated Reasoning Agents) [Gou et al., 2024]

• Interactive tool-use trajectories
• Repeat natural language guidance and program execution to reach an answer
• Benefit from analytical power of language and the computational efficiency of tools

LLMs for Mathematics: ToRA

48

Algorithmic Intelligence Lab

ToRA Pipeline

1. Imitation Learning
• Collect high-quality trajectories from GPT-4, solving diverse math problems

• Dataset: GSM8k(grade school math word problems), MATH(high school math)
• Sample only valid trajectories leading to correct answers

LLMs for Mathematics: ToRA

49

Algorithmic Intelligence Lab

ToRA Pipeline

2. Output Space Shaping
• Sample diverse trajectories from fine-tuned model
• Correct invalid trajectories with teacher model (Code expert open model)
• Fine-tune model on corrected valid trajectories + original ToRA-Corpus

LLMs for Mathematics: ToRA

50

Algorithmic Intelligence Lab

Outcome-supervised Reward Model (ORM) [Cobbe et al., 2021]

Train a verifier model to judge the correctness of solutions, respect to GT answer
1) Finetune generator(problem solving model) on training set
2) Sample 100 completions from generator, label each solution as correct/incorrect
3) Train verifier model to predict ‘solution correctness probability’

• During inference, select the generator’s solution with the highest verifier score

LLMs for Mathematics: ORM

51

Algorithmic Intelligence Lab

Outcome-supervised Reward Model (ORM) [Cobbe et al., 2021]

Comparison between finetuning and verification
• Verification boosts performance if the dataset is large enough
• Verifiers can overfit memorizing final answers when dataset is too small
• In full training set, 6B verification outperforms 175B finetuning

* Train dataset: GSM8k, math word problems using arithmetic operations (+ − × ÷)

LLMs for Mathematics: ORM

52

Algorithmic Intelligence Lab

Process-supervised Reward Model (PRM) [Lightman et al., 2023]

Motivation: ORM can misgrade false-positive solutions
• Incorrect solutions still can reach to correct answers

Idea: Provide feedback for each intermediate reasoning step
• Human data-labelers to assign each step into positive, negative, neutral
• Construct PRM800k(open), step-level human feedback dataset

LLMs for Mathematics: PRM

53

Feedback interface used for step-wise reward collection

Algorithmic Intelligence Lab

Process-supervised Reward Model (PRM) [Lightman et al., 2023]

Following ORM, train a verifier model and use at inference stage
• At training, predict the correctness of each step after the last step token

Green: high PRM score, Red: low PRM score
• During inference, select the generator’s solution with the highest verifier score

LLMs for Mathematics: PRM

54

Algorithmic Intelligence Lab

Process-supervised Reward Model (PRM) [Lightman et al., 2023]

PRM scoring strategy experiment

• To select among multiple solutions, single score for each solution is required
• Score of the entire solution (2 strategies)

• Product of the correctness probabilities for each step in the solution
• Minimum correctness probability of all steps included in the solution

• How to consider neutral feedbacks
• Feedbacks were assigned as positive, negative, or neutral
• To consider neutral as positive or negative

• Take product strategy, and consider neutral as positive

LLMs for Mathematics: PRM

55

Algorithmic Intelligence Lab

Process-supervised Reward Model (PRM) [Lightman et al., 2023]

Process-supervised Reward Model vs. Outcome-supervised Reward Model
• PRM strongly outperform both ORM and majority-voting
• PRM is more effective on searching over large number of solutions (larger N)

Limitation: Human-labeled feedback data is very expensive and not scalable

LLMs for Mathematics: PRM

56

Algorithmic Intelligence Lab

MATH-SHEPHERD [Wang et al., 2024]

Idea: Automatically construct process-wise supervision data
• For an intermediate reasoning step, complete the reasoning process N times
• Hard Estimation(HE): The step can reach the correct answer

• Soft Estimation(SE): The frequency of trajectories reaching the correct answer

LLMs for Mathematics: Math-Shepherd

57

Algorithmic Intelligence Lab

MATH-SHEPHERD [Wang et al., 2024]

Hard Estimation vs. Soft Estimation

• Larger N led to more false-positives, decreasing annotation accuracy
• Hard Estimation(HE) showed negligible difference at N = 4 with (SE)
• Hard Estimation utilizes well to standard language modeling

• Predicting special tokens ‘has potential’ and ‘no potential’ labels

• Chose Hard Estimation(HE) as main score strategy

LLMs for Mathematics: Math-Shepherd

58

Algorithmic Intelligence Lab

MATH-SHEPHERD [Wang et al., 2024]

Automated process-supervised verifier outperforms ORM consistently
• Outperformed human-annotated reward model, due to the data quantity (4x larger)

LLMs for Mathematics: Math-Shepherd

59

Algorithmic Intelligence Lab

MATH-SHEPHERD [Wang et al., 2024]

Reinforcement learning reasoning model with process supervision
• Proximal Policy Optimization(PPO) in a step-by-step manner

• * RFT(Rejective Sampling Fine-tuning): SFT with sampled correct answer responses
• * ORM-PPO: PPO with outcome reward(correct/incorrect) of full solution

MATH-SHEPHERD can improve the reasoning model itself, not only working as verifier

LLMs for Mathematics: Math-Shepherd

60

Algorithmic Intelligence Lab

MATH-SHEPHERD [Wang et al., 2024]

Reinforcement learning reasoning model with process supervision
• Proximal Policy Optimization(PPO) in a step-by-step manner

• * RFT(Rejective Sampling Fine-tuning): SFT with sampled correct answer responses
• * ORM-PPO: PPO with outcome reward(correct/incorrect) of full solution

MATH-SHEPHERD can improve the reasoning model itself, not only working as verifier

LLMs for Mathematics: Math-Shepherd

61

Algorithmic Intelligence Lab

Formal Mathematical Reasoning [Yang et al., 2024]

• LLMs show impressive capabilities in high school-level problems, but face
limitations in advanced mathematics

• Limitations of AI4Math in advanced mathematics:
• Data scarcity
• Lack of Correctness Verifiability

• GSM8k, MATH (pre-college mathematics) consist of single number solution problems
• But none of the Millenium Prize Problems have numeric solutions

LLMs for Mathematics: Formal Mathematical Reasoning

62

Algorithmic Intelligence Lab

Formal Mathematical Reasoning [Yang et al., 2024]

• Formal mathematics with proof assistants (e.g. Lean, Coq, Isabelle)
• Guarantee Correctness, Automatic Feedback

• Key Tasks: Autoformalization (top), Theorem Proving (bottom)

LLMs for Mathematics: Formal Mathematical Reasoning

63

Algorithmic Intelligence Lab

AlphaProof [Google Deepmind, 2024]

• Last year, AI achieving silver-medal standard at IMO 2024 problems
• 28 out of 42 points, solving four out of six problems

Method:
• Fine-tune Gemini for a formalizer network (Formal Language: LEAN)
• AlphaZero reinforcement learning algorithm

• Generate solution candidates
• Prove or disprove the solution by searching possivle proof steps in LEAN

LLMs for Mathematics: AlphaProof

64

Algorithmic Intelligence Lab

AlphaGeometry2 [Google Deepmind, 2025]

• This year, AlphaGeometry2 solves 42/50 of all 2000-2024 IMO geometry problem
• Surpassing an average gold medalist for the first time

• Symbolic engine: DDAR (Deductive Database Arithmetic Reasoning)

• Search Algorithm: Shared Knowledge Ensemble of Search Trees (SKEST)

LLMs for Mathematics: AlphaGeometry2

65

• Using multiple search trees
• Deep, but narrow
• Shallow, but wide

• Different LMs for each search tree

Algorithmic Intelligence Lab

1. LLMs for science
• General purpose LLMs for science
• LLMs for Chemistry & Biology
• LLMs for Mathematics

2. LLMs for other datasets
• Tabular data
• Time series

3. LLM agents
• Basic concept & Benchmarks
• Prompting LLMs as agents
• Optimizing LLMs as agents

Table of Contents

66

Algorithmic Intelligence Lab

1. LLMs for science
• General purpose LLMs for science
• LLMs for Chemistry & Biology
• LLMs for Mathematics

2. LLMs for other datasets
• Tabular data
• Time series

3. LLM agents
• Basic concept & Benchmarks
• Prompting LLMs as agents
• Optimizing LLMs as agents

Table of Contents

67

Algorithmic Intelligence Lab

Is it possible to use LLMs for tabular learning?
• The flexibility of language makes it possible to transform tabular data into language.

