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Motivation: Temporal Data in Real World

* Many real-world data has a temporal structure intrinsically

* Natural language
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Motivation: Temporal Data in Real World

* Many real-world data has a temporal structure intrinsically
* Natural language
e Speech
* Video
* Stock prices, and etc...
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Motivation: Temporal Data in Real World

* Many real-world data has a temporal structure intrinsically
* “Natural language”

* In order to solve much complicated real-world problems,
we need a better architecture to capture temporal dependency in the data

* Specifically, we will focus on the recent models for natural language in this lecture

one to one many to one many to many

Vanilla neural network
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Overview

Part 1. Basics
* RNN to LSTM
* Sequence-to-sequence Model
* Attention-based NLP Model

Part 2. Transformers and Large Language Models
* Transformer (self-attention)
* Pre-training of Transformers and Language Models

Part 3. Advanced Topics
e Techniques for improving efficiency
* Handling long inputs with Transformers

Part 4. Summary
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Vanilla RNN

* Process a sequence of vectors by applying

recurrence formula at every time step :

New state

ht:

fw

(

hi_1

Lt

[ Old state

Input vector
at time step t

Function parameterized by learnable Y}/
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Vanilla RNN

* Vanilla RNN (or sometimes called EIman RNN)
* The state consists of a single “hidden” vector h,

h, = fW(ht—la il?t)

l

ht — taﬂh(Whht_l -+ Wx.’L‘t)
Y, = Wyhy




Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4

J#) (6)
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Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4

* Consider a gradient from the first state » (")

J4) (6)
/

J -
Training loss
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Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4

* Consider a gradient from the first state A

ah(z—’_l) ° ° .
on® are too small? —) Vanishing gradient problem

* When these are small, the gradient signal gets smaller and smaller
as it back-propagates further

* What happens if

J(4)(9)
1 Training loss
) h)_ h_ hL
@ @ @ @
0 W, e W, |@ W, |e
o I I It
8J® |on? ) Oh®) oJ @
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Chain rule!
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Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4

* Consider a gradient from the first state A

ah(i—l—l)
oh®

* What happens if

are too small? —)

Vanishing gradient problem

* When these are small, the gradient signal gets smaller and smaller

as it back-propagates further

* So, model weight are updated only with respect to ,

not long-term effects.

J@) () JH) ()
N N
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Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4
 Consider a gradient from the first state h(")

ah(z—’_l) . . .
on® are too small? I:> Vanishing gradient problem

* When these are small, the gradient signal gets smaller and smaller
as it back-propagates further

* What happens if

* So, model weight are updated only with respect to ,
not long-term effects.

onUtY)

* What happens if 0 aretoo large? ) |Exploding gradient problem

grew — eold . @V@J(Q)

* This can cause bad updates as the update step of parameters becomes too big

* |n the worst case, this will result in divergence of your network

* |n practice, with a gradient clipping, exploding gradient is relatively easy to solve

Algorithmic Intelligence Lab
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RNN Architectures: LSTM

* Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997]
* A special type of RNN unit, i.e., LSTM networks = RNN composed of LSTM units

* Explicitly designed RNN to
* Capture long-term dependency = more robust to vanishing gradient problem

e Coreidea behind LSTM
* With cell state (memory), it controls how much to remove or add information
* Only linear interactions from the output of each “gates” (prevent vanishing gradient)

e ¢, 4
7O\ /) »
@ @ >
Cell state (]
— Gates : Way to optionally
\, )

let information through
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RNN Architectures: Vanilla RNN

* Repeating modules in Vanilla RNN contains a single layer

ht — taﬂh(Whht_l + wat)

(n)

A
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RNN Architectures: LSTM

e Repeating modules in LSTM

~
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RNN Architectures: LSTM

Step 1: Decide what information we’re going to throw away from the cell state
* Asigmoid layer called “Forget gate” f;

* Looks at h;_1,z; and outputs a number between 0 and 1 for each cell state C;_1
* If 1: completely keep, if 0: completely remove

* E.g., language model trying to predict the next word based on all previous ones

* The cell state might include the gender of the present subject so that
the correct pronouns can be used

* When we see a new subject, we want to forget the gender of the old subject

fe = oWy [hi_1,m¢] + by)
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RNN Architectures: LSTM

Step 2: Decide what information we’re going to store in the cell state and update
 First, a sigmoid layer called the “Input gate” i, decides which values to update
« Next, a tanh layer creates a new content C, to be written to the

it = o (Wi - [he—1,2¢) + b;)

T |C’t ét = tanh(WC . [h'[;—17 ZCt] -+ bC)

Tt
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RNN Architectures: LSTM

Step 2: Decide what information we’re going to store in the cell state and update
 First, a sigmoid layer called the “Input gate” i, decides which values to update
« Next, a tanh layer creates a new content C, to be written to the

* Then, update the old cell state C;_; into the new cell state (),
« Multiply the old state by f; (forget gate)
 Add 7; * C';, new content scaled by how much to update (input gate)

Ci_q = Cy 'I:t = U(Wz : [ht—la xt] + bl)

X +
ftT Zt’—~¥a ét = tanh(We¢ - [he—1, 2] + bc)

Ct:ft*ct—1+it*ét

)
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RNN Architectures: LSTM

Step 3: Decide what information we’re going to output
* Asigmoid layer called “Output gate” o,
* First, go through o; which decides what parts of the cell state to output
* Then, put the cell state C}; through tanh and multiply it by o for hidden state h;

ht A
Ot — U(Wo ) [ht—la xt] + bo)
Ctanh>
e hy = o4 * tanh(C})
P 7 hy
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RNN Architectures: LSTM

e Overall LSTM operations

Forget gate: f = o(Wy - [hi—1,2¢) + bf) Inputgate: iy = o(W; - [hi_1,x¢] + b;)

Previous cell state: C',_4 New cell content: C; = tanh(We - [he—1, x¢] + bo)

\ 4

Updated cell state: C; = f; « Cy_1 + 14 * C~’t

—> Hidden state: h; = o, * tanh(C})

