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Impact of large language models (LLMs); revisited
• LLMs set record for fastest-growing user-base service
• LLMs can generate realistic texts for complex domains
• LLMs can serve as a new effective search engine

Motivation: Are Large Language Models All You Need?
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Recent studies explores the potential of LLMs beyond language tasks
• For example, [Brown et al., 2020] tests the ability of GPT-4 in chemistry tasks
• E.g., molecular property prediction, molecule captioning, and molecule design

Motivation: Are Large Language Models All You Need?
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Recent studies explores the potential of LLMs beyond language tasks
• However, naïve prompting (with in-context examples) is not quite effective
• XGBoost is better than GPT-4 prompting in some molecular prediction tasks

Motivation: Are Large Language Models All You Need?
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LLMs are ‘Generalists’; however, we often need ‘Specialists’ for our purpose
• Question: Can LLMs be adapted (or developed) for a specific domain?
• If so, we can benefit from the reasoning ability and language interface of LLMs

Motivation: Are Large Language Models All You Need?

Drug discovery (Chemistry & Biology) Tabular prediction
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Initially, researchers aimed to develop LLMs covering general science domain
• E.g., chemistry, biology, mathematics, programming, scientific writing, etc.

General Purpose LLMs for Science
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• SciBERT: A Pretrained Language Model for Scientific Text [Beltagy et al., 2020]

• Train BERT [Devlin et al., 2019] with a broad range of biomedical literatures
• Follow the pre-training and fine-tuning setups from the original BERT
• E.g., Masked LM and Next Sentence Prediction (NSP)

General Purpose LLMs for Science: SciBERT
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• SciBERT: A Pretrained Language Model for Scientific Text [Beltagy et al., 2020]

• In various scientific NLP tasks, SciBERT shows its effectiveness compared to BERT
• E.g., Named Entity Recognition (NER), Text Classification (CLS), etc.
• Cons: SciBERT only deals with scientific texts based on human language 

• Does not model scientific modalities such as molecules and mathematical expressions

General Purpose LLMs for Science: SciBERT
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• Galactica: A Large Language Model for Science [Taylor et al., 2022]

• A scientific LLM for various scientific modalities (regarding them as text sequences)
• E.g., Latex mathematical expression, code, molecule, protein, etc.

General Purpose LLMs for Science: Galactica
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• Galactica: A Large Language Model for Science [Taylor et al., 2022]

• Trained with a large number of tokens (~100B), cf. SciBERT with 3.17B tokens
• Released different sizes of models; up to 120B parameters

General Purpose LLMs for Science: Galactica
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• Galactica: A Large Language Model for Science [Taylor et al., 2022]

• Performance can be smoothly scaled with the size of models
• Conventional engineering techniques, e.g., Chain of Thought, also work well

General Purpose LLMs for Science: Galactica
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Latex equation generation
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• Galactica: A Large Language Model for Science [Taylor et al., 2022]

• Galactica shows sub-optimal performance compared to modality-specific models
• Minerva [Lewkowycz et al., 2022] highly outperforms Galactica in math problem solving

General Purpose LLMs for Science: Galactica

14



Algorithmic Intelligence Lab

‘Science’ contains various modalities; for example, chemistry or mathematics
• How about focusing on a more specific modality? E.g., chemistry-specific LLMs

Modality-specific Large Language Models in Science

15

LLM for Chemistry LLM for Mathematics
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• MolT5: Translation between Molecules and Natural Language [Edwards et al., 2022]

• Adapt T5 [Raffel et al., 2019] for chemistry (especially for text-molecule translation)
• Molecules are represented by a sequence of characters, i.e., SMILES representation

LLMs for Chemistry & Biology: MolT5
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• MolT5: Translation between Molecules and Natural Language [Edwards et al., 2022]

• Pre-trained on molecules (ZINC-15 100M) and text (C4) corpuses using masked LM
• Fine-tuned with text-molecule pairs to obtain t2m and m2t generative models

LLMs for Chemistry & Biology: MolT5
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• MolT5: Translation between Molecules and Natural Language [Edwards et al., 2022]

• T2m and m2t models of MolT5 achieved state-of-the-art translation performances
• The performance improves as the size of model increase (i.e., scalable)

LLMs for Chemistry & Biology: MolT5
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Molecule-to-text
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• MolT5: Translation between Molecules and Natural Language [Edwards et al., 2022]

• T2m and m2t models of MolT5 achieved state-of-the-art translation performances
• The performance improves as the size of model increase (i.e., scalable)

LLMs for Chemistry & Biology: MolT5
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• Unifying Molecular and Textual Representation via Multi-task Language 
Modeling [Christofidellis et al., 2023]

• After fine-tuning, MolT5 obtained separate models for t2m and m2t tasks
• This paper suggests to build a single model for t2m, m2t, m2m, and t2t tasks

LLMs for Chemistry & Biology: Text+Chem T5
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MolT5: Separate models for
(1) Text-to-molecule
(2) Molecule-to-text

Text + Chem T5:
A single model for
(1) Text-to-molecule
(2) Molecule-to-text
(3) Text-to-text
(4) Molecule-to-molecule
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• Unifying Molecular and Textual Representation via Multi-task Language 
Modeling [Christofidellis et al., 2023]

• Utilizes reactants-products pairs in training phase to better understand molecules
• All tasks are learned simultaneously within a single model, i.e., multi-task learning

LLMs for Chemistry & Biology: Text+Chem T5
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• Unifying Molecular and Textual Representation via Multi-task Language 
Modeling [Christofidellis et al., 2023]

• Outperforms MolT5 due to multi-task learning on various molecule tasks
• ‘Augm’ denotes that the number of training data is balanced between tasks

LLMs for Chemistry & Biology: Text+Chem T5
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• Unifying Molecular and Textual Representation via Multi-task Language 
Modeling [Christofidellis et al., 2023]

• Shows reasonable performance on t2t and m2m tasks (with a single model)
• ‘-’ denotes that the model cannot perform the corresponding task

LLMs for Chemistry & Biology: Text+Chem T5

24



Algorithmic Intelligence Lab

• From Artificially Real to Real: Leveraging Pseudo Data from Large Language 
Models for Low-Resource for Molecule Discovery [Chen et al., 2024]

• Motivation: Text-molecule pairs are hard to obtain due to experimental costs
• Utilize GPT and few-shot real samples to generate pseudo text-molecule pairs

LLMs for Chemistry & Biology: AdaT5
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• From Artificially Real to Real: Leveraging Pseudo Data from Large Language 
Models for Low-Resource for Molecule Discovery [Chen et al., 2024]

• (1) Adapt the model with pseudo data, and then (2) train with real data
• Simultaneously using pseudo data and real data shows performance degradation

LLMs for Chemistry & Biology: AdaT5
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• From Artificially Real to Real: Leveraging Pseudo Data from Large Language 
Models for Low-Resource for Molecule Discovery [Chen et al., 2024]

• Highly outperform MolT5 due to the high-quality pseudo samples from GPT

LLMs for Chemistry & Biology: AdaT5
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• Data-Efficient Molecular Generation with Hierarchical Textual Inversion [Kim et al., 
2024]

• Adaptation of molecular LLMs, e.g., MolT5, for data-efficient molecular generation
• We only have few-shot molecules in drug discovery; how to learn their distribution?