Define the task and feature descriptions in language.
• Serialize data, and feed it into an LLM.

Motivation: Possibility of using LLMs for tabular learning

68

Algorithmic Intelligence Lab

Indeed, LLMs are competitive for tabular learning.

Dinh et al. (2022):
• Investigated the performance of the fine-tuned LLMs on tabular data.

LLMs for Tabular Data: LIFT

69

Algorithmic Intelligence Lab

Indeed, LLMs are competitive for tabular learning.

Dinh et al. (2022):
• Investigated the performance of the fine-tuned LLMs on tabular data.
• In-context learning with LIFT is competitive compared to prior methods.

LLMs for Tabular Data: LIFT

70

Algorithmic Intelligence Lab

LLMs can operate effectively as weak learners [Manikandan et al., 2023]

• Prompt the LLM to summarize the tabular dataset.
• The summary acts as a prompt that the LLM uses to make predictions.
• Such prompts summarizing different subsets of data can be seen as weak learners

for a boosting procedure.

LLMs for Tabular Data: Summary Boosting

71

Algorithmic Intelligence Lab

Step 1: Data conversion.
• To utilize LLMs with tabular data, it is necessary to convert the records into natural

language descriptions.

But how?
• LIFT [Dinh et al., 2022] inserts attribute values into predefined templates.
• However, this approach often produces unnatural descriptions that differ from how

humans might describe the data.
• Depending on the dataset, designing the template by hand can also be challenging.

LLMs for Tabular Data: Summary Boosting

72

Algorithmic Intelligence Lab

Step 1: Data conversion.
• To utilize LLMs with tabular data, it is necessary to convert the records into natural

language descriptions.
• Get data descriptions by zero-shot prompting the LLM.

• With information about the dataset (Metadata) and a textual representation of the
tabular record (Data as Text).

LLMs for Tabular Data: Summary Boosting

73

Algorithmic Intelligence Lab

Step 1: Data conversion.
• To utilize LLMs with tabular data, it is necessary to convert the records into natural

language descriptions.
• Get data descriptions by zero-shot prompting the LLM.

• With information about the dataset (Metadata) and a textual representation of the
tabular record (Data as Text).

• Challenge: Naively including numerical values in the descriptions can lead to poor
performance.
• Bin all numerical features into percentiles and encode them descriptively.

LLMs for Tabular Data: Summary Boosting

74

Algorithmic Intelligence Lab

Step 1: Data conversion.
• To utilize LLMs with tabular data, it is necessary to convert the records into natural

language descriptions.
• Get data descriptions by zero-shot prompting the LLM.

• With information about the dataset (Metadata) and a textual representation of the
tabular record (Data as Text).

• Challenge: Naively including numerical values in the descriptions can lead to poor
performance.
• Bin all numerical features into percentiles and encode them descriptively.

LLMs for Tabular Data: Summary Boosting

75

Algorithmic Intelligence Lab

Step 2: Weak learning via summarization.
• A typical method for performing few-shot learning with LLMs involves providing a

small number of demonstrations.
• However,

• There may be a large number of data points that do not fit within the LLM context.
• Increasing the number of examples in the context does not always improve performance.
→ Necessitate alternative approaches to weak learning via LLMs.

LLMs for Tabular Data: Summary Boosting

76

Algorithmic Intelligence Lab

Step 2: Weak learning via summarization.
• A typical method for performing few-shot learning with LLMs involves providing a

small number of demonstrations.
• Produce summaries of a collection of examples.

• Summarization naturally encourages the extraction of representative information in data.
• First, perform summarization on the data by calling the LLM.
• Second, by using the summary as a prompt, the LLM performs inference.

LLMs for Tabular Data: Summary Boosting

77

Algorithmic Intelligence Lab

Step 2: Weak learning via summarization.
• A typical method for performing few-shot learning with LLMs involves providing a

small number of demonstrations.
• Produce summaries of a collection of examples.

• Summarization naturally encourages the extraction of representative information in data.
• First, perform summarization on the data by calling the LLM.
• Second, by using the summary as a prompt, the LLM performs inference.

• Challenge 1: The sampled summary can sometimes be noisy.
• Generate a fixed number of summaries and pick the the smallest validation error rate.

• Challenge 2: The context size of existing LLMs is still limited.
• We cannot fit the entire dataset into the context for summarization.
→ Use only a representative subset obtained through weighted stratified sampling.

LLMs for Tabular Data: Summary Boosting

78

Algorithmic Intelligence Lab

Step 2: Weak learning via summarization.
• A typical method for performing few-shot learning with LLMs involves providing a

small number of demonstrations.
• Produce summaries of a collection of examples.

• Summarization naturally encourages the extraction of representative information in data.
• First, perform summarization on the data by calling the LLM.
• Second, by using the summary as a prompt, the LLM performs inference.

• Challenge 1: The sampled summary can sometimes be noisy.
• Generate a fixed number of summaries and pick the the smallest validation error rate.

• Challenge 2: The context size of existing LLMs is still limited.
• We cannot fit the entire dataset into the context for summarization.
→ Use only a representative subset obtained through weighted stratified sampling.

Step 3: Boosting.
• Use the AdaBoost algorithm to produce an ensemble with these collections of

summary-based weak learners.

LLMs for Tabular Data: Summary Boosting

79

Algorithmic Intelligence Lab

LLMs with summarization are a good candidate for creating weak learners.
• The LLMs themselves do not have enough built-in knowledge to succeed at tabular

data zero-shot.
• Few-shot consistently improves the test performance compared to zero-shot.

• Added information is crucial for LLMs to work on tabular datasets.
• Summary consistently improves upon few-shot.

• Summarization is a powerful way to improve few-shot performance.
• Boosting with summarization consistently outperforms all other prompting-based

approaches.

LLMs for Tabular Data: Summary Boosting

80

Algorithmic Intelligence Lab

When the datasets have many numerical features, the performance can be worse.
• LLMs are fairly bad at quantitative reasoning without fine-tuning.

Summary Boosting performs very well when the size of the dataset is very small.
• LLMs have a large amount of generic prior about the world from pre-training.
• When the dataset is large, this prior knowledge becomes less relevant, and fine-

tuning becomes more competitive.

LLMs for Tabular Data: Summary Boosting

81

Algorithmic Intelligence Lab

Tabular features are roughly categorized into:
• Discrete type (categorical, binary, or string features)

• Can be naturally understood by LLMs.
• E.g., “Male” and “Female” are values of the discrete feature “Gender.”

• Continuous type (i.e., numerical features)
• Still difficult to make fully understandable to LLMs.
• Wide range of values & counter-intuitive meanings of exact numerical values.

Discrete text representation space is incompatible with numerical values.

LLMs for Tabular Data: TP-BERTa

82

Algorithmic Intelligence Lab

Tabular Prediction adapted BERT approach [Yan et al., 2023]

• TP-BERTa is built on the basis of RoBERTa as default.

• Discretizes numerical feature values as relative magnitude tokens (RMT).
• Treat them as some meaningful words in the LLM’s vocabulary.

• Intra-feature attention (IFA) module attentively fuses the embeddings of a
feature’s name and value.

• Achieves feature order-agnostic prediction.

LLMs for Tabular Data: TP-BERTa

83

Algorithmic Intelligence Lab

Tabular Prediction adapted BERT approach [Yan et al., 2023]

• GBDTs still outperform classical and advanced DNNs in typical regimes.

• However, the pre-trained TP-BERTa shows competitive performances.
• TP-BERTa is stably promising when discrete features begin to dominate.

• While for purely numerical datasets, GBDT are still better choices.

LLMs for Tabular Data: TP-BERTa

84

Algorithmic Intelligence Lab

Tabular Prediction adapted BERT approach [Yan et al., 2023]

• Why were LMs neglected on tabular prediction?
• Numerical encoding strategy comparison.
1. Value2Str: directly treating numerical values as strings.
2. VMFE: value-multiplied feature name embeddings.
→ These strategies hurt AUC scores on the most significantly changed datasets.

LLMs for Tabular Data: TP-BERTa

85

Algorithmic Intelligence Lab

Tabular Prediction adapted BERT approach [Yan et al., 2023]

• Why were LMs neglected on tabular prediction?
• Numerical encoding strategy comparison.
• IFA module ablation.