Output gate: oy = o (W, - [hy_1, x¢] + bo)

)
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ftT (N
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RNN Architectures: GRU

» Gated Recurrent Unit (GRU) [cho et.al, 2014]
* Combines the forget and input gates into a single “update gate” z:
* Controls the ratio of information to keep between previous state and new state
* Reset gate r; controls how much information to forget when create a new content
* Merges the cell state C; and hidden state A,

* (+) Resulting in simpler model (less weights) than standard LSTM

Reset gate: 7y = o (W, - [hy_1, 1)) New content: h; = tanh(W - [ry * hy_1, 24])

Update gate: 2 = o(W, - [ht—1,2¢])  Hiddenstate: hy = (1 — z¢) * hy_1 + 2 * h,

hy
ht_l / V) 7\ \’\ ht

)
¥
S~
K\

D&
l—e
L

v

Gated Recurrent Unit
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Overview

Part 1. Basics
e RNN to LSTM

e Sequence-to-sequence Model
e Attention-based NLP Model

Part 2. Transformers and Large Language Models
* Transformer (self-attention)
e Pre-training of Transformers and Language Models

Part 3. Advanced Topics
e Techniques for improving efficiency
* Handling long inputs with Transformers

Part 4. Summary
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Motivation: Natural Language Processing and Sequence-to-sequence Modeling

 Many natural language processing (NLP) tasks are Sequence-to-sequence
* Given an input sequence, turn it into an output sequence
* Example: Translation

AHo| AX| Ao 8t=104 0] v Ping gt=104 %o =0 v
Language model pretraining has led to significant performance gains X Q10 I ALM S22 MTHSE Ms SIS 7hN SAX|TH ME CHE HZ WAIZ Al V¢
but the careful comparison between different approaches is o S5t Hlwsh= A2 ofFSLICE
challenging. . @1

eon-eo model sajeon hunlyeon-eun sangdanghan seongneung hyangsang-eul gajyeo
wassjiman seolo daleun jeobgeun bangsig-eul sinjunghage bigyohaneun geos-eun
eolyeobseubnida.

& o) 139 / 5000 - <) O 7z <
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Motivation: Natural Language Processing and Sequence-to-sequence Modeling

 Many natural language processing (NLP) tasks are Sequence-to-sequence
* Given an input sequence, turn it into an output sequence
* Example: Text Summarization

Text Summarization using NLP

Natural Language
Processing

Natural
Natural language processing (NLP) is a
subfield of linguistics, computer science, and Lang uage
artificial intelligence concerned with the 1
interactions between computers and human ProceSS| ng
language, in particular how to program Summal'y
computers to process and analyze large ﬁ Natural language processing (NLP) is
amounts of natural language data. The result is summarize(text, 0.6) a subfield of linguistics, computer
a computer capable of "understanding” the science, and artificial intelligence
contents of documents, including the concerned with the interactions
contextual nuances of the language within between computers and human
them. The technology can then accurately language, in particular how to
extract information and insights contained in program computers to process and
the documents as well as categorize and analyze large amounts of natural
organize the documents themselves language data
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Motivation: Natural Language Processing and Sequence-to-sequence Modeling

 Many natural language processing (NLP) tasks are Sequence-to-sequence
* @Given an input sequence, turn it into an output sequence
* Example: ChatBot

Oh cool! That sounds relaxing and calming. Do you enjoy it? I've been
working on my new book all night, so that's what I'm up to right now.

| love yoga -- it calms my mind. What is your book about?

Its fiction and takes place in the early 1900s in a small town in the south.
It was inspired by a trip | took to Georgia last year. The main character
travels from New York City to Georgia after his brother dies, and he
meets some interesting people along the way!

That sounds really interesting. Have you published other books before?

Yes, this will be my 9th book. Mostly romance books though -
this is a little out of my comfort zone!

Wow, I've never read a romance novel before! What's the title of
your most recent romance book?

It's called All of You - A Modern Retelling of Pride and Prejudice.
Basically it follows the same plot as Pride and Prejudice but with
different characters!

Algorithmic Intelligence Lab

27



Sequence-to-sequence Model

 Many natural language processing (NLP) tasks are Sequence-to-sequence
* @Given an input sequence, turn it into an output sequence

* The core idea of Sequence-to-sequence model [Sutskever et al., 2014]
* Encoder-Decoder architecture (input = vector = output)

* Use one network (Encoder) to read input sequence at a time for encoding it into a
fixed-length vector representation (context)

* Use another network (Decoder) to extract output sequence from context vector

S I
i i i yTl yf yf yf ) ElT\ID >i
i h1 »  ho » hg —i—) & —i—» S1 » So » S3 » Sy » S5 i
i T T2 I3 i i< START > Y1 Y2 Y3 Ya i

Input sequence x = (1, 2, x3) and output sequence ¥ = (Y1, Y2, Y3, Y1)
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Sequence-to-sequence Model

* Encoder
* Reads the input sentence

* Use RNNs such that h; =
some non-linear functions

x = (x1,...,x7) and output context vector c
f(xy, hi—1) and ¢ = q({h1,...,hr}), where f and ¢ are

e E.g.,LSTMsas f and q({h1,...,hr}) = hr (in the original seq2seq model)

Input sequence x =

Algorithmic Intelligence Lab

(%1, 2, 23) and output sequence Y = (Y1, Y2, Y3,Y4)
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Sequence-to-sequence Model

 Decoder

Predict the next word ¥+ given the context vector ¢ and the previously predicted
words {y17 < e 7yt’—1}

Defines a probability over the translation y by decomposing the joint probability
into the ordered conditionals where y = (y1,.--,yr)-

p(y) = HP(?JtHyb o Yr—1},0),

The conditional probability is modeled with another RNN g as

p(yt’{ylv s 7yt’—1}7 C) — g(yt—laﬂa C)a
hidden state of the RNN

G e

i yTl yf yf yf ) ElT\ID >
hq » o » hy —>cC —i—» S1 » So » S3 » 5S4 » S5
T To T3 < START > W1 Y2 Y3 Y4