LLMs for Chemistry & Biology: HI-Mol
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• Data-Efficient Molecular Generation with Hierarchical Textual Inversion [Kim et al., 
2024]

• Few-shot distribution learning methods in other domains, e.g., Textual Inversion 
[Gal et al., 2023], does not work for molecules

• Molecules are more structurally diverse; naïve adoption does not work

LLMs for Chemistry & Biology: HI-Mol
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Textual Inversion [Gal et al., 2022]: Visually similar images

Molecules with a common property:
Not structurally similar

Generation performance for molecules
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• Data-Efficient Molecular Generation with Hierarchical Textual Inversion [Kim et al., 
2024]

• Use ‘hierarchical’ tokens unlike Textual Inversion [Gal et al., 2023] with a single token
• [S], [I], and [D] learn different hierarchical information of few-shot molecules

LLMs for Chemistry & Biology: HI-Mol

30

[S]: A single token for whole dataset, learns overall semantics of target molecules
[I]: Tokens assigned to k-th clsuter, captures cluster-wise semantics
[D]: Tokens assigned to n-th molecule, captures molecule-wise semantics
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• Data-Efficient Molecular Generation with Hierarchical Textual Inversion [Kim et al., 
2024]

• Use ‘hierarchical’ tokens unlike Textual Inversion [Gal et al., 2023] with a single token
• From learned hierarchical token embeddings, sample molecules by interpolation

LLMs for Chemistry & Biology: HI-Mol
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• Data-Efficient Molecular Generation with Hierarchical Textual Inversion [Kim et al., 
2024]

• Achieve superior few-shot generation results compared to previous methods
• Due to the preservation of hierarchical information in training & generation

LLMs for Chemistry & Biology: HI-Mol
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• Data-Efficient Molecular Generation with Hierarchical Textual Inversion [Kim et al., 
2024]

• Applicable for conditional generation; learn an additional condition embedding

LLMs for Chemistry & Biology: HI-Mol
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• BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge 
and Natural Language Associations [Pei et al., 2023]

• An LLM for chemistry & biology with ‘modality-specific’ token space

LLMs for Chemistry & Biology: BioT5
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• BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge 
and Natural Language Associations [Pei et al., 2023]

• Previous molecular LLMs use the T5 tokenizer with the SMILES representation
• BioT5 regards a SELFIES token as a single token, which is more structure-aware
• It also suggests to utilize FASTA tokens to represent protein data in LLMs

LLMs for Chemistry & Biology: BioT5
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MolT5 with T5 tokenizer:

BioT5 tokenizer:
Structure-aware
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• BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge 
and Natural Language Associations [Pei et al., 2023]

• By using more sophisticated token space, achieves state-of-the-art results

LLMs for Chemistry & Biology: BioT5
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• BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge 
and Natural Language Associations [Pei et al., 2023]

• In addition, shows superior performance on biological applications

LLMs for Chemistry & Biology: BioT5
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• CAMT5: Context-Aware Molecular T5 [Kim et al., 2024]

• Goal: Developing a text-to-molecule generative model.
• Convention: Utilizing atom-wise tokenization based on SMILES or SELFIES.
• MolT5: Based on SMILES, which does not ensure the validity of the generated 

molecules.
• BioT5: Based on SEFLIES, where the same token represents various molecular 

semantics.

• However, atom-wise tokenization does not reflect chemical functionality.
• Chemical functionalities are encoded through motifs, i.e., functional groups.
• Make the molecule tokens based on functional groups!

LLMs for Chemistry & Biology: CAMT5
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• How can we embed functional groups into the token space of the text-to-
molecule model?

• Construct “Context-Tree” with pre-defined motifs!
• One can linearize the motif-level tokens via a tree-search algorithm.
• A sequence of motif-level tokens always represents a valid molecule.
• There is a one-to-one correspondence between a motif and a motif-level token.

• Additionally, CAMT5 proposes importance-based pre-training.
• Prioritizing key motifs during pre-training.

LLMs for Chemistry & Biology: CAMT5
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• How can we embed functional groups into the token space of the text-to-
molecule model?

• Construct “Context-Tree” with pre-defined motifs!
• One can linearize the motif-level tokens via a tree-search algorithm.
• A sequence of motif-level tokens always represents a valid molecule.
• There is a one-to-one correspondence between a motif and a motif-level token.

• Additionally, CAMT5 proposes importance-based pre-training.
• Prioritizing key motifs during pre-training.

LLMs for Chemistry & Biology: CAMT5
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• Experiment: Context-aware tokenization is beneficial for molecular language 
models.

LLMs for Chemistry & Biology: CAMT5
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Why is mathematics hard for LLMs?
• Requires both multi-step task decomposition and accurate calculation
• A single mistake can lead to entirely wrong result
• LLMs are designed to be non-deterministic
• Mathematics require precise, strict rule-based reasoning

Are LLMs still bad at math?
• No
• Various training, inference strategies made LLMs excel at math

LLMs for Mathematics: Introduction
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Minerva [Lewkowycz et al., 2022]

Further training pretrained language model(PaLM) on mathematical dataset
• Dataset: Collect and process data maintaining mathematical content

• Processing: Extract mathematical content in LaTeX or ASCII-math format
• Maintain symbols essential to mathematical expressions

LLMs for Mathematics: Minerva
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Minerva [Lewkowycz et al., 2022]

Minerva outperforms the state-of-the-art on math and science benchmarks
• MATH: Middle school and high school mathematics problems written in LaTeX
• MMLU-STEM: Subset of the MMLU dataset focused on science, technology, 

engineering, and mathematics (STEM)

LLMs for Mathematics: Minerva
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Minerva [Lewkowycz et al., 2022]

Inference-Time Techniques
• Few-shot prompting + CoT + Majority Voting (maj@k) [Wang et al., 2022]

• maj@k: Sampling k predictions and selecting the most common answer
• Significantly improves performance over greedy decoding

LLMs for Mathematics: Minerva
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PAL: Program-aided Language Models [Gao et al., 2023]

Motivation: LLMs often generate reasoning steps correctly, but slips at calculation

Idea: Running the reasoning steps with a Python interpreter
• Leads to multiple variants leveraging external solvers

LLMs for Mathematics: PAL
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ToRA (Tool Integrated Reasoning Agents) [Gou et al., 2024]

• Interactive tool-use trajectories
• Repeat natural language guidance and program execution to reach an answer
• Benefit from analytical power of language and the computational efficiency of tools

LLMs for Mathematics: ToRA
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ToRA Pipeline

1. Imitation Learning
• Collect high-quality trajectories from GPT-4, solving diverse math problems

• Dataset: GSM8k(grade school math word problems), MATH(high school math)
• Sample only valid trajectories leading to correct answers

LLMs for Mathematics: ToRA
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ToRA Pipeline

2. Output Space Shaping
• Sample diverse trajectories from fine-tuned model
• Correct invalid trajectories with teacher model (Code expert open model)
• Fine-tune model on corrected valid trajectories + original ToRA-Corpus

LLMs for Mathematics: ToRA
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Outcome-supervised Reward Model (ORM) [Cobbe et al., 2021]

Train a verifier model to judge the correctness of solutions, respect to GT answer
1) Finetune generator(problem solving model) on training set
2) Sample 100 completions from generator, label each solution as correct/incorrect
3) Train verifier model to predict ‘solution correctness probability’

• During inference, select the generator’s solution with the highest verifier score

LLMs for Mathematics: ORM
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Outcome-supervised Reward Model (ORM) [Cobbe et al., 2021]

Comparison between finetuning and verification
• Verification boosts performance if the dataset is large enough
• Verifiers can overfit memorizing final answers when dataset is too small
• In full training set, 6B verification outperforms 175B finetuning

* Train dataset: GSM8k, math word problems using arithmetic operations (+ − × ÷)

LLMs for Mathematics: ORM
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Process-supervised Reward Model (PRM) [Lightman et al., 2023]

Motivation: ORM can misgrade false-positive solutions
• Incorrect solutions still can reach to correct answers

Idea: Provide feedback for each intermediate reasoning step
• Human data-labelers to assign each step into positive, negative, neutral
• Construct PRM800k(open), step-level human feedback dataset

LLMs for Mathematics: PRM

53

Feedback interface used for step-wise reward collection 
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Process-supervised Reward Model (PRM) [Lightman et al., 2023]

Following ORM, train a verifier model and use at inference stage
• At training, predict the correctness of each step after the last step token

Green: high PRM score, Red: low PRM score
• During inference, select the generator’s solution with the highest verifier score

LLMs for Mathematics: PRM
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Process-supervised Reward Model (PRM) [Lightman et al., 2023]

PRM scoring strategy experiment

• To select among multiple solutions, single score for each solution is required
• Score of the entire solution (2 strategies)

• Product of the correctness probabilities for each step in the solution
• Minimum correctness probability of all steps included in the solution

• How to consider neutral feedbacks
• Feedbacks were assigned as positive, negative, or neutral
• To consider neutral as positive or negative