• A noticeable performance degradation occurs when directly feeding all feature names
and values to the LM.

→ LMs are likely to be confused when they process a pile of unmatched feature name-
value texts.

LLMs for Tabular Data: TP-BERTa

86

Algorithmic Intelligence Lab

Tabular Prediction adapted BERT approach [Yan et al., 2023]

• Why were LMs neglected on tabular prediction?
• Numerical encoding strategy comparison.
• IFA module ablation.
• Using RoBERTa weights is better than random weights.
→ LM weights have inherently entailed meaningful semantic knowledge.
• A more significant leap can be achieved by further pre-training on extensive tabular

data.
→ LMs are also effective in transferring tabular data knowledge and suitable for cross-
table pre-training.

LLMs for Tabular Data: TP-BERTa

87

Algorithmic Intelligence Lab

Current LLM-based tabular learning methods have some limitations.

• At least one LLM inference per sample is required.

• Fine-tuning the LLM can be infeasible.
• Recently proposed top-performance LLMs only permit limited access via APIs.

• Not suitable with lengthy prompts.
• Text length becomes long when the number of features in tabular data grows.

Han et al. (2024): Aims to understand the criteria underlying LLM predictions.

• For the task of predicting a particular disease, the LLM can directly infer and
generate rules that determine which feature conditions result in identifying the
disease.

LLMs for Tabular Data: FeatLLM

88

Algorithmic Intelligence Lab

Step 1: FeatLLM extracts rules for each class.

• Utilizing prior knowledge and few-shot examples.

Step 2: These rules are parsed and applied to create binary features for samples.
Step 3: A linear layer is trained on features to estimate class likelihoods.

Step 4: This procedure is repeated multiple times for ensembling.

LLMs for Tabular Data: FeatLLM

89

Algorithmic Intelligence Lab

Prompt design for extracting rules.

• Guide the problem-solving process to mimic how an expert human might
approach it.

LLMs for Tabular Data: FeatLLM

90

Algorithmic Intelligence Lab

Prompt design for extracting rules.

• Guide the problem-solving process to mimic how an expert human might
approach it.

• Basic information description: Essential information for solving the problem.
• The task description is formulated as a question.
• The feature description indicates its value type and includes information.
• Few training samples are serialized into text, along with their ground-truth labels.

LLMs for Tabular Data: FeatLLM

91

Algorithmic Intelligence Lab

Prompt design for extracting rules.

• Guide the problem-solving process to mimic how an expert human might
approach it.

• Basic information description: Essential information for solving the problem.
• Reasoning instruction: Enhance the LLM’s reasoning by providing guidance.

• Introductory sentence similar to the chain-of-thought approach.
• Step 1: LLM is encouraged to infer the causal relationship.
• Step 2: LLM uses example demonstrations and the information of the first step to

deduce rules for each class.

LLMs for Tabular Data: FeatLLM

92

Algorithmic Intelligence Lab

Prompt design for extracting rules.

• Guide the problem-solving process to mimic how an expert human might
approach it.

• Basic information description: Essential information for solving the problem.
• Reasoning instruction: Enhance the LLM’s reasoning by providing guidance.

• Introductory sentence similar to the chain-of-thought approach.
• Step 1: LLM is encouraged to infer the causal relationship.
• Step 2: LLM uses example demonstrations and the information of the first step to

deduce rules for each class.

LLMs for Tabular Data: FeatLLM

93

Algorithmic Intelligence Lab

Prompt design for extracting rules.

• Guide the problem-solving process to mimic how an expert human might
approach it.

• Basic information description: Essential information for solving the problem.
• Reasoning instruction: Enhance the LLM’s reasoning by providing guidance.
• Response instruction: Guide the LLM on structuring its response.

LLMs for Tabular Data: FeatLLM

94

Algorithmic Intelligence Lab

Prompt design for extracting rules.

• Guide the problem-solving process to mimic how an expert human might
approach it.

LLMs for Tabular Data: FeatLLM

95

Algorithmic Intelligence Lab

Parsing rules for feature generation.

• Utilize the rules to create new binary features.
• Created for each class, indicating whether the sample satisfies the rules associated

with that class.

LLMs for Tabular Data: FeatLLM

96

Algorithmic Intelligence Lab

Inferring class likelihood.

• A simple method to measure the class likelihood of the sample is to count how
many rules of each class it satisfies.

• However, not all rules carry the same importance.
• FeatLLM learns this importance using a linear model without bias.

LLMs for Tabular Data: FeatLLM

97

Algorithmic Intelligence Lab

Ensembling with bagging.

• Repeatedly execute the entire process to create multiple models to make the
final prediction via ensemble.

• The high temperature for LLM inference.
• Randomize the order of few-shot demonstrations.
• Bagging to select a subset of features or instances for each trial.

What are the advantages of the ensemble approach?
• Even if the LLM generates incorrect rules, other trials can compensate.

• LLM’s self-consistency: Rules commonly inferred across multiple trials are more
likely to be accurate.

• Address the limitation of LLM’s prompt size.

LLMs for Tabular Data: FeatLLM

98

Algorithmic Intelligence Lab

FeatLLM consistently ranks as the top performer or secures the second place.

LLMs for Tabular Data: FeatLLM

99

Algorithmic Intelligence Lab

Ablation study.

• Tuning: Omitting the weight-tuning process of the linear model.
• The benefit becomes higher when the number of shots increases.
• When there is a large amount of data, accurate estimation of the importance of

rules becomes feasible.

• Ensemble: Omitting the ensemble process.
• Description: Omitting the feature description.

• Reasoning: Omitting the Step 1 process in the reasoning instruction part.
• The benefit becomes higher when the number of shots is small.
• The efficient utilization of prior knowledge of LLM becomes crucial.

LLMs for Tabular Data: FeatLLM

100

Algorithmic Intelligence Lab

Dealing with the scarcity of labeled data: Learning transferable knowledge.

• However, tables are inherently heterogeneous.
• They contain different columns and feature spaces.
→ Makes transfer learning difficult!

Nam et al. (2024): LLMs can be tabular transfer modules.

• P2T uses LLM to extract transferable knowledge from the source dataset and
use it as in-context samples.

• P2T constructs pseudo-demonstration to be highly relevant to the actual target task.

LLMs for Tabular Data: P2T

101

Algorithmic Intelligence Lab

• Step 1: Prompt LLM to determine which column feature is most important for
the target task.

• Step 2: Create pseudo-demonstrations that describe the task where the
selected column feature is the target, and the remaining ones are input.

• Step 3: Finally, P2T prompts the LLM with the created pseudo-demonstrations
with few-shot labeled demonstrations.

LLMs for Tabular Data: P2T

102

Algorithmic Intelligence Lab

P2T is effective for zero-shot classification.

• The advantage of using LLMs is that they can answer in a zero-shot manner.

• P2T framework can improve the performance of zero-shot prediction.
• By transferring knowledge from unlabeled and heterogeneous datasets.

LLMs for Tabular Data: P2T

103

Algorithmic Intelligence Lab

P2T significantly and consistently improves the few-shot prediction performance
utilizing unlabeled data.

• Transfer source: Unlabeled data of the same dataset.
• P2T yields the highest score in all 12 datasets in the 1-shot classification.

• P2T yields the highest score in 11 datasets in the 5-shot classification.

LLMs for Tabular Data: P2T

104

Algorithmic Intelligence Lab

P2T consistently benefits from heterogeneous data sources.

• Transfer source: Heterogeneous data.

• As tabular data is transformed into natural language, LLMs can automatically
understand the relations between different features from their descriptions.

LLMs for Tabular Data: P2T

105

Algorithmic Intelligence Lab

Using the identified target highly correlated with the target task consistently
outperforms random targets.

• Carefully constructing pseudo-demonstrations designed to be highly relevant to
the target task is a key factor in enabling transfer learning via prompting.

• Moreover, LLM is better than conventional methods for identifying the most
correlated features.

LLMs for Tabular Data: P2T

106

Algorithmic Intelligence Lab

Can better performance be achieved by P2T using a more advanced model?

• P2T performs better with advanced LLMs.

• As LLMs continue to advance, improved performance by P2T framework is
expected with future models.

LLMs for Tabular Data: P2T

107

Algorithmic Intelligence Lab

Are learned representations always useful for tabular learning?