Input sequence x = (1, 2, x3) and output sequence ¥ = (Y1, Y2, Y3, Y1)

Algorithmic Intelligence Lab
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Sequence-to-sequence Model

* Example of the seq2seq model
* For English = French task
e With 2-layer LSTM for encoder and encoder

target output words

A

Je suis étudiant </s> Iloss layer

|j projection layer

I i i Ihidden layer 2
> > > Ihidden layer 1

embedding layer

| am a student <s> suis etuduant
encoding decodmg

Algorithmic Intelligence Lab
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Sequence-to-sequence Model

e Results on WMT’14 English to French dataset [sutskever et al., 2014]
* Measure : BLEU (Bilingual Evaluation Understudy) score
* Widely used quantitative measure for MT task
* On par with the state-of-the-art system (without using neural network)
* Achieved better results than the previous baselines

Method test BLEU score (ntst14)
Baseline System [29] 33.30
Cho et al. [5] 34.54
State of the art [9] 37.0
Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
| Oracle Rescoring of the Baseline 1000-best lists | ~45

* Seg2seq with RNNs is simple but very powerful in MT task

Algorithmic Intelligence Lab



Overview

Part 1. Basics

* RNN to LSTM
e Sequence-to-sequence Model
e Attention-based NLP Model

Part 2. Transformers and Large Language Models
* Transformer (self-attention)
e Pre-training of Transformers and Language Models

Part 3. Advanced Topics
e Techniques for improving efficiency
* Handling long inputs with Transformers

Part 4. Summary
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Attention-based Sequence-to-sequence Model

Algorithmic Intelligence Lab

* Problem of original seq2seq (or encoder-decoder) model

* Need to compress all the necessary information of a source sentence into a
fixed context vector

* All decoding steps use an identical context along with previous outputs

p(yt’{yla R 7yt’—1}7 C) - g(yt—la Staﬁ)a
* But, each step of decoding requires different part of the source sequence
« E.g., Stepl: “l 7 — “LI&= ”
Step2: “I love you” — “ Athol”

* Hence, difficult to cope with long sentences...

Y1 Y2 Y3 Ya < END >
Fixed T T T T T
hy S » hs et s » So » 3 » sy » 55
T T2 T3 < START > Y1 Y2 Y3 Ya

Input sequence x = (x1, 2, x3) and output sequence ¥ = (Y1, Y2, Y3, Y1)
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Attention-based Sequence-to-sequence Model

* Extension of seq2seq model with attention mechanism [Bahdanau et al., 2015]

* Core idea: on each step of the decoder, focus on a particular part of the source
sequence using a direct connection (attention) to the encoder states

* Dependent on the query with key, attention is a technique to compute a weighted
sum of the values

Query: decoder’s hidden state, key and value: encoder’s hidden states

* (4j is a relative importance which means how well the inputs around position 7 and the
output position 7 match.

ETP\E; 5
Qij = T p( w) y  Cij = 5?—1]13
Attention H > 11 expeir)
Distribution L1 1
(SoftMax) 1

Attention scores
(dot product) F X y

> 53 _H"'S4 query
key T T

T To r3 < START > Y1 Y2
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Attention-based Sequence-to-sequence Model

* Extension of seq2seq model with attention mechanism [Bahdanau et al., 2015]

* Core idea: on each step of the decoder, focus on a particular part of the source
sequence using a direct connection (attention) to the encoder states

* Dependent on the query with key, attention is a technique to compute a weighted
sum of the values

* Query: decoder’s hidden state, key and value: encoder’s hidden states
* The context vector ¢; is computed as weighted sum of h;

weights Ys
weighted sum

H 210 > Cq |

| | [] T
A A A

C;, — E Qg h j
J=1
Qe S?1'.‘::::: -------- 0‘ ______________
value / """":::::::::::'555;555:‘.35:‘555;.:;;;;;;:: .....

hq » o »  hs » S » So » S3 » Sy
A A A T T T

T To r3 < START > Y1 Y2 Y3
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Attention-based Sequence-to-sequence Model

* Graphical illustration of seq2seq with attention
* E.g., Chinese to English

l | | ! | | |

Encoder €@ |/ €1 |/ €2 |/ €3 |/ €4 |/ e |—/>| €
Decoder do _ d; S— d2 —_— d3
| | ! l
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Attention-based Sequence-to-sequence Model

* Results

 RNNsearch (with attention) is better than RNNenc (vanilla seg2seq)
 RNNsearch-50: model trained with sentences of length up to 50 words

BLEU score

L
accord

sur

la

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>

30

20 b7 :
15 H :
10— RNNsearch-50f ..o e \\\ ...........
----- RNNsearch-30|f R
5H = = RNNenc-50  Foeooeoood i e e
- RNNenc-30 T
(] 1 1 1 1 J
0 10 20 30 10 50 60
Sentence length
@ c Y 2
€ o E o = A 7}
¢ ,8S8ga.2 33 B g
geszsgfss .38 ¢ 3. 85,58 .f
=38E855E5us28s

(a)

1l
convient
de

noter
que

I
environnement
marin

est

le

moins

connu

de
I
environnement

<end>

(b)
Sample alignment results (attention map)

environments

<end>
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Attention-based Sequence-to-sequence Model: Google’s NMT

* Google’s NMT [Wu et al., 2016]
* Improves over previous NMT systems on accuracy and speed
» 8-layer LSTMS for encoder/decoder with attention
* Achieve model parallelism by assigning each LSTM layer into different GPUs

* Add residual connections in standard LSTM
* ...and lots of domain-specific details to apply it to production model

Y, —>y2—> e g

GPUS8 GPUS8
8§Iayers
‘ GPU3
GPU2 GPU3
GPU2 GPU2
GPU1

GPU1 i
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Attention-based Sequence-to-sequence Model: Google’s NMT

* Google’s NMT [Wu et al., 2016]
* Improves over previous NMT systems on accuracy and speed
» 8-layer LSTMS for encoder/decoder with attention
* State-of-the-art results on various MT datasets and comparable with Human expert