• Take product strategy, and consider neutral as positive

LLMs for Mathematics: PRM
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Process-supervised Reward Model (PRM) [Lightman et al., 2023]

Process-supervised Reward Model vs. Outcome-supervised Reward Model
• PRM strongly outperform both ORM and majority-voting
• PRM is more effective on searching over large number of solutions (larger N)

Limitation: Human-labeled feedback data is very expensive and not scalable

LLMs for Mathematics: PRM
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MATH-SHEPHERD [Wang et al., 2024]

Idea: Automatically construct process-wise supervision data
• For an intermediate reasoning step, complete the reasoning process N times
• Hard Estimation(HE): The step can reach the correct answer

• Soft Estimation(SE): The frequency of trajectories reaching the correct answer 

LLMs for Mathematics: Math-Shepherd
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MATH-SHEPHERD [Wang et al., 2024]

Hard Estimation vs. Soft Estimation

• Larger N led to more false-positives, decreasing annotation accuracy
• Hard Estimation(HE) showed negligible difference at N = 4 with (SE)
• Hard Estimation utilizes well to standard language modeling

• Predicting special tokens ‘has potential’ and ‘no potential’ labels

• Chose Hard Estimation(HE) as main score strategy

LLMs for Mathematics: Math-Shepherd
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MATH-SHEPHERD [Wang et al., 2024]

Automated process-supervised verifier outperforms ORM consistently
• Outperformed human-annotated reward model, due to the data quantity (4x larger)

LLMs for Mathematics: Math-Shepherd
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MATH-SHEPHERD [Wang et al., 2024]

Reinforcement learning reasoning model with process supervision
• Proximal Policy Optimization(PPO) in a step-by-step manner

• * RFT(Rejective Sampling Fine-tuning): SFT with sampled correct answer responses
• * ORM-PPO: PPO with outcome reward(correct/incorrect) of full solution

MATH-SHEPHERD can improve the reasoning model itself, not only working as verifier

LLMs for Mathematics: Math-Shepherd
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MATH-SHEPHERD [Wang et al., 2024]

Reinforcement learning reasoning model with process supervision
• Proximal Policy Optimization(PPO) in a step-by-step manner

• * RFT(Rejective Sampling Fine-tuning): SFT with sampled correct answer responses
• * ORM-PPO: PPO with outcome reward(correct/incorrect) of full solution

MATH-SHEPHERD can improve the reasoning model itself, not only working as verifier

LLMs for Mathematics: Math-Shepherd
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Formal Mathematical Reasoning [Yang et al., 2024]

• LLMs show impressive capabilities in high school-level problems, but face 
limitations in advanced mathematics

• Limitations of AI4Math in advanced mathematics:
• Data scarcity
• Lack of Correctness Verifiability

• GSM8k, MATH (pre-college mathematics) consist of single number solution problems
• But none of the Millenium Prize Problems have numeric solutions

LLMs for Mathematics: Formal Mathematical Reasoning 
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Formal Mathematical Reasoning [Yang et al., 2024]

• Formal mathematics with proof assistants (e.g. Lean, Coq, Isabelle)
• Guarantee Correctness, Automatic Feedback

• Key Tasks: Autoformalization (top), Theorem Proving (bottom)

LLMs for Mathematics: Formal Mathematical Reasoning 
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AlphaProof [Google Deepmind, 2024]

• Last year, AI achieving silver-medal standard at IMO 2024 problems
• 28 out of 42 points, solving four out of six problems

Method: 
• Fine-tune Gemini for a formalizer network (Formal Language: LEAN)
• AlphaZero reinforcement learning algorithm

• Generate solution candidates
• Prove or disprove the solution by searching possivle proof steps in LEAN

LLMs for Mathematics: AlphaProof
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AlphaGeometry2 [Google Deepmind, 2025]

• This year, AlphaGeometry2 solves 42/50 of all 2000-2024 IMO geometry problem 
• Surpassing an average gold medalist for the first time

• Symbolic engine: DDAR (Deductive Database Arithmetic Reasoning)

• Search Algorithm: Shared Knowledge Ensemble of Search Trees (SKEST)

LLMs for Mathematics: AlphaGeometry2
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• Using multiple search trees
• Deep, but narrow
• Shallow, but wide

• Different LMs for each search tree
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Is it possible to use LLMs for tabular learning?
• The flexibility of language makes it possible to transform tabular data into language.

Define the task and feature descriptions in language.
• Serialize data, and feed it into an LLM.

Motivation: Possibility of using LLMs for tabular learning

68
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Indeed, LLMs are competitive for tabular learning.

Dinh et al. (2022):
• Investigated the performance of the fine-tuned LLMs on tabular data.

LLMs for Tabular Data: LIFT
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Indeed, LLMs are competitive for tabular learning.

Dinh et al. (2022):
• Investigated the performance of the fine-tuned LLMs on tabular data.
• In-context learning with LIFT is competitive compared to prior methods.

LLMs for Tabular Data: LIFT
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LLMs can operate effectively as weak learners [Manikandan et al., 2023]

• Prompt the LLM to summarize the tabular dataset.
• The summary acts as a prompt that the LLM uses to make predictions.
• Such prompts summarizing different subsets of data can be seen as weak learners 

for a boosting procedure.

LLMs for Tabular Data: Summary Boosting
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Step 1: Data conversion.
• To utilize LLMs with tabular data, it is necessary to convert the records into natural 

language descriptions.

But how?
• LIFT [Dinh et al., 2022] inserts attribute values into predefined templates.
• However, this approach often produces unnatural descriptions that differ from how 

humans might describe the data.
• Depending on the dataset, designing the template by hand can also be challenging.

LLMs for Tabular Data: Summary Boosting
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Step 1: Data conversion.
• To utilize LLMs with tabular data, it is necessary to convert the records into natural 

language descriptions.
• Get data descriptions by zero-shot prompting the LLM.

• With information about the dataset (Metadata) and a textual representation of the 
tabular record (Data as Text).

LLMs for Tabular Data: Summary Boosting
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Step 1: Data conversion.
• To utilize LLMs with tabular data, it is necessary to convert the records into natural 

language descriptions.
• Get data descriptions by zero-shot prompting the LLM.

• With information about the dataset (Metadata) and a textual representation of the 
tabular record (Data as Text).

• Challenge: Naively including numerical values in the descriptions can lead to poor 
performance.
• Bin all numerical features into percentiles and encode them descriptively.

LLMs for Tabular Data: Summary Boosting
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Step 1: Data conversion.
• To utilize LLMs with tabular data, it is necessary to convert the records into natural 

language descriptions.
• Get data descriptions by zero-shot prompting the LLM.

• With information about the dataset (Metadata) and a textual representation of the 
tabular record (Data as Text).

• Challenge: Naively including numerical values in the descriptions can lead to poor 
performance.
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LLMs for Tabular Data: Summary Boosting
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Step 2: Weak learning via summarization.
• A typical method for performing few-shot learning with LLMs involves providing a 

small number of demonstrations.
• However,

• There may be a large number of data points that do not fit within the LLM context.
• Increasing the number of examples in the context does not always improve performance.
→ Necessitate alternative approaches to weak learning via LLMs.

LLMs for Tabular Data: Summary Boosting
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Step 2: Weak learning via summarization.
• A typical method for performing few-shot learning with LLMs involves providing a 

small number of demonstrations.
• Produce summaries of a collection of examples.

• Summarization naturally encourages the extraction of representative information in data.
• First, perform summarization on the data by calling the LLM.
• Second, by using the summary as a prompt, the LLM performs inference.

LLMs for Tabular Data: Summary Boosting
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Step 2: Weak learning via summarization.
• A typical method for performing few-shot learning with LLMs involves providing a 

small number of demonstrations.
• Produce summaries of a collection of examples.

• Summarization naturally encourages the extraction of representative information in data.
• First, perform summarization on the data by calling the LLM.
• Second, by using the summary as a prompt, the LLM performs inference.

• Challenge 1: The sampled summary can sometimes be noisy.
• Generate a fixed number of summaries and pick the the smallest validation error rate.