• Deep learning approaches are arguably known to be less effective.

• Tree-based approaches using raw column features often outperform deep
learning models.

LLMs for Tabular Data: OCTree

108

Algorithmic Intelligence Lab

It would be very useful if one could generate informative raw column features.

• Practitioners often focus on augmenting raw column features by using feature
engineering methods.

• Remains ambiguity in defining the space over which to search for candidate
features.

• Often rely solely on validation scores to select good features, neglecting valuable
feedback from past experiments.

Nam et al. (2024): The optimization of a good generation rule.

• However, optimizing the column feature generator is not straightforward
because it is a non-differentiable problem.

• The search space is very large.

LLMs for Tabular Data: OCTree

109

Algorithmic Intelligence Lab

OCTree [Nam et al., 2024] leverages an LLM to find an effective column generator.

• LLM can optimize a variety of non-differentiable problems with prompts that
describe the optimization task in language.

• The extensibility of injecting linguistic context (e.g., column names like “Gender”
and values like “Female”).

Two main challenges:

• The rule for generating column features is often non-differentiable.
→ Use an LLM as an optimizer.

• LLM’s input prompt size limit makes it difficult to provide full training samples
in the prompts.

→ We design a novel decision tree reasoning, i.e., akin to compression of the
training dataset.

LLMs for Tabular Data: OCTree

110

Algorithmic Intelligence Lab

Step 1: Generate the column name of a novel feature.

Step 2: Initialize the optimization process.

Step 3: Optimize the rule using decision tree reasoning.
Step 4: Optimize the rule with a fixed number of iterations and select the rule
with the highest validation score.

LLMs for Tabular Data: OCTree

111

Algorithmic Intelligence Lab

OCTree consistently improves on the best-performing baselines.

• LLM generates a logical rule in natural language.
• Since the logical rule is easily converted to Python code, we prompt the LLM to

convert it.

LLMs for Tabular Data: OCTree

112

Algorithmic Intelligence Lab

In practice, language descriptions are not always available.

• E.g., feature names and values are changed to meaningless symbols in many
financial datasets for confidentiality.

• OCTree uses arithmetic rules as feature generators.

LLMs for Tabular Data: OCTree

113

Algorithmic Intelligence Lab

In practice, language descriptions are not always available.

• E.g., feature names and values are changed to meaningless symbols in many
financial datasets for confidentiality.

• OCTree uses arithmetic rules as feature generators.
• Even in this case, OCTree is beneficial for improving the baseline models.
• Superiority comes from the optimization capability of LLMs, using decision tree

reasoning as explicit feedback.

LLMs for Tabular Data: OCTree

114

Algorithmic Intelligence Lab

OCTree outperforms state-of-the-art automatic feature engineering methods.

• Furthermore, OCTree in combination with OpenFE further improves the
performance.

Ablation study of the proposed components.

• The rules for introducing new column features are optimized even without
using explicit decision trees for feedback.

• One can get even better performance by providing the decision tree as
feedback to the LLM.

LLMs for Tabular Data: OCTree

115

Algorithmic Intelligence Lab

Transfer learning is one of the defining hallmarks of recent foundation models.

• The ability to accurately solve prediction tasks on data it was not trained on.

Gardner et al. (2024): Introduce a new model and dataset for large-scale transfer
learning on tabular data.
• TabuLa-8B: A language model for tabular prediction that can solve classification

tasks across unseen domains.
• Outperforms baselines, given a small number of examples, without any fine-tuning.
• Capable of zero-shot prediction.

LLMs for Tabular Data: TabuLa-8B

116

Algorithmic Intelligence Lab

Overview.

• Overall approach: Fine-tune the pretrained Llama3-8B language model on
tabular prediction tasks.

Why Llama3-8B as the starting point?
• It is a high-quality, open-source model trained on over 15T tokens.

• Demonstrates strong performance on a diverse set of downstream tasks.

• Relatively modest size: Makes fine-tuning, inference, and deployment more
accessible.

LLMs for Tabular Data: TabuLa-8B

117

Algorithmic Intelligence Lab

Serialization and tabular language models.

• Serialization: Converting a row of data into text.
• E.g., “the <key> is <value>”

• Given a row of data from a table, the corresponding serialization has three
main parts:

• A prefix containing a prompt followed by a list of possible label values.

LLMs for Tabular Data: TabuLa-8B

118

Algorithmic Intelligence Lab

Serialization and tabular language models.

• Serialization: Converting a row of data into text.
• E.g., “the <key> is <value>”

• Given a row of data from a table, the corresponding serialization has three
main parts:

• A prefix containing a prompt followed by a list of possible label values.
• The example consists of all key value pairs for the columns used as features.

LLMs for Tabular Data: TabuLa-8B

119

Algorithmic Intelligence Lab

Serialization and tabular language models.

• Serialization: Converting a row of data into text.
• E.g., “the <key> is <value>”

• Given a row of data from a table, the corresponding serialization has three
main parts:

• A prefix containing a prompt followed by a list of possible label values.
• The example consists of all key value pairs for the columns used as features.
• A suffix prompts the model with a question again, followed by the possible labels.

LLMs for Tabular Data: TabuLa-8B

120

Algorithmic Intelligence Lab

Training procedure.

• Train TabuLa-8B using a standard language modeling setup.
• Minimize the cross-entropy over the sequence of target tokens.

• Only compute loss over the subsequence of target tokens.
• The tokens start after the <|endinput|> token, up to and including

<|endcompletion|>.
• Focuses training on learning the desired target label.

LLMs for Tabular Data: TabuLa-8B

121

Algorithmic Intelligence Lab

RCTM: Row-Causal Tabular Masking

• An efficient attention masking scheme.
• Tailored to few-shot tabular prediction.
• The model is allowed to attend to all previous samples from the same table in the

batch.
• But not to samples from other tables.

• Similar to the in-context pretraining.
• RCTM has a drastic impact on few-shot performance.

LLMs for Tabular Data: TabuLa-8B

122

Algorithmic Intelligence Lab

Dataset construction: Original raw data source

• TabLib: Publicly available dataset consisting of 627M tables extracted from
Common Crawl and Github.

• TabLib contains numerous system logs with instructable statistics.
• Tables of software documentation.
• Call sheets with personally identifiable information.

LLMs for Tabular Data: TabuLa-8B

123

Algorithmic Intelligence Lab

Dataset construction: Filtering strategies

• Filtering occurs at three levels: tables, columns, and rows.
• Remove non-tabular data, e.g., text or PDF.
• Ensure the safety of chosen tables, e.g., remove PII.
• Find sources with high semantic content, e.g., remove tables with too many missing

values.

LLMs for Tabular Data: TabuLa-8B

124

Algorithmic Intelligence Lab

Dataset construction: Unsupervised task selection

• First, identify a subset of columns that are suitable for prediction according to
various heuristics.

• Exclude if the column name is numeric, it has only one unique value, or it has
unique values for every row.

• Then, choose a specific column at random from this set.

The Tremendous TabLib Trawl (T4)

• Total 3.1M tables.
• The dataset contains over 1.6B rows.

• Approximately 80B Llama 3 tokens.

LLMs for Tabular Data: TabuLa-8B

125

Algorithmic Intelligence Lab

Experiment: Main results.

• TabuLa-8B demonstrates strong transfer performance across a broad range of
tasks.

• TabuLa-8B is 50pp more accurate than the base Llama 3 model in the zero-shot
regime.

• In the regime of 1 to 32 shots, it outperforms XGBoost and TabPFN.
• Baselines are directly trained on each specific dataset.

LLMs for Tabular Data: TabuLa-8B

126

Algorithmic Intelligence Lab

Experiment: Ablation study on RCTM

• Replaced RCTM with a per-sample causal attention mask.
• The model is not allowed to attend to any samples besides the target sample.

• RCTM improves the models’ ability to attend across samples.
• Removing RCTM deteriorates as the number of shot grows.

LLMs for Tabular Data: TabuLa-8B

127

Algorithmic Intelligence Lab

AnoLLM [Tsai et al., 2025] leverages LLMs for unsupervised tabular anomaly detection.

• Challenges:
• Tabular data does not align well with the linear and sequential nature of LLM inputs.
• Unsupervised anomaly detection lacks labels, making the ICL framework unfeasible.
• How should we define the anomaly scores?