Table 5: Single model results on WMT En—De (newstest2014)
Model BLEU CPU decoding time

per sentence (s)

Table 10: Mean of side-by-side scores on production data

Word  23.12 0.2972 : :
Character (512 nodes)  22.62 0.8011 FENIE “GNNT: Himdn Relative

WPM-8K  23.50 0.2079 Krprovenen

> WPM-16K  24.36 0.1931 English — Spanish ~ 4.885 5.428 5.504 87%

WPM-32K  24.61 0.1882 English — French 4.932 5.295 5.496 64%

Mixed Word/Character ~ 24.17 0.3268 English — Chinese  4.035 4.594 4.987 58%

PBMT 6] 20.7 Spanish — English ~ 4.872 5.187 5.372 63%

. . French — English 5.046 5.343 5.404 83%

RNNSearch [37] 16.5 Chinese — English  3.694 4.263 4.636 60%

[
RNNSearch-LV [37]  16.9
RNNSearch-LV [37]  16.9

Deep-Att [45]  20.6

GNMT with different configurations
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Limitations with Recurrent Models

* Although RNNs show remarkable successes, there are fundamental issues:
1. O(sequence length) steps for distant word pairs to interact means
* Hard to learn long-distance dependencies because of gradient problems
2. Forward/backward passes have O(sequence length) unparallelizable operations

* Future RNN hidden states can’t be computed before past states have been computed
* This aspect inhibits training on the very large datasets

—000 — —> 000 =. >
t ot
000 — > ——> 000 —> —»
The chef who ... / was

Info of chef has gone through O(sequence length) many layers

Algorithmic Intelligence Lab
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Limitations with Recurrent Models

* Although RNNs show remarkable successes, there are fundamental issues:
1. O(sequence length) steps for distant word pairs to interact means
2. Forward/backward passes have O(sequence length) unparallelizable operations

* In contrast, attention has some advantages in these aspects:

1. Maximum interaction distance: O(1)
* Since all words interact at each layer
2. Number of unparallelizable operations does not increase with respect to length

attention

attention

embedding E ©0poopPop
1 hy

h;

All words can attend to all words in previous layer
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Limitations with Recurrent Models

* Although RNNs show remarkable successes, there are fundamental issues:
1. O(sequence length) steps for distant word pairs to interact means
2. Forward/backward passes have O(sequence length) unparallelizable operations

* In contrast, attention has some advantages in these aspects:
1. Maximum interaction distance: O(1)
* Since all words interact at each layer
2. Number of unparallelizable operations does not increase with respect to length

4 )

Q. Then, can we design an architecture only using attention modules?
 Remark. We saw attention from the decoder to the encoder;
but here, we’ll think about attention within a single sentence.

\_ J

Algorithmic Intelligence Lab
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Overview

Part 2. Transformers and Large Language Models
* Transformer (self-attention)

Algorithmic Intelligence Lab
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Transformer (Self-attention)

* Transformer [vaswani et al., 2017] has an encoder-decoder structure and they are
composed of multiple block with multi-head (self) attention module

\_/

Softmax
2

Linear )

7y
DECODER #2

ENCODER #2

Add & Normalize )

----------------------------

Add & Normalize )

£ | ) 1
z E ( Feed Forward ) ( Feed Forward ) | " :"C Encoder-Decoder Attention )
é ‘eeccceceoBemem . [y ‘eaoToo--- Becoccncncanonananns )
> ,»( Add & Normalize ,o( Add & Normalize )
E L) L) [} L )

& ........ 7 A R ey e ————
RN © @ & &

Thinking Machines
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Transformer (Self-attention)

* Self-attention
* Recall: Attention operates on query, key, and value
* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source

1. Foreachinput z;, create query, key, and value vectors ¢i, k;, v;
by multiplying learnable weight matrices

g =W ki = Wha;, v, = WV,

Self-Attention

x: I 270 [0 1 0 I 1 B B

Algorithmic Intelligence
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Transformer (Self-attention)

* Self-attention
* Recall: Attention operates on query, key, and value
* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source

1. Foreachinput z;, create query, key, and value vectors ¢i, k;, v;

2. Multiply (dot product) the current query vector, by all the key vectors, to get a score &
of how well they match

exp(ei;) ql'k;
. aZ] - Z . eXp(e. ./) eij - \/E
Self-Attention J ij
score 20% 10% 50% 20%
“ I [ 1] “ “
ail | e

xi L T T 1] x I [ xR
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Transformer (Self-attention)

 Self-attention
* Recall: Attention operates on query, key, and value
* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source
1. Foreachinput z;, create query, key, and value vectors ¢i, k;, v;
2. Multiply (dot product) the current query vector, by all the key vectors, to get a score &
3. Multiply the value vectors by the scores, then sum up
output; = Z QU
i

Zq

[T
0.2 0.1 0.5 0.2
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Transformer (Self-attention)

* Self-attention
* Recall: Attention operates on query, key, and value
* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source
1. Foreachinput z;, create query, key, and value vectors ¢i, k;, v;

2. Multiply (dot product) the current query vector, by all the key vectors, to get a score &
3. Multiply the value vectors by the scores, then sum up

* Hence, self-attention is effective to learn the context within given sentence
* It’s easier than recurrent layer to be parallelized and model the long-term dependency

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) 0(1) 0(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logx(n)

Self-Attention (restricted) O(r-n-d) 0(1) O(n/r)

Algorithmic Intelligence Lab
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Transformer (Self-attention)

e Self-attention

* Recall: Attention operates on query, key, and value
* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source
1. Foreachinput z;, create query, key, and value vectors ¢i, k;, v;
2. Multiply (dot product) the current query vector, by all the key vectors, to get a score &
3. Multiply the value vectors by the scores, then sum up
* Hence, self-attention is effective to learn the context within given sentence