• Challenge 2: The context size of existing LLMs is still limited.
• We cannot fit the entire dataset into the context for summarization.
→ Use only a representative subset obtained through weighted stratified sampling.

LLMs for Tabular Data: Summary Boosting
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• Summarization naturally encourages the extraction of representative information in data.
• First, perform summarization on the data by calling the LLM.
• Second, by using the summary as a prompt, the LLM performs inference.

• Challenge 1: The sampled summary can sometimes be noisy.
• Generate a fixed number of summaries and pick the the smallest validation error rate.

• Challenge 2: The context size of existing LLMs is still limited.
• We cannot fit the entire dataset into the context for summarization.
→ Use only a representative subset obtained through weighted stratified sampling.

Step 3: Boosting.
• Use the AdaBoost algorithm to produce an ensemble with these collections of 

summary-based weak learners.

LLMs for Tabular Data: Summary Boosting
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LLMs with summarization are a good candidate for creating weak learners.
• The LLMs themselves do not have enough built-in knowledge to succeed at tabular 

data zero-shot.
• Few-shot consistently improves the test performance compared to zero-shot.

• Added information is crucial for LLMs to work on tabular datasets.
• Summary consistently improves upon few-shot.

• Summarization is a powerful way to improve few-shot performance.
• Boosting with summarization consistently outperforms all other prompting-based 

approaches.

LLMs for Tabular Data: Summary Boosting
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When the datasets have many numerical features, the performance can be worse.
• LLMs are fairly bad at quantitative reasoning without fine-tuning.

Summary Boosting performs very well when the size of the dataset is very small.
• LLMs have a large amount of generic prior about the world from pre-training.
• When the dataset is large, this prior knowledge becomes less relevant, and fine-

tuning becomes more competitive.

LLMs for Tabular Data: Summary Boosting
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Tabular features are roughly categorized into:
• Discrete type (categorical, binary, or string features)

• Can be naturally understood by LLMs.
• E.g., “Male” and “Female” are values of the discrete feature “Gender.”

• Continuous type (i.e., numerical features)
• Still difficult to make fully understandable to LLMs.
• Wide range of values & counter-intuitive meanings of exact numerical values.

Discrete text representation space is incompatible with numerical values.

LLMs for Tabular Data: TP-BERTa
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Tabular Prediction adapted BERT approach [Yan et al., 2023]

• TP-BERTa is built on the basis of RoBERTa as default.

• Discretizes numerical feature values as relative magnitude tokens (RMT).
• Treat them as some meaningful words in the LLM’s vocabulary.

• Intra-feature attention (IFA) module attentively fuses the embeddings of a 
feature’s name and value.

• Achieves feature order-agnostic prediction.

LLMs for Tabular Data: TP-BERTa
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Tabular Prediction adapted BERT approach [Yan et al., 2023]

• GBDTs still outperform classical and advanced DNNs in typical regimes.

• However, the pre-trained TP-BERTa shows competitive performances.
• TP-BERTa is stably promising when discrete features begin to dominate.

• While for purely numerical datasets, GBDT are still better choices.

LLMs for Tabular Data: TP-BERTa
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Tabular Prediction adapted BERT approach [Yan et al., 2023]

• Why were LMs neglected on tabular prediction?
• Numerical encoding strategy comparison.
1. Value2Str: directly treating numerical values as strings.
2. VMFE: value-multiplied feature name embeddings.
→ These strategies hurt AUC scores on the most significantly changed datasets.

LLMs for Tabular Data: TP-BERTa
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Tabular Prediction adapted BERT approach [Yan et al., 2023]

• Why were LMs neglected on tabular prediction?
• Numerical encoding strategy comparison.
• IFA module ablation.

• A noticeable performance degradation occurs when directly feeding all feature names 
and values to the LM.

→ LMs are likely to be confused when they process a pile of unmatched feature name-
value texts.

LLMs for Tabular Data: TP-BERTa
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Tabular Prediction adapted BERT approach [Yan et al., 2023]

• Why were LMs neglected on tabular prediction?
• Numerical encoding strategy comparison.
• IFA module ablation.
• Using RoBERTa weights is better than random weights.
→ LM weights have inherently entailed meaningful semantic knowledge.
• A more significant leap can be achieved by further pre-training on extensive tabular 

data.
→ LMs are also effective in transferring tabular data knowledge and suitable for cross-
table pre-training.

LLMs for Tabular Data: TP-BERTa

87



Algorithmic Intelligence Lab

Current LLM-based tabular learning methods have some limitations.

• At least one LLM inference per sample is required.

• Fine-tuning the LLM can be infeasible.
• Recently proposed top-performance LLMs only permit limited access via APIs.

• Not suitable with lengthy prompts.
• Text length becomes long when the number of features in tabular data grows.

Han et al. (2024): Aims to understand the criteria underlying LLM predictions.

• For the task of predicting a particular disease, the LLM can directly infer and 
generate rules that determine which feature conditions result in identifying the 
disease.

LLMs for Tabular Data: FeatLLM
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Step 1: FeatLLM extracts rules for each class.

• Utilizing prior knowledge and few-shot examples.

Step 2: These rules are parsed and applied to create binary features for samples.
Step 3: A linear layer is trained on features to estimate class likelihoods.

Step 4: This procedure is repeated multiple times for ensembling.

LLMs for Tabular Data: FeatLLM
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Prompt design for extracting rules.

• Guide the problem-solving process to mimic how an expert human might 
approach it.

LLMs for Tabular Data: FeatLLM
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Prompt design for extracting rules.

• Guide the problem-solving process to mimic how an expert human might 
approach it.

• Basic information description: Essential information for solving the problem.
• The task description is formulated as a question.
• The feature description indicates its value type and includes information.
• Few training samples are serialized into text, along with their ground-truth labels.

LLMs for Tabular Data: FeatLLM

91



Algorithmic Intelligence Lab

Prompt design for extracting rules.

• Guide the problem-solving process to mimic how an expert human might 
approach it.

• Basic information description: Essential information for solving the problem.
• Reasoning instruction: Enhance the LLM’s reasoning by providing guidance.

• Introductory sentence similar to the chain-of-thought approach.
• Step 1: LLM is encouraged to infer the causal relationship.
• Step 2: LLM uses example demonstrations and the information of the first step to 

deduce rules for each class.

LLMs for Tabular Data: FeatLLM
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Prompt design for extracting rules.

• Guide the problem-solving process to mimic how an expert human might 
approach it.

• Basic information description: Essential information for solving the problem.
• Reasoning instruction: Enhance the LLM’s reasoning by providing guidance.

• Introductory sentence similar to the chain-of-thought approach.
• Step 1: LLM is encouraged to infer the causal relationship.
• Step 2: LLM uses example demonstrations and the information of the first step to 

deduce rules for each class.

LLMs for Tabular Data: FeatLLM

93



Algorithmic Intelligence Lab

Prompt design for extracting rules.

• Guide the problem-solving process to mimic how an expert human might 
approach it.

• Basic information description: Essential information for solving the problem.
• Reasoning instruction: Enhance the LLM’s reasoning by providing guidance.
• Response instruction: Guide the LLM on structuring its response.

LLMs for Tabular Data: FeatLLM
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Prompt design for extracting rules.

• Guide the problem-solving process to mimic how an expert human might 
approach it.

LLMs for Tabular Data: FeatLLM
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Parsing rules for feature generation.

• Utilize the rules to create new binary features.
• Created for each class, indicating whether the sample satisfies the rules associated 

with that class.

LLMs for Tabular Data: FeatLLM
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Inferring class likelihood.

• A simple method to measure the class likelihood of the sample is to count how 
many rules of each class it satisfies.

• However, not all rules carry the same importance.
• FeatLLM learns this importance using a linear model without bias.

LLMs for Tabular Data: FeatLLM
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Ensembling with bagging.

• Repeatedly execute the entire process to create multiple models to make the 
final prediction via ensemble.

• The high temperature for LLM inference.
• Randomize the order of few-shot demonstrations.
• Bagging to select a subset of features or instances for each trial.

What are the advantages of the ensemble approach?
• Even if the LLM generates incorrect rules, other trials can compensate.