AnoLLM is comprised of three phases:

• Step 1: Serialize each row of a tabular dataset into a standardized text format.

• Step 2: LLM is fine-tuned with the serialized tabular data via next-token-
prediction.

• LLM learns to be a tabular data generator that models the data distribution.

• Step 3: Anomaly scores are determined using the negative log likelihood.
• Higher scores indicates greater surprise by the model when encountering the

inputs.

LLMs for Tabular Data: AnoLLM

128

Algorithmic Intelligence Lab

Further details.

• During the preprocessing stage, numerical columns are binned into groups.

• Order of columns is randomly shuffled.
• During inference, anomaly scores are determined by averaging the negative

log-likelihood across random permutations of the test data.
.

LLMs for Tabular Data: AnoLLM

129

Algorithmic Intelligence Lab

Advantages over traditional methods:

• Retains textual and categorical features without heavy feature engineering.

• Handles mixed-type data effectively.
• Uses column permutation to prevent feature ordering bias.

Performance: Achieves SOTA results on six benchmark datasets.

LLMs for Tabular Data: AnoLLM

130

Algorithmic Intelligence Lab

Ablation study: Larger LLMs do not significantly improve performance over
smaller models.

• AnoLLM mainly uses SmolLM-135M and SmolLM-360M models.
• Using the 1.7B model does not provide much performance boost.

• This could be because larger models are trained on text data that are not
relevant to tabular tasks.

LLMs for Tabular Data: AnoLLM

131

Algorithmic Intelligence Lab

Problem: LLMs excel in unstructured data tasks but struggle with structured
tabular data, especially in medical applications where numerical values dominate.

• LLMs lack numerical sensitivity, making them less effective for tabular data
tasks (e.g., disease prediction from lab results).

• Standard prompting techniques (zero-shot, CoT, few-shot) do not significantly
improve LLM performance on tabular tasks.

LLMs for Tabular Data: SERSAL

132

Algorithmic Intelligence Lab

SERSAL: Self-Enhancing Refinement via Small Models and LLMs.

• A novel self-prompting method that synergizes small models with LLMs.

• Enhances tabular data prediction in an unsupervised manner.

Propose Method.
• Step 1: Use LLMs to generate soft pseudo-labels (confidence scores).

• Step 2: Train a small tabular model using these pseudo-labels.
• I.e., treating them as noisy annotations.

• Step 3: Use the trained small model’s predictions to refine (fine-tune) the LLM.

• Step 4: Repeat the process iteratively to improve performance.

LLMs for Tabular Data: SERSAL

133

Algorithmic Intelligence Lab

SERSAL: Self-Enhancing Refinement via Small Models and LLMs.

• A novel self-prompting method that synergizes small models with LLMs.

• Enhances tabular data prediction in an unsupervised manner.

Propose Method.
• Step 1: Use LLMs to generate soft pseudo-labels (confidence scores).

• Step 2: Train a small tabular model using these pseudo-labels.
• I.e., treating them as noisy annotations.

• Step 3: Use the trained small model’s predictions to refine (fine-tune) the LLM.

• Step 4: Repeat the process iteratively to improve performance.

LLMs for Tabular Data: SERSAL

134

Algorithmic Intelligence Lab

SERSAL: Self-Enhancing Refinement via Small Models and LLMs.

• A novel self-prompting method that synergizes small models with LLMs.

• Enhances tabular data prediction in an unsupervised manner.

Propose Method.
• Step 1: Use LLMs to generate soft pseudo-labels (confidence scores).

• Step 2: Train a small tabular model using these pseudo-labels.
• I.e., treating them as noisy annotations.

• Step 3: Use the trained small model’s predictions to refine (fine-tune) the LLM.

• Step 4: Repeat the process iteratively to improve performance.

LLMs for Tabular Data: SERSAL

135

Algorithmic Intelligence Lab

Experiment: Consistently outperforms zero-shot and few-shot prompting
techniques, approaching fully supervised small model performance.

• LLM-generated high-confidence predictions tend to be reliable.
• Works best when the LLM has some domain knowledge.

LLMs for Tabular Data: SERSAL

136

Algorithmic Intelligence Lab

Experiment: Consistently outperforms zero-shot and few-shot prompting
techniques, approaching fully supervised small model performance.

• LLM-generated high-confidence predictions tend to be reliable.
• Works best when the LLM has some domain knowledge.

• Iterative application continuously improves LLM reasoning for tabular tasks.

LLMs for Tabular Data: SERSAL

137

Algorithmic Intelligence Lab

1. LLMs for science
• General purpose LLMs for science
• LLMs for Chemistry & Biology
• LLMs for Mathematics

2. LLMs for other datasets
• Tabular data
• Time series

3. LLM agents
• Basic concept & Benchmarks
• Prompting LLMs as agents
• Optimizing LLMs as agents

Table of Contents

138

Algorithmic Intelligence Lab

Time series forecasting predicts the future from history.

• Challenge:
• Diverse nature of training data (Different scales, sample rates, missing values, …)
• Using LLMs: Modality gap between natural language and numerical sequences

• Thus:
• No large model pre-trained from time series, unlike the image, language domain.

• Simple methods like ARIMA or linear models often outperform DL methods.

Can LLMs be extended beyond language understanding?
• There is no need for fine-tuning; suited for scenarios with limited data.

• Circumvents the extensive time, effort, and domain-specific expertise.

LLMs for Time Series: Motivation

139

Algorithmic Intelligence Lab

PromptCast [Xue et al., 2023]

• Rephrase time-series data to natural language.

• So that LLM can leverage its linguistic nature.

LLMs for Time Series: PromptCast

140

Algorithmic Intelligence Lab

LLMs are zero-shot time series forecasters [Gruver et al., 2023]

• Time series data.
• Recap: Language data 𝑈! is consisted of tokens 𝑢", 𝑈! = (𝑢#, 𝑢$, … , 𝑢" , … , 𝑢%!).
• Time series data: Exact same form as language data, but each 𝑢" is numerical.
• Issue: Details of tokenizing numbers.

LLMs for Time Series: LLMTIME

141

Algorithmic Intelligence Lab

LLMs are zero-shot time series forecasters [Gruver et al., 2023]

• Tokenization.
• Separates the digits with spaces to force a separate tokenization of each digit.
• Use a comma (“,”) to separate each time step, with 2 digits of precision.
• Example: 0.123, 1.23, 12.3, 123.0 → “1 2 , 1 2 3 , 1 2 3 0 , 1 2 3 0 0”

LLMs for Time Series: LLMTIME

142

Algorithmic Intelligence Lab

LLMTIME has the best-aggregated performance on several benchmarks.

• Base Model: LLaMA-2, GPT-3

• Note: Baseline methods are usually many-shot, while LLMTIME is zero-shot.
• Predictions from LLMTIME are ranked best or second best on all benchmarks.

LLMs for Time Series: LLMTIME

143

Algorithmic Intelligence Lab

Time-LLM: Time Series Forecasting by Reprogramming LLMs [Jin et al., 2024]

• Patching & Reprogramming
• Align the modalities of time series and natural language

LLMs for Time Series: Time-LLM

144

Algorithmic Intelligence Lab

Time-LLM: Time Series Forecasting by Reprogramming LLMs [Jin et al., 2024]

• Patching
• Each (normalized) input channel is divided to patches
• Better at preserving local semantic information
• Less input tokens leading to less computational cost

LLMs for Time Series: Time-LLM

145

Algorithmic Intelligence Lab

Time-LLM: Time Series Forecasting by Reprogramming LLMs [Jin et al., 2024]

• Reprogramming
• Align TS patch - language using ‘Text prototypes’

• ex) : steady down, : short up
• Multi-head attention for source and target alignment

LLMs for Time Series: Time-LLM

146

Algorithmic Intelligence Lab

Time-LLM: Time Series Forecasting by Reprogramming LLMs [Jin et al., 2024]

• Reprogramming
• Efficient compared to task-specific learning & fine-tuning

LLMs for Time Series: Time-LLM

147

Algorithmic Intelligence Lab

Time-LLM: Time Series Forecasting by Reprogramming LLMs [Jin et al., 2024]

• Prompt-as-Prefix
• Inject prompts with input context to guide the reprogramming of TS data
• Direct explanation and information about the dataset

• Dataset context, Task instruction, input statistics

LLMs for Time Series: Time-LLM

148

Algorithmic Intelligence Lab

• Chronos: Learning the Language of Time Series [AWS., 2024]