* |t’s easier than recurrent layer to be parallelized and model the long-term dependency
* |t also provides an interpretability of learned representation
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Transformer (Self-attention)

e Multi-head attention
* Applying multiple attentions at once to look in multiple places in the sentence
* To prevent the increase of computation, original attentions weights are divided

Single-head attention Multi-head attention
(just the query matrix) (just two heads here) Same amount of
computation as
single-head
X XQ X XQ XQ, self-attention
Q = Q:0; =
head O head 1 head 2 head 3
Two - Two - Two — Two —
setting setting settihg seteg
up up up up
bm: bm: bmz bw:
fishilrcuj fishilr:; fishilrc; fishilrcu;

hut
on
an
iced
over
lake

hut
on
an
iced
over
lake

hut
on
an
iced
over
lake

hut
on
an
iced
over
lake

o O R 2. L L L&
A¢$<°é¢f> R A c(5${@> S L
)

e O SOR 2 & & AF S & b & @ OR 2L ZOASF S LD S &
& g S N GRS S D

&— RGOS é% @@‘oa RS VAR
g 9‘7’ & K\
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Transformer (Self-attention)

e Multi-head attention
* Applying multiple attentions at once to look in multiple places in the sentence

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
X Wo®
K
Thinking T T Wo QO

Machines I WOV KO
Iy Vo

w;Q
* |n all encoders other than #0, P WqK Qs
we don't need embedding. I W,V K1
We start directly with the output I Vi
of the encoder right below this one {7 :
W-Q
L1 W7K 07
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Transformer (Self-attention)

 Encoder

* Self-attention is invariant to order of input sequence

* To represent the order of sequence, positional encoding is added to input embeddings
at the bottoms of the encoder and decoder stacks

* Fixed sine and cosine functions are used for each position pos and dimension i
PE(pos 20y = sin(pos/10000%/4m)  PE(pos 2i11) = cos(pos /100007 dmest)

* PE,.s+x can be derived as a linear function of PE,,; — easier to learn a relative position
* Compare to learning encoding, it’s better for extrapolation (not encountered in training)

i

oo X1 I I LT
POSITIONAL é é
ENCODING
x1 B x [
Thinking Machines
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Transformer (Self-attention)

 Encoder

» Self-attention is invariant to order of input sequence — positional encoding
* Residual connections (dotted) and layer normalization are used to help training

4 4

\ 4

e
L

LayerNorm( + )

ENCODER #1

.o X1 R LT
POSITIONAL é é
ENCODING
x+ 2T [ T 1171
Thinking Machines
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Transformer (Self-attention)

* Encoder
» Self-attention is invariant to order of input sequence — positional encoding
* Residual connections (dotted) and layer normalization are used to help training
* Non-linearity is imposed by adding position-wise feed-forward networks

CC Add & Normalize ' )\
) )

N e e b 4
z1 z,
A A
w| ,» LayerNorm( - )
x|
1 'y A
(&) ]
Z| : :
- ( Self-Attention )
- 4 2
oo X1 R LT
POSITIONAL é é
ENCODING
x1 B ey
Thinking Machines
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Transformer (Self-attention)

* Decoder
* Most parts are same with encoder except encoder-decoder(cross) attention

* This cross attention is previously used in seq2seq model
* Queries are drawn from the decoder
* Keys and values are drawn from the encoder (like context vector)

-----------------------------------------
B

. 3 Softmax )
K_,( Add & Normalize ) é ( ’
S ( Feed Forward ) ( Feed Forward ) g ( Linear )
B | Yeecszooo- A oo H
g ,»( Add & Normalize ) E“o.. 4
Al ) ) DT, > DECODER #2
( Self-Attention ) E
& -------- | ST TP PP ? —/ : * *
(-»( I Add & Normalize ' ) § . ’( Add & Normalize )
; ( Feed Forward ) ( Feed FonNard ) : i_ : *
S| e wi ! ( Feed Forward ) ( Feed Forward )
2 »( Add & Normalize ) 5 S =
=l % ) ) y of T
: selfAuention o >( Add & Normalize )
N ~/ ;
"R @ ® ., | L] 4
x: [ x. [ ,"( Encoder-Decoder Attention )
Thinking Machines .
EPIIIIIT , SEEEETTTTT LT TTT: i
'¢( Add & Normalize )
; i i
' ( Self-Attention )
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Transformer (Self-attention)

 Decoder

* Most parts are same with encoder except encoder-decoder(cross) attention

* This cross attention is previously used in seq2seq model
* Queries are drawn from the decoder
* Keys and values are drawn from the encoder (like context vector)

Decoding time step: 1@3 456 OUTPUT
a )
Kencdec  Vencdec ( Linear + Softmax )
ENCODERS DECODERS ]
L Y,
EMBEDDING * * * *
WITH TIME [ITTT] LT [ITTT] C1TTT]
SIGNAL
EMBEDDINGS [0 [0 O T
i 4 i PREVIOUS
INPUT e suis étudiant
J OUTPUTS
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Transformer (Self-attention)

e Success of Transformer: Machine Translation (MT)
* Initially, Transformer shows better results at a fraction of the training cost

Model BLEU Training Cost (FLOPs)
oce EN-DE EN-FR  EN-DE  EN-FR

ByteNet [15] 23.75

Deep-Att + PosUnk [32] 39.2 1.0-10%°
GNMT + RL [31] 24.6 39.92 2.3-10Y° 1.4.10%
ConvS2S [8] 25.16 40.46 9.6-10% 1.5.10%
MoE [26] 26.03 40.56 2.0-10° 1.2-10%0
Deep-Att + PosUnk Ensemble [32] 40.4 8.0-10%0
GNMT + RL Ensemble [31] 26.30 41.16 1.8-10%0 1.1-10%
ConvS2S Ensemble [8] 2636  41.29 7.7-101°  1.2.10%
Transformer (base model) 27.3 38.1 3.3-10'8
Transformer (big) 28.4 41.0 2.3-109