• LLM’s self-consistency: Rules commonly inferred across multiple trials are more 
likely to be accurate.

• Address the limitation of LLM’s prompt size.

LLMs for Tabular Data: FeatLLM
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FeatLLM consistently ranks as the top performer or secures the second place.

LLMs for Tabular Data: FeatLLM
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Ablation study.

• Tuning: Omitting the weight-tuning process of the linear model.
• The benefit becomes higher when the number of shots increases.
• When there is a large amount of data, accurate estimation of the importance of 

rules becomes feasible.

• Ensemble: Omitting the ensemble process.
• Description: Omitting the feature description.

• Reasoning: Omitting the Step 1 process in the reasoning instruction part.
• The benefit becomes higher when the number of shots is small.
• The efficient utilization of prior knowledge of LLM becomes crucial.

LLMs for Tabular Data: FeatLLM
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Dealing with the scarcity of labeled data: Learning transferable knowledge.

• However, tables are inherently heterogeneous.
• They contain different columns and feature spaces.
→ Makes transfer learning difficult!

Nam et al. (2024): LLMs can be tabular transfer modules.

• P2T uses LLM to extract transferable knowledge from the source dataset and 
use it as in-context samples.

• P2T constructs pseudo-demonstration to be highly relevant to the actual target task.

LLMs for Tabular Data: P2T
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• Step 1: Prompt LLM to determine which column feature is most important for 
the target task.

• Step 2: Create pseudo-demonstrations that describe the task where the 
selected column feature is the target, and the remaining ones are input.

• Step 3: Finally, P2T prompts the LLM with the created pseudo-demonstrations 
with few-shot labeled demonstrations.

LLMs for Tabular Data: P2T
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P2T is effective for zero-shot classification.

• The advantage of using LLMs is that they can answer in a zero-shot manner.

• P2T framework can improve the performance of zero-shot prediction.
• By transferring knowledge from unlabeled and heterogeneous datasets.

LLMs for Tabular Data: P2T
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P2T significantly and consistently improves the few-shot prediction performance 
utilizing unlabeled data.

• Transfer source: Unlabeled data of the same dataset.
• P2T yields the highest score in all 12 datasets in the 1-shot classification.

• P2T yields the highest score in 11 datasets in the 5-shot classification.

LLMs for Tabular Data: P2T
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P2T consistently benefits from heterogeneous data sources.

• Transfer source: Heterogeneous data.

• As tabular data is transformed into natural language, LLMs can automatically 
understand the relations between different features from their descriptions.

LLMs for Tabular Data: P2T
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Using the identified target highly correlated with the target task consistently 
outperforms random targets.

• Carefully constructing pseudo-demonstrations designed to be highly relevant to 
the target task is a key factor in enabling transfer learning via prompting.

• Moreover, LLM is better than conventional methods for identifying the most 
correlated features.

LLMs for Tabular Data: P2T
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Can better performance be achieved by P2T using a more advanced model?

• P2T performs better with advanced LLMs.

• As LLMs continue to advance, improved performance by P2T framework is 
expected with future models.

LLMs for Tabular Data: P2T
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Are learned representations always useful for tabular learning?

• Deep learning approaches are arguably known to be less effective.

• Tree-based approaches using raw column features often outperform deep 
learning models.

LLMs for Tabular Data: OCTree
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It would be very useful if one could generate informative raw column features.

• Practitioners often focus on augmenting raw column features by using feature 
engineering methods.

• Remains ambiguity in defining the space over which to search for candidate 
features.

• Often rely solely on validation scores to select good features, neglecting valuable 
feedback from past experiments.

Nam et al. (2024): The optimization of a good generation rule.

• However, optimizing the column feature generator is not straightforward 
because it is a non-differentiable problem.

• The search space is very large.

LLMs for Tabular Data: OCTree
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OCTree [Nam et al., 2024] leverages an LLM to find an effective column generator.

• LLM can optimize a variety of non-differentiable problems with prompts that 
describe the optimization task in language.

• The extensibility of injecting linguistic context (e.g., column names like “Gender” 
and values like “Female”).

Two main challenges:

• The rule for generating column features is often non-differentiable.
→ Use an LLM as an optimizer.

• LLM’s input prompt size limit makes it difficult to provide full training samples 
in the prompts.

→ We design a novel decision tree reasoning, i.e., akin to compression of the 
training dataset.

LLMs for Tabular Data: OCTree

110



Algorithmic Intelligence Lab

Step 1: Generate the column name of a novel feature.

Step 2: Initialize the optimization process.

Step 3: Optimize the rule using decision tree reasoning.
Step 4: Optimize the rule with a fixed number of iterations and select the rule 
with the highest validation score.

LLMs for Tabular Data: OCTree
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OCTree consistently improves on the best-performing baselines.

• LLM generates a logical rule in natural language.
• Since the logical rule is easily converted to Python code, we prompt the LLM to 

convert it.

LLMs for Tabular Data: OCTree
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In practice, language descriptions are not always available.

• E.g., feature names and values are changed to meaningless symbols in many 
financial datasets for confidentiality.

• OCTree uses arithmetic rules as feature generators.

LLMs for Tabular Data: OCTree
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In practice, language descriptions are not always available.

• E.g., feature names and values are changed to meaningless symbols in many 
financial datasets for confidentiality.

• OCTree uses arithmetic rules as feature generators.
• Even in this case, OCTree is beneficial for improving the baseline models.
• Superiority comes from the optimization capability of LLMs, using decision tree 

reasoning as explicit feedback.

LLMs for Tabular Data: OCTree
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OCTree outperforms state-of-the-art automatic feature engineering methods.

• Furthermore, OCTree in combination with OpenFE further improves the 
performance.

Ablation study of the proposed components.

• The rules for introducing new column features are optimized even without 
using explicit decision trees for feedback.

• One can get even better performance by providing the decision tree as 
feedback to the LLM.

LLMs for Tabular Data: OCTree
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Transfer learning is one of the defining hallmarks of recent foundation models.

• The ability to accurately solve prediction tasks on data it was not trained on.

Gardner et al. (2024): Introduce a new model and dataset for large-scale transfer 
learning on tabular data.
• TabuLa-8B: A language model for tabular prediction that can solve classification 

tasks across unseen domains.
• Outperforms baselines, given a small number of examples, without any fine-tuning.
• Capable of zero-shot prediction.

LLMs for Tabular Data: TabuLa-8B

116



Algorithmic Intelligence Lab

Overview.

• Overall approach: Fine-tune the pretrained Llama3-8B language model on 
tabular prediction tasks.

Why Llama3-8B as the starting point?
• It is a high-quality, open-source model trained on over 15T tokens.

• Demonstrates strong performance on a diverse set of downstream tasks.

• Relatively modest size: Makes fine-tuning, inference, and deployment more 
accessible.

LLMs for Tabular Data: TabuLa-8B
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Serialization and tabular language models.

• Serialization: Converting a row of data into text.
• E.g., “the <key> is <value>”

• Given a row of data from a table, the corresponding serialization has three 
main parts:

• A prefix containing a prompt followed by a list of possible label values.

LLMs for Tabular Data: TabuLa-8B
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Serialization and tabular language models.

• Serialization: Converting a row of data into text.
• E.g., “the <key> is <value>”

• Given a row of data from a table, the corresponding serialization has three 
main parts:

• A prefix containing a prompt followed by a list of possible label values.
• The example consists of all key value pairs for the columns used as features.
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Serialization and tabular language models.

• Serialization: Converting a row of data into text.
• E.g., “the <key> is <value>”

• Given a row of data from a table, the corresponding serialization has three 
main parts:

• A prefix containing a prompt followed by a list of possible label values.
• The example consists of all key value pairs for the columns used as features.
• A suffix prompts the model with a question again, followed by the possible labels.

LLMs for Tabular Data: TabuLa-8B
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Training procedure.

• Train TabuLa-8B using a standard language modeling setup.
• Minimize the cross-entropy over the sequence of target tokens.

• Only compute loss over the subsequence of target tokens.
• The tokens start after the <|endinput|> token, up to and including 

<|endcompletion|>.
• Focuses training on learning the desired target label.