• Pretraining an Time Series Language Model, for Zero-shot forecasting
• Train a T5 model from scratch on time-series data

• Tokenization: Scaling & Quantization into Discrete tokens
• Use Public dataset & Synthetic dataset

LLMs for Time Series: Time-LLM

149

Algorithmic Intelligence Lab

• Chronos: Learning the Language of Time Series [AWS., 2024]

• Quality and quantity of public time-series data pales compared to language
• Data Augmentation: TSMixup

• Idea of Mixup [Zhang et al., 2017] appliedat time-series for more than two datapoints
• Synthetic data: KernelSynth

• Gaussian Process based time series generation; construct a kernel bank of patterns
• Sampled kernels randomly combined with binary operator (ⅹ or ＋)

LLMs for Time Series: Time-LLM

150

TSMixup KernelSynth

Algorithmic Intelligence Lab

• Chronos: Learning the Language of Time Series [AWS., 2024]

• Experiments: In-domain (left) & Zero-shot (right)
• Pretrained Chronos shows better performance (Purple, lower the better)

• Local statistical models (Blue, fitting parameters for each time series)
• Task-specific models (Orange, training a separate model for each task)

LLMs for Time Series: Time-LLM

151

In-domain Results Zero-shot Results

Dataset & Baselines

Algorithmic Intelligence Lab

• Chronos: Learning the Language of Time Series [AWS., 2024]

• Conclusion:
• Existing language model architecture and training procedures are adaptable to

training and performing time-series forecasting
• Data & scaling works in the time-series domain, building a generalist model
• Developing methods for generating synthetic time series data is a promising

direction

LLMs for Time Series: Time-LLM

152

Model size ablations Ablations of data augmentation and
Synthetic data proportion (lower the better)

Algorithmic Intelligence Lab

1. LLMs for science
• General purpose LLMs for science
• LLMs for Chemistry & Biology
• LLMs for Mathematics

2. LLMs for other datasets
• Tabular data
• Time series

3. LLM agents
• Basic concept & Benchmarks
• Prompting LLMs as agents
• Optimizing LLMs as agents

Table of Contents

153

Algorithmic Intelligence Lab

1. LLMs for science
• General purpose LLMs for science
• LLMs for Chemistry & Biology
• LLMs for Mathematics

2. LLMs for other datasets
• Tabular data
• Time series

3. LLM agents
• Basic concept & Benchmarks
• Prompting LLMs as agents
• Optimizing LLMs as agents

Table of Contents

154

Algorithmic Intelligence Lab 155

Possibilities of LLM as an agent

• LLMs show promising results in real-world sequential decision-making tasks
based on:

• Vast amount of world knowledge (e.g., “Milk might be placed in the refrigerator”)
• Reasoning and planning capabilities.

Examples of agentic tasks

• Web browsing: given arbitrary goal, agent navigate over web pages by clicking
the UI element, in order to fulfill the goal.

• Software engineering: given arbitrary goal, agent implement repository by
creating / opening files, implementing code, and execute the code if necessary.

LLM Agent: Basic Concepts & Benchmarks

Algorithmic Intelligence Lab 156

Overall pipeline

• LLM / MLLM understands natural language instruction (goal) and visual/textual
state.

• Based on the goal and current state, LLM generates code or command to
execute the action.

• Depending on the environment, reward is given at training phase.

LLM Agent: Basic Concepts & Benchmarks

LLM agent

Action (e.g., code, command, action tokens)

State / Observation
Reward

Environment

Algorithmic Intelligence Lab 157

Use cases

• Web browsing
• State/Observation: HTML, pixel (screenshot)
• Action: code/command for UI interaction (e.g., click(id), type(value, id))

• Software engineering
• State/Observation: Repo-tree / contents of currently opened file
• Action: agent-computer interface (e.g., open(file_name), scroll_down(), ..)

• Robotic tasks
• State/Observation: Robot state, pixel (camera observation)
• Action: action token

LLM Agent: Motivation & Basic concept

Algorithmic Intelligence Lab 158

Challenges

• Learning long-term reward maximizing behavior (rather than become myopic).
• Advanced Reasoning & Planning capability can be a key.
• RL with task reward can also be a path to such behavior.

LLM Agent: Motivation & Basic concept

Algorithmic Intelligence Lab 159

AgentBench: Evaluating LLMs as Agents [Liu et al., 2023]

• Unified benchmark for evaluating LLM agents in text-based decision-making
tasks.

• Including various agentic tasks: agent for database, OS, web browsing, web
shopping, and text-based card games.

LLM Agent: Benchmarks

Algorithmic Intelligence Lab 160

AgentBench: Evaluating LLMs as Agents [Liu et al., 2023]

• Even proprietary LLMs (e.g., GPT-4, Claude) struggle to solve various decision-
making tasks.

• Long-term reasoning/planning capabilities are required for better LLM agents.

LLM Agent: Benchmarks

Algorithmic Intelligence Lab 161

WEBARENA: A Realistic Web Environment for Building Autonomous Agents [Zhou
et al., 2023]

• Benchmarks for web browsing tasks are based on a simulated environment
rather than real-world websites.

• This benchmark proposes benchmark spanning over 812 tasks across 6
websites (e.g., Map, Gitlab, online shopping, Reddit).

• Evaluates functional correctness (i.e., success rate) over all tasks.

LLM Agent: Benchmarks

Algorithmic Intelligence Lab 162

WEBARENA: A Realistic Web Environment for Building Autonomous Agents [Zhou
et al., 2023]

• 3 Types of observations are supported (Screenshot, HTML, accessibility tree)

• Commands for diverse UI actions are supported.

LLM Agent: Benchmarks

Algorithmic Intelligence Lab 163

WEBARENA: A Realistic Web Environment for Building Autonomous Agents [Zhou
et al., 2023]

• Even GPT-4 struggles to solve most of the tasks (with 14% of success rate).

• Significant gap between human-level performance (77.78%)

LLM Agent: Benchmarks

Algorithmic Intelligence Lab 164

WEBARENA: A Realistic Web Environment for Building Autonomous Agents [Zhou
et al., 2023]

• Recent works focused on computer-using agent improved the performance by
large margin.

LLM Agent: Benchmarks

Algorithmic Intelligence Lab 165

SWE-bench: Can Language Models Resolve Real-World GitHub Issues? [Jimenez et al.,
2023]

• Task of resolving the Github issue given issue description and codebase.

• Agent needs to modify specific part of the codebase so that the issue is
resolved.

• Once patch file is generated, the patch is applied, and then evaluated by pre-
defined unit tests.

LLM Agent: Benchmarks

Algorithmic Intelligence Lab 166

SWE-bench: Can Language Models Resolve Real-World GitHub Issues? [Jimenez et al.,
2023]

• Tasks are based on 12 well-maintained opensource Github repositories.

• Codebase corresponding to each tasks incorporates lengthy lines of code and
files (far exceeds context length of frontier LLMs, e.g., 200K tokens).

LLM Agent: Benchmarks

Algorithmic Intelligence Lab 167

SWE-bench: Can Language Models Resolve Real-World GitHub Issues? [Jimenez et al.,
2023]

• Baseline: Retrieve relevant code file from entire repository using RAG (i.e.,
using issue description as a query) à modify the retrieved code file.

• SWE-Llama is trained to generate corrected code, given retrieved code
containing faults.

LLM Agent: Benchmarks

Algorithmic Intelligence Lab 168

SWE-bench: Can Language Models Resolve Real-World GitHub Issues? [Jimenez et al.,
2023]

• Recent works further improved performance in SWE-Bench.

LLM Agent: Benchmarks

Algorithmic Intelligence Lab

1. LLMs for science
• General purpose LLMs for science
• LLMs for Chemistry & Biology
• LLMs for Mathematics

2. LLMs for other datasets
• Tabular data
• Time series

3. LLM agents
• Basic concept & Benchmarks
• Prompting LLMs as agents
• Optimizing LLMs as agents

Table of Contents

169

Algorithmic Intelligence Lab 170

ReAct: Synergizing Reasoning and Acting in Language Models [Yao et al., 2023]

• Prompting technique to improve LLMs’ decision-making capability.

• Applying Chain-of-Thought prompting to decision making tasks.
• Enforces LLM agents to think before act via prompting.