* Nowadays, Transformer is still a standard for MT with additional techniques

En—De

System news2017 news2018
baseline 30.90 45.40
+ langid filtering 30.78 46.43
+ ffn 8192 31.15 46.28
+ BT 33.62 46.66
+ fine tuning - 47.61
+ ensemble - 49.27
+ reranking - 50.63
WMT’18 submission - 46.10
WMT’19 submission 42.7
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Transformer (Self-attention)

* Success of Transformer: Video action recognition [Girdhar et al., 2018]
* Goal: localize the atomic action in space and time

* Previous approaches just use the feature of key frame with object detection
e But, it’s hard to model the interaction between frames

Input clip

(RGB frames) /
S
P 4

Initial actor

u
representation re
’ —_ —|— —_— e

More layers
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Transformer (Self-attention)

* Success of Transformer: Video action recognition [Girdhar et al., 2018]
* Qualitative results of learned attention

* Winner of AVA challenge in 2019: > 3.5 % than previous challenge winner

Method Modalities Architecture Val mAP Test mAP
Single frame [16] RGB, Flow R-50, FRCNN 14.7 -
AVA baseline [16] RGB, Flow 13D, FRCNN, R-50 15.6 -
ARCN [42] RGB, Flow S3D-G, RN 17.4 -
Fudan University - - - 17.16
YH Technologies [52] RGB, Flow P3D, FRCNN - 19.60
. .. I3D, FRCNN, NL, TSN,

Tsinghua/Megvii [23] RGB, Flow C2D. P3D, (3D, FPN 21.08
Ours (Tx-only head) RGB 13D, Tx 24.4 24.30
Ours (Tx+I3D head) RGB 13D, Tx 24.9 24.60
Ours (Tx+I3D+96f) RGB 13D, Tx 25.0 24.93
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Transformer (Self-attention)

* Success of Transformer: Music generation [Huang et al., 2018]

* Goal: generate music which contains structure at multiple timescales (short to long)
* Performance RNN (LSTM): lack of long-term structure

>

> -

I|,._

I
LS
ol
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Overview

* Pre-training of Transformers and Language Models

Algorithmic Intelligence Lab
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Pre-training and Fine-tuning Paradigm with Transformers

* Motivation

* Many success of computer vision comes from ImageNet-pretrained networks
* Simple fine-tuning improves the performance than training from scratch

* Q. Then, can we train a similar universal pre-trained network for NLP tasks?
* As labeling of NLP task is more ambiguous, unsupervised pre-training is essential

* Language modeling is simple yet effective pre-training method without label
* i.e., predicting what will be the next word
e With diverse examples, model can learn the useful knowledge about the world

“Overall, the value I got from the two hours watching
it was the sum total of the popcorn and the drink.

The movie was __.” — terrible
. y,

“I wat thinking about the sequence that goes
1,1,2,3 5,8 13,21, ”— 34

“I went to the ocean to see the fish, turtles, seals,
and 7 — sand
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Pre-training and Fine-tuning Paradigm with Transformers

* Motivation

* Many success of computer vision comes from ImageNet-pretrained networks
* Simple fine-tuning improves the performance than training from scratch

* Q. Then, can we train a similar universal pre-trained network for NLP tasks?
* As labeling of NLP task is more ambiguous, unsupervised pre-training is essential
* Language modeling is simple yet effective pre-training method without label
* i.e., predicting what will be the next word

e With diverse examples, model can learn the useful knowledge about the world

* Pre-training for two types of architectures
* Architecture influences the type of pre-training, and specific use cases

2=

Encoders

Decoders

E.g. BERT
Pre-training with masked language modeling
Better use for discriminative tasks (classification)

E.g. GPT
Pre-training with normal language modeling
Better use for generation tasks
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
* As encoders get bidirectional context, original language modeling is suboptimal

* Not only left-to-right, but also right-to-left modeling is possible
* Hence, masked language modeling is used for pre-training

* Replace some fraction of words (15%) in the input, then predict these words

Use the output of the 0.1% | Aardvark

masked word’s position
to predict the masked word

Possible classes:
All English words 10% Improvisation

0% | Zyzzyva

[ FFNN + Softmax ]

BERT

Randomly mask coo

15% of tokens
[CLS] [MASK]

Input

[CLS]
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
* As encoders get bidirectional context, original language modeling is suboptimal
* Hence, masked language modeling is used for pre-training

* Additionally, next sentence prediction (NSP) task is used for pre-training
* Decide whether two input sentences are consecutive or not

Predict likelihood
that sentence B
belongs after

1% | IsNext

99% NotNext

sentence A
[ FFNN + Softmax ]
LN ]
BERT
Tokenized cee
Input [CLS] [MASK]
Input [CLS) [MASK] [MASK]

Sentence A Sentence B
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]

* Even without task-specific complex architectures, BERT achieves SOTA for 11 NLP
tasks, including classification, question answering, tagging, etc.

e By simply fine-tuning a whole network with additional linear classifier

Class
Label

0 oD O

BERT

[eafl& |- L& (Gl ]~ [&]

=FE- EEE- &)
‘_|_I I_'_l

Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Algorithmic Intelligence Lab

f;is:l Start/End Span
—— 299
e~ (=] - O G=l)- G
BERT BERT
9 0 e N | ™ | e
R g — -~

= OFE- G)

few| & || & ] - €,
i [CLS) || Tok 1 || Tok 2 |
|
|

Single Sentence Question Paragraph
(b) Single Sentence Classification Tasks: (c) Question Answering Tasks:
SST-2, ColA

SQuAD v1.1
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
* Even without task-specific complex architectures, BERT achieves SOTA for 11 NLP

tasks, including classification, question answering, tagging, etc.