LLMs for Tabular Data: TabuLa-8B
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RCTM: Row-Causal Tabular Masking

• An efficient attention masking scheme.
• Tailored to few-shot tabular prediction.
• The model is allowed to attend to all previous samples from the same table in the 

batch.
• But not to samples from other tables.

• Similar to the in-context pretraining.
• RCTM has a drastic impact on few-shot performance.

LLMs for Tabular Data: TabuLa-8B
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Dataset construction: Original raw data source

• TabLib: Publicly available dataset consisting of 627M tables extracted from 
Common Crawl and Github.

• TabLib contains numerous system logs with instructable statistics.
• Tables of software documentation.
• Call sheets with personally identifiable information.

LLMs for Tabular Data: TabuLa-8B
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Dataset construction: Filtering strategies

• Filtering occurs at three levels: tables, columns, and rows.
• Remove non-tabular data, e.g., text or PDF.
• Ensure the safety of chosen tables, e.g., remove PII.
• Find sources with high semantic content, e.g., remove tables with too many missing 

values.

LLMs for Tabular Data: TabuLa-8B
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Dataset construction: Unsupervised task selection

• First, identify a subset of columns that are suitable for prediction according to 
various heuristics.

• Exclude if the column name is numeric, it has only one unique value, or it has 
unique values for every row.

• Then, choose a specific column at random from this set.

The Tremendous TabLib Trawl (T4)

• Total 3.1M tables.
• The dataset contains over 1.6B rows.

• Approximately 80B Llama 3 tokens.

LLMs for Tabular Data: TabuLa-8B
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Experiment: Main results.

• TabuLa-8B demonstrates strong transfer performance across a broad range of 
tasks.

• TabuLa-8B is 50pp more accurate than the base Llama 3 model in the zero-shot 
regime.

• In the regime of 1 to 32 shots, it outperforms XGBoost and TabPFN.
• Baselines are directly trained on each specific dataset.

LLMs for Tabular Data: TabuLa-8B
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Experiment: Ablation study on RCTM

• Replaced RCTM with a per-sample causal attention mask.
• The model is not allowed to attend to any samples besides the target sample.

• RCTM improves the models’ ability to attend across samples.
• Removing RCTM deteriorates as the number of shot grows.

LLMs for Tabular Data: TabuLa-8B
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AnoLLM [Tsai et al., 2025] leverages LLMs for unsupervised tabular anomaly detection.

• Challenges:
• Tabular data does not align well with the linear and sequential nature of LLM inputs.
• Unsupervised anomaly detection lacks labels, making the ICL framework unfeasible.
• How should we define the anomaly scores?

AnoLLM is comprised of three phases:

• Step 1: Serialize each row of a tabular dataset into a standardized text format.

• Step 2: LLM is fine-tuned with the serialized tabular data via next-token-
prediction.

• LLM learns to be a tabular data generator that models the data distribution.

• Step 3: Anomaly scores are determined using the negative log likelihood.
• Higher scores indicates greater surprise by the model when encountering the 

inputs.

LLMs for Tabular Data: AnoLLM
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Further details.

• During the preprocessing stage, numerical columns are binned into groups.

• Order of columns is randomly shuffled.
• During inference, anomaly scores are determined by averaging the negative 

log-likelihood across random permutations of the test data.
.

LLMs for Tabular Data: AnoLLM
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Advantages over traditional methods:

• Retains textual and categorical features without heavy feature engineering.

• Handles mixed-type data effectively.
• Uses column permutation to prevent feature ordering bias.

Performance: Achieves SOTA results on six benchmark datasets.

LLMs for Tabular Data: AnoLLM
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Ablation study: Larger LLMs do not significantly improve performance over 
smaller models.

• AnoLLM mainly uses SmolLM-135M and SmolLM-360M models.
• Using the 1.7B model does not provide much performance boost.

• This could be because larger models are trained on text data that are not 
relevant to tabular tasks.

LLMs for Tabular Data: AnoLLM

131



Algorithmic Intelligence Lab

Problem: LLMs excel in unstructured data tasks but struggle with structured 
tabular data, especially in medical applications where numerical values dominate.

• LLMs lack numerical sensitivity, making them less effective for tabular data 
tasks (e.g., disease prediction from lab results).

• Standard prompting techniques (zero-shot, CoT, few-shot) do not significantly 
improve LLM performance on tabular tasks.

LLMs for Tabular Data: SERSAL
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SERSAL: Self-Enhancing Refinement via Small Models and LLMs.

• A novel self-prompting method that synergizes small models with LLMs.

• Enhances tabular data prediction in an unsupervised manner.

Propose Method.
• Step 1: Use LLMs to generate soft pseudo-labels (confidence scores).

• Step 2: Train a small tabular model using these pseudo-labels.
• I.e., treating them as noisy annotations.

• Step 3: Use the trained small model’s predictions to refine (fine-tune) the LLM.

• Step 4: Repeat the process iteratively to improve performance.

LLMs for Tabular Data: SERSAL
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SERSAL: Self-Enhancing Refinement via Small Models and LLMs.

• A novel self-prompting method that synergizes small models with LLMs.

• Enhances tabular data prediction in an unsupervised manner.

Propose Method.
• Step 1: Use LLMs to generate soft pseudo-labels (confidence scores).

• Step 2: Train a small tabular model using these pseudo-labels.
• I.e., treating them as noisy annotations.

• Step 3: Use the trained small model’s predictions to refine (fine-tune) the LLM.

• Step 4: Repeat the process iteratively to improve performance.

LLMs for Tabular Data: SERSAL
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SERSAL: Self-Enhancing Refinement via Small Models and LLMs.

• A novel self-prompting method that synergizes small models with LLMs.

• Enhances tabular data prediction in an unsupervised manner.

Propose Method.
• Step 1: Use LLMs to generate soft pseudo-labels (confidence scores).

• Step 2: Train a small tabular model using these pseudo-labels.
• I.e., treating them as noisy annotations.

• Step 3: Use the trained small model’s predictions to refine (fine-tune) the LLM.

• Step 4: Repeat the process iteratively to improve performance.

LLMs for Tabular Data: SERSAL
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Experiment: Consistently outperforms zero-shot and few-shot prompting 
techniques, approaching fully supervised small model performance.

• LLM-generated high-confidence predictions tend to be reliable.
• Works best when the LLM has some domain knowledge.

LLMs for Tabular Data: SERSAL
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Experiment: Consistently outperforms zero-shot and few-shot prompting 
techniques, approaching fully supervised small model performance.

• LLM-generated high-confidence predictions tend to be reliable.
• Works best when the LLM has some domain knowledge.

• Iterative application continuously improves LLM reasoning for tabular tasks.

LLMs for Tabular Data: SERSAL
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1. LLMs for science
• General purpose LLMs for science
• LLMs for Chemistry & Biology
• LLMs for Mathematics

2. LLMs for other datasets
• Tabular data
• Time series

3. LLM agents
• Basic concept & Benchmarks
• Prompting LLMs as agents
• Optimizing LLMs as agents
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Time series forecasting predicts the future from history.

• Challenge:
• Diverse nature of training data (Different scales, sample rates, missing values, …)
• Using LLMs: Modality gap between natural language and numerical sequences

• Thus:
• No large model pre-trained from time series, unlike the image, language domain.

• Simple methods like ARIMA or linear models often outperform DL methods.

Can LLMs be extended beyond language understanding?
• There is no need for fine-tuning; suited for scenarios with limited data.

• Circumvents the extensive time, effort, and domain-specific expertise.

LLMs for Time Series: Motivation
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PromptCast [Xue et al., 2023]

• Rephrase time-series data to natural language.

• So that LLM can leverage its linguistic nature.

LLMs for Time Series: PromptCast
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LLMs are zero-shot time series forecasters [Gruver et al., 2023]

• Time series data.
• Recap: Language data 𝑈! is consisted of tokens 𝑢", 𝑈! = (𝑢#, 𝑢$, … , 𝑢" , … , 𝑢%!).
• Time series data: Exact same form as language data, but each 𝑢" is numerical.
• Issue: Details of tokenizing numbers.