LLM Agent: Prompting LLMs as agents

Algorithmic Intelligence Lab 171

ReAct: Synergizing Reasoning and Acting in Language Models [Yao et al., 2023]

• Evaluation in AlfWorld and WebShop, a representative text-based decision
making task.

• ReAct prompting outperforms Act-only prompting with significant margin.

• Recently, think followed by action became default choice for LLM agents.

LLM Agent: Prompting LLMs as agents

Algorithmic Intelligence Lab 172

Reflexion: Language Agents with Verbal Reinforcement Learning [Shinn et al., 2023]

• LLM agent refining its decision making based on verbal feedback.

• New paradigm of verbal reinforcement learning

LLM Agent: Prompting LLMs as agents

Algorithmic Intelligence Lab 173

Reflexion: Language Agents with Verbal Reinforcement Learning [Shinn et al., 2023]

• LLM agent generates trajectory by decision making.

• LLM agent receives verbal external feedback or internal feedback (i.e., self-
evaluation).

• Based on the feedback, LLM agent generates reflection, and adds it to long-
term memory.

• Regenerate trajectory by referring to the reflection.

LLM Agent: Prompting LLMs as agents

Algorithmic Intelligence Lab 174

Reflexion: Language Agents with Verbal Reinforcement Learning [Shinn et al., 2023]

• Language agent improves its decision making within a few iterations of
Reflexion in sequential decision-making task (ALFWorld)

• Not only confined to decision making tasks, Reflexion can be also applied to
programming tasks (e.g., MBPP, HumanEval)

• Shows better than previous state-of-art methods.

LLM Agent: Prompting LLMs as agents

Algorithmic Intelligence Lab 175

SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering
[Yang et al., 2024]

• Proposed agent-computer interface enabling LLMs to solve software
engineering tasks as human developer do.

LLM Agent: Prompting LLMs as agents

Algorithmic Intelligence Lab 176

SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering
[Yang et al., 2024]

• Based on issue description and 1-shot example (demonstration), LLM
sequentially make decision using actions, which is defined based on agent-
computer interface.

LLM Agent: Prompting LLMs as agents

Think1: First, I need to reproduce the issue…
Action1: create_file(‘reproduce.py’)

Think3: I need to run the` reproduce.py` to see whether the
error is reprocuded..

Action3: python reproduce.py

Think2: As the issue describes problem regarding …
Action2: edit 1:1

[code to reproduce the error]
end_of_edit

Algorithmic Intelligence Lab 177

SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering
[Yang et al., 2024]

• Shows promising result in the representative repository-level software
engineering tasks: SWE-Bench

LLM Agent: Prompting LLMs as agents

Algorithmic Intelligence Lab 178

SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering
[Yang et al., 2024]

• Although method is simple (i.e., letting LLMs to use tools & actions specialized
for software engineering tasks), It showed the possibility of LLMs to solve repo-
level software engineering tasks as human developers do.

• After this work, many works proposed better agent-computer interfaces to
enhance the performance.

• Remaining problems:
• LLMs makes trivial mistakes while editing the code (e.g., indentation error), and

some errors are not detected by linting library, which results in task failure.
• Edit & Execution loop: once the execution of LLM-edited code returns error, LLMs

repeat editing the code and executing the wrongly edited code.

LLM Agent: Prompting LLMs as agents

Algorithmic Intelligence Lab 179

Code-R: Issue Resolving with Multi-Agent and Task Graphs [Chen et al., 2024]

• Proposed hierarchical multi-agent framework for software engineering task.

• Pre-defines role of each agent (e.g., Supervisor, Fault Localizer, Fault
Reproducer) , and available actions are different across roles.

LLM Agent: Prompting LLMs as agents

Algorithmic Intelligence Lab 180

Code-R: Issue Resolving with Multi-Agent and Task Graphs [Chen et al., 2024]

• Given issue description, Manager agent generates task graph, which defines
workflow and coordination between low-level agents.

• Following the task graph, low-level agents follow the workflow to solve the task.

LLM Agent: Prompting LLMs as agents

Algorithmic Intelligence Lab 181

Code-R: Issue Resolving with Multi-Agent and Task Graphs [Chen et al., 2024]

• Each agent are assigned with different agent-computer interfaces (i.e., action
space)

• For example, Reproducer and Editor can edit the code, while remaining agents
can not directly edit the code.

LLM Agent: Prompting LLMs as agents

Algorithmic Intelligence Lab 182

CodeR: Issue Resolving with Multi-Agent and Task Graphs [Chen et al., 2024]

• Multi-agent system results in better performance in SWE-Bench, compared to
single agent baseline (SWE-agent), as well as commercial products (e.g.,
Amazon Q Developer agent, Devin).

LLM Agent: Prompting LLMs as agents

Algorithmic Intelligence Lab

1. LLMs for science
• General purpose LLMs for science
• LLMs for Chemistry & Biology
• LLMs for Mathematics

2. LLMs for other datasets
• Tabular data
• Time series

3. LLM agents
• Basic concept & Benchmarks
• Prompting LLMs as agents
• Optimizing LLMs as agents

Table of Contents

183

Algorithmic Intelligence Lab 184

ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [Zhou et al.,
2024]

• Training LLMs for multi-turn tasks with RL poses several challenges compared to
training LLMs for single-turn tasks with RL.

• As LLMs have to make decision over an extended period of multi-turn interactions.

• Current RL methods to fine-tune LLMs (e.g., RLHF) focus on single-turn tasks.
• ArCHer proposes novel RL framework for training LLMs for multi-turn tasks.

LLM Agent: Optimizing LLMs as agents

Algorithmic Intelligence Lab 185

ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [Zhou et al.,
2024]

• In multi-turn tasks (i.e., agent tasks), action space is defined at utterance level
(e.g., command, code)

• However, usual RL methods to fine-tune LLMs focus on token-level action space
with reward function learned via human preference.

LLM Agent: Optimizing LLMs as agents

Algorithmic Intelligence Lab 186

ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [Zhou et al.,
2024]

• ArCHer proposes hierarchical approach:
• 1. Train utterance-level value function via Off-policy RL
• 2. Token-level on-policy RL (e.g., PPO) with learned utterance-level value function.

LLM Agent: Optimizing LLMs as agents

Algorithmic Intelligence Lab 187

ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [Zhou et al.,
2024]

• Overall algorithm

LLM Agent: Optimizing LLMs as agents

Algorithmic Intelligence Lab 188

ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [Zhou et al.,
2024]

• ArCHer outperforms other training methods.

• Although PPO gradually improves, ArCHer exhibits much sample-efficient
learning.

• GPT-2 fine-tuned with ArCHer outperforms GPT-3.5-turbo + ReAct

LLM Agent: Optimizing LLMs as agents

Algorithmic Intelligence Lab 189

Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents[Putta et al.,
2024]

• Search for optimal decision making via MCTS.

• From the search tree, optimize the LLM agent via Direct preference
optimization.

LLM Agent: Optimizing LLMs as agents

Given a state, LLM agent has multiple
choices for actions (i.e., Act 1, Act 2)

Through tree search, we already have
information of (value of Act 1 > value of
Act 2).

Therefore, we optimize LLM agent with
state, Act 1, and Act 2, as prompt,
positive completion, and negative
completion, respectively.

Algorithmic Intelligence Lab 190

Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents[Putta et al.,
2024]

• Overall algorithm

LLM Agent: Optimizing LLMs as agents

Algorithmic Intelligence Lab 191

Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents[Putta et al.,
2024]

• AgentQ achieves outperforms baselines.

• Applying MCTS at inference time yields much better performance.

LLM Agent: Optimizing LLMs as agents

Algorithmic Intelligence Lab 192

SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open
Software Evolution [Wei et al., 2025]

• Improving reasoning capability via RL in code domain à Improved software
engineering capability.

• Defined reward as a similarity between generated patch and oracle patch, and
then trained the Reasoning LM via GRPO.

LLM Agent: Optimizing LLMs as agents

Algorithmic Intelligence Lab 193

SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open
Software Evolution [Wei et al., 2025]

• Does not involve any multi-turn optimization, only optimizing “reasoning”
required for generating patch file given problematic code and issue description.

• Surprisingly, the trained LLM not only improved code modification capability,
but also capable of navigating codebase (e.g., opening file, creating file) as an
agent.