e By simply fine-tuning a whole network with additional linear classifier

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE | Average
392k 363k 108k 67k 85k 5.7k 3.5k 2.5k -
Pre-OpenAlI SOTA 80.6/80.1 66.1 823 932 350 81.0 860 61.7| 74.0
BiLSTM+ELMo+Attn 76.4/76.1 648 799 904 360 73.3 849 568 71.0
OpenAl GPT 82.1/81.4 703 88.1 913 454 80.0 823 560 75.2
BERTgASE 84.6/83.4 71.2 90.1 935 521 85.8 88.9 664 79.6
BERT ArGE 86.7/85.9 72.1 911 949 60.5 865 893 70.1| 81.9
System Dev Test
System DevFl TestFl — EgIM+Glove 51.9 52.7
ELMo+BiLSTM+CRF 95.7 922 ESIM+ELMo 59.1 59.2
CVT+Multi (Clark et al., 2018) - 92.6 BERTg Ak 816 -
BERTgAsE 96.4 924 BERTLARGE 86.6 86.3
BERT} ARGE 96.6 92.8 Human (expert)! - 85.0
Human (5 annotations)! -  88.0

Algorithmic Intelligence Lab
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RoBERTa: A Robustly Optimized BERT Pre-training Approach

* RoBERTa [Liu et al., 2019]

* Simply modifying BERT design choices and training strategies with alternatives
* Using dynamic masking instead of static masking in BERT
* Removing NSP task and generate training data in single document instead
* Much larger data for pre-training: 16GB — 160GB, and etc...

* But, it leads a huge improvement in many downstream tasks

SQuAD

Model data bsz steps (v1.1/2.0)

MNLI-m SST-2

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1

+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERTLARGE

with BOOKS + WIKI 13GB 256 1M  90.9/81.8 86.6 93.7

with BOOKS + WIKI 13GB 256 1M  94.0/87.8 88.4 94.4

+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6
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GPT: Generative Pre-Training with Transformer’s Decoder

* GPT [Radford et al., 2018]
arg max logp(z) = > po(anlzr, .. wn_1)
n

* Pre-training by language modeling over 7000 unique books (unlabeled data)
* Contains long spans of contiguous text, for learning long-distance dependencies

* Fine-tuning by training a classifier with target task-specific labeled data
 Classifier is added on the final transformer block’s last word’s hidden state

©/€? softmax(h,, Wy)

Linear vy,
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GPT: Generative Pre-Training with Transformer’s Decoder

* GPT [Radford et al

., 2018]

arg max logp(z) = > po(anlzr, .. wn_1)
n

* Pre-training by language modeling over 7000 unique books (unlabeled data)
* Contains long spans of contiguous text, for learning long-distance dependencies

* Fine-tuning by training a classifier with target task-specific labeled data
 Classifier is added on the final transformer block’s last word’s hidden state

Method MNLI-m MNLI-mm SNLI SciTail QNLI RTE
ESIM + ELMo [44] (5%) - - 89.3 - - -
CAFE [58] (5x) 80.2 79.0 89.3 - - -
Stochastic Answer Network [35] (3x) 80.6 80.1 - - - -
CAFE [58] 78.7 77.9 88.5 83.3

GenSen [64] 71.4 71.3 - - 823 59.2
Multi-task BiLSTM + Attn [64] 72.2 72.1 - - 82.1 61.7
Finetuned Transformer LM (ours) 82.1 814 89.9 88.3 88.1 56.0

Algorithmic Intelligence Lab
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GPT-2: Language Models are Unsupervised Multitask Learners

e GPT-2 [Radford et al., 2019]

* Pre-training by language modeling as same as previous GPT-1, but training with..

* Much larger datasets; 8 million documents from web (40 GB of text)
* Much larger model size; # of parameters: 117M (GPT-1) — 1542M (extra-large GPT-2)

GPT-2

EXTRA
LARGE
G pT_ 2 [ C DECODER )\
LARGE .
G PT' 2 g; C DECODER 9
GPT 2 MEDIUM cee 6 DECODER )
: (24 C DECODER ? 5 DECODER D)
SMALL s a( DECODER ), a( DECODER )
12 DECODER ) 3 DECODER D) 3 ( DECODER )
cee 2 DECODER D 2 DECODER ) 2 DECODER )
1 DECODER ) % C DECODER )) % C DECODER )) ! C DECODER >)
Model Dimensionality: 768 Model Dimensionality: 1024 Model Dimensionality: 1280 Model Dimensionality: 1600
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GPT-2: Language Models are Unsupervised Multitask Learners

* GPT-2 [Radford et al., 2019]

* Pre-training by language modeling as same as previous GPT-1, but training with..

* Much larger datasets; 8 million documents from web (40 GB of text)
* Much larger model size; # of parameters: 117M (GPT-1) — 1542M (extra-large GPT-2)

* GPT-2 can perform down-stream tasks in a zero-shot setting
* Via conditional generation without any parameter or architecture modification

Output

Input

recite the first law $

\ )
I

Proper condition
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GPT-2: Language Models are Unsupervised Multitask Learners

* GPT-2 [Radford et al., 2019]

* Pre-training by language modeling as same as previous GPT-1, but training with..
* Much larger datasets; 8 million documents from web (40 GB of text)
* Much larger model size; # of parameters: 117M (GPT-1) — 1542M (extra-large GPT-2)
* GPT-2 can perform down-stream tasks in a zero-shot setting
* Via conditional generation without any parameter or architecture modification
* Remark. Largest model still underfits.. — larger model for better performance?

Reading Comprehension Translation Summarization 10 Question Answering
90 {Human 55 |Unsupervised Statistical MT 32 Lead-3
80 1 ~ 30 8 1 1Open Domain QA Systems 1 1
20 ~ 28 |PGNet
701 w
DrQA+PGNet 5 S 26 g 61
Denoising + Backtranslate = -
15 o o
e oy 4 = 24 {Seq2seq + Attn ]
DrQA @ s 9 4
501 10 {Embed Nearest Neighbor Y 221 =
PGNet o © Random-3
Denoising 9 201
e 5 2 2
| 181 most freq Q-type answer
30
Seq2seq 0 16 0
117M 345M 762M  1542M117M 345M 762M  1542M 117M 345M 762M  1542M117M 345M 762M  1542M
# of parameters in LM # of parameters in LM # of parameters in LM # of parameters in LM