LLMs for Time Series: LLMTIME
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LLMs are zero-shot time series forecasters [Gruver et al., 2023]

• Tokenization.
• Separates the digits with spaces to force a separate tokenization of each digit.
• Use a comma (“,”) to separate each time step, with 2 digits of precision.
• Example: 0.123, 1.23, 12.3, 123.0 → “1 2 , 1 2 3 , 1 2 3 0 , 1 2 3 0 0”

LLMs for Time Series: LLMTIME
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LLMTIME has the best-aggregated performance on several benchmarks.

• Base Model: LLaMA-2, GPT-3

• Note: Baseline methods are usually many-shot, while LLMTIME is zero-shot.
• Predictions from LLMTIME are ranked best or second best on all benchmarks.

LLMs for Time Series: LLMTIME
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Time-LLM: Time Series Forecasting by Reprogramming LLMs [Jin et al., 2024]

• Patching & Reprogramming
• Align the modalities of time series and natural language

LLMs for Time Series: Time-LLM
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Time-LLM: Time Series Forecasting by Reprogramming LLMs [Jin et al., 2024]

• Patching
• Each (normalized) input channel         is divided to patches
• Better at preserving local semantic information
• Less input tokens leading to less computational cost

LLMs for Time Series: Time-LLM
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Time-LLM: Time Series Forecasting by Reprogramming LLMs [Jin et al., 2024]

• Reprogramming
• Align TS patch - language using ‘Text prototypes’

• ex) : steady down, : short up
• Multi-head attention for source and target alignment 

LLMs for Time Series: Time-LLM
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Time-LLM: Time Series Forecasting by Reprogramming LLMs [Jin et al., 2024]

• Reprogramming
• Efficient compared to task-specific learning & fine-tuning

LLMs for Time Series: Time-LLM
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Time-LLM: Time Series Forecasting by Reprogramming LLMs [Jin et al., 2024]

• Prompt-as-Prefix
• Inject prompts with input context to guide the reprogramming of TS data
• Direct explanation and information about the dataset

• Dataset context, Task instruction, input statistics

LLMs for Time Series: Time-LLM
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• Chronos: Learning the Language of Time Series [AWS., 2024]

• Pretraining an Time Series Language Model, for Zero-shot forecasting
• Train a T5 model from scratch on time-series data

• Tokenization: Scaling & Quantization into Discrete tokens
• Use Public dataset & Synthetic dataset

LLMs for Time Series: Time-LLM
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• Chronos: Learning the Language of Time Series [AWS., 2024]

• Quality and quantity of public time-series data pales compared to language
• Data Augmentation: TSMixup

• Idea of Mixup [Zhang et al., 2017] appliedat time-series for more than two datapoints
• Synthetic data: KernelSynth

• Gaussian Process based time series generation; construct a kernel bank of patterns
• Sampled kernels randomly combined with binary operator (ⅹ or ＋)

LLMs for Time Series: Time-LLM
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• Chronos: Learning the Language of Time Series [AWS., 2024]

• Experiments: In-domain (left) & Zero-shot (right)
• Pretrained Chronos shows better performance (Purple, lower the better)

• Local statistical models (Blue, fitting parameters for each time series)
• Task-specific models (Orange, training a separate model for each task)

LLMs for Time Series: Time-LLM
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• Chronos: Learning the Language of Time Series [AWS., 2024]

• Conclusion:
• Existing language model architecture and training procedures are adaptable to 

training and performing time-series forecasting 
• Data & scaling works in the time-series domain, building a generalist model
• Developing methods for generating synthetic time series data is a promising 

direction

LLMs for Time Series: Time-LLM
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Possibilities of LLM as an agent

• LLMs show promising results in real-world sequential decision-making tasks 
based on:

• Vast amount of world knowledge (e.g., “Milk might be placed in the refrigerator”)
• Reasoning and planning capabilities.

Examples of agentic tasks

• Web browsing: given arbitrary goal, agent navigate over web pages by clicking 
the UI element, in order to fulfill the goal.

• Software engineering: given arbitrary goal, agent implement repository by 
creating / opening files, implementing code, and execute the code if necessary.

LLM Agent: Basic Concepts & Benchmarks
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Overall pipeline

• LLM / MLLM understands natural language instruction (goal) and visual/textual 
state.

• Based on the goal and current state, LLM generates code or command to 
execute the action.

• Depending on the environment, reward is given at training phase.

LLM Agent: Basic Concepts & Benchmarks

LLM agent

Action (e.g., code, command, action tokens)

State / Observation
Reward

Environment
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Use cases

• Web browsing
• State/Observation: HTML, pixel (screenshot)
• Action: code/command for UI interaction (e.g., click(id), type(value, id))

• Software engineering
• State/Observation: Repo-tree / contents of currently opened file 
• Action: agent-computer interface (e.g., open(file_name), scroll_down(), ..)

• Robotic tasks
• State/Observation: Robot state, pixel (camera observation)
• Action: action token

LLM Agent: Motivation & Basic concept
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Challenges

• Learning long-term reward maximizing behavior (rather than become myopic).
• Advanced Reasoning & Planning capability can be a key.
• RL with task reward can also be a path to such behavior.

LLM Agent: Motivation & Basic concept
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AgentBench: Evaluating LLMs as Agents [Liu et al., 2023]

• Unified benchmark for evaluating LLM agents in text-based decision-making 
tasks.

• Including various agentic tasks: agent for database, OS, web browsing, web 
shopping, and text-based card games. 

LLM Agent: Benchmarks
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AgentBench: Evaluating LLMs as Agents [Liu et al., 2023]

• Even proprietary LLMs (e.g., GPT-4, Claude) struggle to solve various decision-
making tasks.

• Long-term reasoning/planning capabilities are required for better LLM agents.

LLM Agent: Benchmarks
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WEBARENA: A Realistic Web Environment for Building Autonomous Agents [Zhou 
et al., 2023]

• Benchmarks for web browsing tasks are based on a simulated environment 
rather than real-world websites.

• This benchmark proposes benchmark spanning over 812 tasks across 6 
websites (e.g., Map, Gitlab, online shopping, Reddit).

• Evaluates functional correctness (i.e., success rate) over all tasks.

LLM Agent: Benchmarks
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WEBARENA: A Realistic Web Environment for Building Autonomous Agents [Zhou 
et al., 2023]

• 3 Types of observations are supported (Screenshot, HTML, accessibility tree)

• Commands for diverse UI actions are supported.

LLM Agent: Benchmarks
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WEBARENA: A Realistic Web Environment for Building Autonomous Agents [Zhou 
et al., 2023]

• Even GPT-4 struggles to solve most of the tasks (with 14% of success rate).

• Significant gap between human-level performance (77.78%)  

LLM Agent: Benchmarks
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WEBARENA: A Realistic Web Environment for Building Autonomous Agents [Zhou 
et al., 2023]

• Recent works focused on computer-using agent improved the performance by 
large margin.

LLM Agent: Benchmarks
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SWE-bench: Can Language Models Resolve Real-World GitHub Issues? [Jimenez et al., 
2023]

• Task of resolving the Github issue given issue description and codebase.

• Agent needs to modify specific part of the codebase so that the issue is 
resolved.

• Once patch file is generated, the patch is applied, and then evaluated by pre-
defined unit tests.

LLM Agent: Benchmarks
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SWE-bench: Can Language Models Resolve Real-World GitHub Issues? [Jimenez et al., 
2023]

• Tasks are based on 12 well-maintained opensource Github repositories.

• Codebase corresponding to each tasks incorporates lengthy lines of code and 
files (far exceeds context length of frontier LLMs, e.g., 200K tokens).

LLM Agent: Benchmarks
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SWE-bench: Can Language Models Resolve Real-World GitHub Issues? [Jimenez et al., 
2023]

• Baseline: Retrieve relevant code file from entire repository using RAG (i.e., 
using issue description as a query) à modify the retrieved code file.

• SWE-Llama is trained to generate corrected code, given retrieved code 
containing faults.