LLM Agent: Optimizing LLMs as agents

Algorithmic Intelligence Lab 194

SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open
Software Evolution [Wei et al., 2025]

• Improved performance in SWE-Bench (best performance among <100B scale
model)

LLM Agent: Optimizing LLMs as agents

Algorithmic Intelligence Lab 195

SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open
Software Evolution [Wei et al., 2025]

• Generalization to unseen tasks (code reasoning / math / MMLU etc..)
• As a baseline, utilized SFT, which simply trains LLMs with oracle data (without

reinforcement learning).

LLM Agent: Optimizing LLMs as agents

Algorithmic Intelligence Lab

[Guo et al., 2023] What can Large Language Models do in chemistry? A comprehensive benchmark on eight tasks, NeurIPS
2023 Track on Datasets and Benchmarks
link: https://arxiv.org/abs/2305.18365

[Beltagy et al, 2019] SciBERT: A Pretrained Language Model for Scientific Text, EMNLP 2019
link: https://arxiv.org/abs/1903.10676

[Develin et al., 2019] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019
link: https://arxiv.org/abs/1810.04805

[Taylor et al., 2022] Galactica: A Large Language Model for Science, arXiv 2022
link: https://arxiv.org/abs/2101.03288

[Lewkowycz et al., 2022] Solving Quantitative Reasoning Problems with Language Models, NeurIPS 2022
link: https://arxiv.org/abs/2206.14858

[Raffel et al., 2020] Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, JMLR 2020
link: https://arxiv.org/abs/1910.10683

[Christofidellis et al., 2022] Unifying Molecular and Textual Representations via Multi-task Language Modeling, ICML 2023
link: https://arxiv.org/abs/2301.12586

[Chen et al., 2022] From Artificially Real to Real: Leveraging Pseudo Data from Large Language Models for Low-Resource
Molecule Discovery, AAAI 2024
link: https://arxiv.org/html/2309.05203v3

[Gal et al., 2022] An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion, ICLR 2023
link: https://arxiv.org/abs/2208.01618

[Pei et al., 2023] BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge and Natural Language
Associations [Pei et al., 2023]
link: https://arxiv.org/abs/2310.07276

References

196

https://arxiv.org/abs/2305.18365
https://arxiv.org/abs/1903.10676
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2101.03288
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2301.12586
https://arxiv.org/html/2309.05203v3
https://arxiv.org/abs/2208.01618
https://arxiv.org/abs/2310.07276

Algorithmic Intelligence Lab

[Lewkowycz et al., 2022] Solving Quantitative Reasoning Problems with Language Models, NeurIPS 2022
link: https://arxiv.org/abs/2206.14858

[Gao et al., 2023] PAL: Program-aided Language Models, ICML 2023
link: https://arxiv.org/abs/2211.10435

[Gou et. al., 2024] ToRA: A Tool-Integrated Reasoning Agent Models, ICLR 2024
link: https://arxiv.org/abs/2309.17452

[Cobbe et. al., 2021] Training Verifiers to Solve Math Word Problems, OpenAI 2021
link: https://arxiv.org/abs/2110.14168

[Lightman et. al., 2023] Let's Verify Step by Step, ICLR 2024
link: https://arxiv.org/abs/2305.20050

[Wang et. al., 2024] Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human Annotations, ACL 2024
link: https://arxiv.org/abs/2312.08935

Learning to Reason with LLMs, OpenAI 2024
link: https://openai.com/index/learning-to-reason-with-llms/

AI achieves silver-medal standard solving International Mathematical Olympiad problems, Deepmind 2024
link: https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

[Yang et al., 2024] Formal Mathematical Reasoning: A New Frontier in AI, arXiv 2024
link: https://arxiv.org/abs/2412.16075

[Chervonyi et al., 2024] Gold-medalist Performance in Solving Olympiad Geometry with AlphaGeometry2, Deepmind 2024
link: https://arxiv.org/abs/2502.03544

References

197

https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2309.17452
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2312.08935
https://openai.com/index/learning-to-reason-with-llms/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2502.03544

Algorithmic Intelligence Lab

[Dinh et al., 2022] LIFT: Language-Interfaced Fine-Tuning for Non-Language Machine Learning Tasks, NeurIPS 2022
link: https://arxiv.org/abs/2206.06565

[Manikandan et al., 2023] Language models are weak learners, NeurIPS 2023
link: https://arxiv.org/abs/2306.14101

[Yan et al., 2024] Making Pre-trained Language Models Great on Tabular Prediction, ICLR 2024
link: https://arxiv.org/abs/2403.01841

[Han et al., 2024] Large Language Models Can Automatically Engineer Features for Few-shot Tabular Learning, ICML 2024
link: https://arxiv.org/abs/2404.09491

[Nam et al., 2024] Tabular Transfer Learning via Prompting LLMs, COLM 2024
link: https://arxiv.org/abs/2408.11063

[Kim et al., 2024] An Efficient Tokenization for Molecular Language Models, NeurIPSW-AIDrugX 2024
link: https://openreview.net/forum?id=BDISzo0dZi

[Nam et al., 2024] Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning, NeurIPS 2024
link: https://arxiv.org/abs/2406.08527

[Xue & Salim, 2023] PromptCast: A New Prompt-based Learning Paradigm for Time Series Forecasting, TKDE 2023
link: https://arxiv.org/abs/2210.08964

[Gruver et al., 2023] Large Language Models are Zero-Shot Time Series Forecasters, NeurIPS 2023
link: https://arxiv.org/abs/2406.12031

[Gardner et al., 2024] Large Scale Transfer Learning for Tabular Data via Language Modeling, NeurIPS 2024
link: https://arxiv.org/abs/2310.01728

[Jin et al., 2024] Time-LLM: Time Series Forecasting by Reprogramming Large Language Models, ICLR 2024
link: https://arxiv.org/abs/2310.01728

[Ansari et al ., 2024] Chronos: Learning the Language of Time Series, TMLR 2024
link: https://arxiv.org/abs/2403.07815

References

198

https://arxiv.org/abs/2206.06565
https://arxiv.org/abs/2306.14101
https://arxiv.org/abs/2403.01841
https://arxiv.org/abs/2404.09491
https://arxiv.org/abs/2408.11063
https://openreview.net/forum?id=BDISzo0dZi
https://arxiv.org/abs/2406.08527
https://arxiv.org/abs/2210.08964
https://arxiv.org/abs/2406.12031
https://arxiv.org/abs/2310.01728
https://arxiv.org/abs/2310.01728
https://arxiv.org/abs/2403.07815

Algorithmic Intelligence Lab

[Liu et al., 2023] AgentBench: Evaluating LLMs as Agents
link: https://arxiv.org/abs/2308.03688

[Zhou et al., 2023] WebArena: A Realistic Web Environment for Building Autonomous Agents
link: https://arxiv.org/abs/2307.13854

[Yao et al., 2023] Synergizing Reasoning and Acting in Language Models
link: https://arxiv.org/abs/2210.03629

[Shinn et al., 2023] Reflexion: Language Agents with Verbal Reinforcement Learning
link: https://arxiv.org/abs/2303.11366

[Zhou et al., 2024] Training Language Model Agents via Hierarchical Multi-turn RL
link: https://arxiv.org/abs/2402.19446

[Putta et al., 2024] Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents
link: https://arxiv.org/abs/2408.07199

[Zhang et al., 2023] Bootstrap Your Own Skills: Learning to Solve New Tasks with Large Language Model Guidance
link: https://arxiv.org/abs/2310.10021

[Tsai et al., 2025] AnoLLM: Large Language Models for Tabular Anomaly Detection, ICLR 2025.
link: https://openreview.net/forum?id=7VkHffT5X2

[Yan et al., 2025] Small Models are LLM Knowledge Triggers for Medical Tabular Prediction, ICLR 2025.
link: https://openreview.net/forum?id=WoPovNkM5h

[Jimenez et al., 2023] SWE-bench: Can Language Models Resolve Real-World GitHub Issues
link: https://arxiv.org/abs/2310.06770

[Wei et al., 2025] SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution
link: https://arxiv.org/abs/2502.18449

[Chen et al., 2024] CodeR: Issue Resolving with Multi-Agent and Task Graphs
link: https://arxiv.org/abs/2406.01304

References

199

https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2408.07199
https://arxiv.org/abs/2310.10021
https://openreview.net/forum?id=7VkHffT5X2
https://openreview.net/forum?id=WoPovNkM5h
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2406.01304