LLM Agent: Benchmarks
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SWE-bench: Can Language Models Resolve Real-World GitHub Issues? [Jimenez et al., 
2023]

• Recent works further improved performance in SWE-Bench.

LLM Agent: Benchmarks
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ReAct: Synergizing Reasoning and Acting in Language Models [Yao et al., 2023]

• Prompting technique to improve LLMs’ decision-making capability.

• Applying Chain-of-Thought prompting to decision making tasks.
• Enforces LLM agents to think before act via prompting.

LLM Agent: Prompting LLMs as agents
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ReAct: Synergizing Reasoning and Acting in Language Models [Yao et al., 2023]

• Evaluation in AlfWorld and WebShop, a representative text-based decision 
making task.

• ReAct prompting outperforms Act-only prompting with significant margin.

• Recently, think followed by action became default choice for LLM agents.

LLM Agent: Prompting LLMs as agents
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Reflexion: Language Agents with Verbal Reinforcement Learning [Shinn et al., 2023]

• LLM agent refining its decision making based on verbal feedback.

• New paradigm of verbal reinforcement learning

LLM Agent: Prompting LLMs as agents
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Reflexion: Language Agents with Verbal Reinforcement Learning [Shinn et al., 2023]

• LLM agent generates trajectory by decision making.

• LLM agent receives verbal external feedback or internal feedback (i.e., self-
evaluation).

• Based on the feedback, LLM agent generates reflection, and adds it to long-
term memory.

• Regenerate trajectory by referring to the reflection.

LLM Agent: Prompting LLMs as agents
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Reflexion: Language Agents with Verbal Reinforcement Learning [Shinn et al., 2023]

• Language agent improves its decision making within a few iterations of 
Reflexion in sequential decision-making task (ALFWorld)

• Not only confined to decision making tasks, Reflexion can be also applied to 
programming tasks (e.g., MBPP, HumanEval)

• Shows better than previous state-of-art methods.

LLM Agent: Prompting LLMs as agents
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SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering 
[Yang et al., 2024]

• Proposed agent-computer interface enabling LLMs to solve software 
engineering tasks as human developer do.

LLM Agent: Prompting LLMs as agents
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SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering 
[Yang et al., 2024]

• Based on issue description and 1-shot example (demonstration), LLM 
sequentially make decision using actions, which is defined based on agent-
computer interface.

LLM Agent: Prompting LLMs as agents

Think1: First, I need to reproduce the issue…
Action1: create_file(‘reproduce.py’)

Think3: I need to run the` reproduce.py` to see whether the 
error is reprocuded..

Action3: python reproduce.py

Think2: As the issue describes problem regarding …
Action2: edit 1:1 

[code to reproduce the error]
end_of_edit
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SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering 
[Yang et al., 2024]

• Shows promising result in the representative repository-level software 
engineering tasks: SWE-Bench

LLM Agent: Prompting LLMs as agents
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SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering 
[Yang et al., 2024]

• Although method is simple (i.e., letting LLMs to use tools & actions specialized 
for software engineering tasks), It showed the possibility of LLMs to solve repo-
level software engineering tasks as human developers do.

• After this work, many works proposed better agent-computer interfaces to 
enhance the performance.

• Remaining problems: 
• LLMs makes trivial mistakes while editing the code (e.g., indentation error), and 

some errors are not detected by linting library, which results in task failure.
• Edit & Execution loop: once the execution of LLM-edited code returns error, LLMs 

repeat editing the code and executing the wrongly edited code.

LLM Agent: Prompting LLMs as agents
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Code-R: Issue Resolving with Multi-Agent and Task Graphs [Chen et al., 2024]

• Proposed hierarchical multi-agent framework for software engineering task.

• Pre-defines role of each agent (e.g., Supervisor, Fault Localizer, Fault 
Reproducer) , and available actions are different across roles.

LLM Agent: Prompting LLMs as agents
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Code-R: Issue Resolving with Multi-Agent and Task Graphs [Chen et al., 2024]

• Given issue description, Manager agent generates task graph, which defines 
workflow and coordination between low-level agents.

• Following the task graph, low-level agents follow the workflow to solve the task.

LLM Agent: Prompting LLMs as agents
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Code-R: Issue Resolving with Multi-Agent and Task Graphs [Chen et al., 2024]

• Each agent are assigned with different agent-computer interfaces (i.e., action 
space)

• For example, Reproducer and Editor can edit the code, while remaining agents 
can not directly edit the code.

LLM Agent: Prompting LLMs as agents
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CodeR: Issue Resolving with Multi-Agent and Task Graphs [Chen et al., 2024]

• Multi-agent system results in better performance in SWE-Bench,  compared to 
single agent baseline (SWE-agent), as well as commercial products (e.g., 
Amazon Q Developer agent, Devin).

LLM Agent: Prompting LLMs as agents
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ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [Zhou et al., 
2024]

• Training LLMs for multi-turn tasks with RL poses several challenges compared to 
training LLMs for single-turn tasks with RL.

• As LLMs have to make decision over an extended period of multi-turn interactions.

• Current RL methods to fine-tune LLMs (e.g., RLHF) focus on single-turn tasks.
• ArCHer proposes novel RL framework for training LLMs for multi-turn tasks.

LLM Agent: Optimizing LLMs as agents
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ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [Zhou et al., 
2024]

• In multi-turn tasks (i.e., agent tasks), action space is defined at utterance level 
(e.g., command, code)

• However, usual RL methods to fine-tune LLMs focus on token-level action space 
with reward function learned via human preference.

LLM Agent: Optimizing LLMs as agents
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ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [Zhou et al., 
2024]

• ArCHer proposes hierarchical approach:
• 1. Train utterance-level value function via Off-policy RL
• 2. Token-level on-policy RL (e.g., PPO) with learned utterance-level value function.

LLM Agent: Optimizing LLMs as agents
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ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [Zhou et al., 
2024]

• Overall algorithm

LLM Agent: Optimizing LLMs as agents
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ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [Zhou et al., 
2024]

• ArCHer outperforms other training methods.

• Although PPO gradually improves, ArCHer exhibits much sample-efficient 
learning.

• GPT-2 fine-tuned with ArCHer outperforms GPT-3.5-turbo + ReAct

LLM Agent: Optimizing LLMs as agents
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Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents[Putta et al., 
2024]

• Search for optimal decision making via MCTS.

• From the search tree, optimize the LLM agent via Direct preference 
optimization. 

LLM Agent: Optimizing LLMs as agents

Given a state, LLM agent has multiple 
choices for actions (i.e., Act 1, Act 2)

Through tree search, we already have 
information of (value of Act 1 > value of 
Act 2).

Therefore, we optimize LLM agent with 
state, Act 1, and Act 2, as prompt, 
positive completion, and negative 
completion, respectively.
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Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents[Putta et al., 
2024]

• Overall algorithm

LLM Agent: Optimizing LLMs as agents
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Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents[Putta et al., 
2024]

• AgentQ achieves outperforms baselines.

• Applying MCTS at inference time yields much better performance.

LLM Agent: Optimizing LLMs as agents
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SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open 
Software Evolution [Wei et al., 2025]

• Improving reasoning capability via RL in code domain à Improved software 
engineering capability.

• Defined reward as a similarity between generated patch and oracle patch, and 
then trained the Reasoning LM via GRPO.

LLM Agent: Optimizing LLMs as agents
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SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open 
Software Evolution [Wei et al., 2025]

• Does not involve any multi-turn optimization, only optimizing “reasoning” 
required for generating patch file given problematic code and issue description.

• Surprisingly, the trained LLM not only improved code modification capability, 
but also capable of navigating codebase (e.g., opening file, creating file) as an 
agent. 

LLM Agent: Optimizing LLMs as agents
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SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open 
Software Evolution [Wei et al., 2025]

• Improved performance in SWE-Bench (best performance among <100B scale 
model)

LLM Agent: Optimizing LLMs as agents
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SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open 
Software Evolution [Wei et al., 2025]

• Generalization to unseen tasks (code reasoning / math / MMLU etc..)
• As a baseline, utilized SFT, which simply trains LLMs with oracle data (without 

reinforcement learning).

LLM Agent: Optimizing LLMs as agents
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