Figure 1. Zero-shot task performance of WebText LMs as a function of model size on many NLP tasks. Reading Comprehension results
are on CoQA (Reddy et al., 2018), translation on WMT-14 Fr-En (Artetxe et al., 2017), summarization on CNN and Daily Mail (See et al.,
2017), and Question Answering on Natural Questions (Kwiatkowski et al., 2019). Section 3 contains detailed descriptions of each result.
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GPT-3: Language Models are Few-shot Learners

* GPT-3: Language Models are Few-shot Learners [Brown et al., 2020]
* First very large language models (LLMs, 1B — 175B parameters)
* With this scale-up, new capability of LMs suddenly emerges

* E.g., it can adapt to new tasks perform in-context learning without fine-tuning
* In-context learning (prompting); adapting to task from examples with some context

The three settings we explore for in-context learning Zero-shot One-shot Few-shot
Zero-shot 175B Params
The model predicts the answer given only a natural language Natural Language
description of the task. No gradient updates are performed. 60 Prompt G PT‘3
Translate English to French: task description 50
cheese => prompt :\°\ //
pogd 40 -~
g “\
§ 30 No Prompt
One-shot = - 13B Params
In addition to the task description, the model sees a single 20
example of the task. No gradient updates are performed.
10
Translate English to French: task description 1.3B Params
sea otter => loutre de mer example
cheese => prompt Number of Examples in Context (K) G PT—Z
Few-shot Setting NaturalQS WebQS TriviaQA
In addition to the task description, the model sees a few . .
examples of the task. No gradient updates are performed. RAG (Flne'tuned, Open-Domaln) [LPP+20] 44-5 45-5 68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]  36.6 44.7 60.5
Translate English to French: task description TS_I lB (Fine'tuned, Closed_Book) 34‘5 37'4 50' 1
sea otter => loutre de mer examples GPT—3 ZCI'O-ShOt 14.6 14.4 64.3
peppermint => menthe poivrée GPT—S One-Shot 23 0 25 3 68 0
plush girafe => girafe peluche GP’F 3 Few Shot 29 9 41 5 71 2
cheese => prompt
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GPT-3: Language Models are Few-shot Learners

* GPT-3: Language Models are Few-shot Learners [Brown et al., 2020]
* First very large language models (LLMs, 1B — 175B parameters)

* With this scale-up, new capability of LMs suddenly emerges
* E.g., it can adapt to new tasks perform in-context learning without fine-tuning
* It enables us to do a lot of interesting applications!

E.g.,

Describe a layout.

GPT-3 Quick Response by OthersideAl

Just describe any layout you want, and it'll try to render below!
Quickly write an email in your style by simply stating the points you would like to get across 4

Request beta access at othersideai.com &

[ a button that looks like a watermelon . ]

Received Email Matt

Thanks for chatting last week. Hearing your vision for Otherside got both
Jim and | really excited. We really like where you're going with this. After

- e ' . 0 . : " talking with my partners yesterday, we're looking at making an
<button style={{backgroundColor: 'pink', border: '2px solid green', borderRadius: investment of $100K into Otherside on 8 SAFE. Would this be sufficient

'50%', padding: 20, width: 100, height: 100)})}>Watermelon</button> 0 join your round? If so, we'll send over our proposed terms

On another note, as we discussed, let me know about your estimated
market size

Please let me know. Looking forward to an amazing journey together!

Thanks

Watermelon Response Points * thanks

*no

* our minimum ig$150K investment
* would $150K bé possible

Generate Email

0:16/1:18 ¢

Simple code generation Email response

Algorithmic Intelligence Lab 76



Remaining challenges

* Despite the remarkable success of LLMs, practical challenges remain

* High computational demands
* Computational requirements increase as LLMs grow in scale
» Self-attention requires O(sequence length”2) computation and memory
* Poses challenges for both training and deployment

LANGUAGE MODEL SIZES TO MAR/2023

o Luminous GLM-130B

@ - ChatGLM-6B

PaLM
PaLM-Coder OPT-175B
Minerva BB3 GPT-4
Med-PaLM OPT-IML Undisclosed
Flan-PaLM 175B &
U-PaLM
Flan-U-PaLM
Med-PaLM 2

540B
&P Parame ters

Chinchilla] Flamingo
80B*

O Closed 3 70B*

eeeee wa atio >15:1. hitos://ifearchitec Alan D. Thompson. March 2023. hitps/lfearchite
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Remaining challenges

* Despite the remarkable success of LLMs, practical challenges remain

* High computational demands
e Computational requirements increase as LLMs grow in scale
» Self-attention requires O(sequence length”2) computation and memory
* Poses challenges for both training and deployment

* Handling of long contexts
* Computation grows quadratically with sequence length
* Model does not naturally extrapolate to long sequences unseen during training
* Most modern LLMs can handle limited number of input tokens (‘context limit’)

@(D The message you submitted was too long, please reload the conversation and submit something & P

shorter.

Algorithmic Intelligence Lab
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Overview

Part 3. Advanced Topics
e Techniques for improving efficiency

Algorithmic Intelligence Lab
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Towards efficient LLMs

* Scaling has been the key for the success of modern LLMs
* However, large computation poses a significant bottleneck
* Improving computational efficiency is critical for further scaling

* Possible solutions include:
* Architectures that enable scaling without severely increasing computation
* Further computation optimization for the current architecture

Algorithmic Intelligence Lab
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GLaM: Efficient Scaling of Language Models with Mixture-of-Experts

* GLaM (Generalist Language Model) [pu et al., 2022]
* Intuition: Can we decouple the computation cost from the model size?

* The key idea is to introduce Mixture-of-Experts (MoE) layers
* Consists of multiple experts (simple feed-forward network) and a gating network

* Gating network selects the K ‘best’ experts for a given input

* Final output is the weighted sum of each expert’s output

Algorithmic Intelligence Lab

=

. /MOE layer \
G(x),| | G(X)pa
Gating
Network
< )
X

G(x) = topK(Softmax(z - Wg))

K
y=Y G(z)i Ei(x)
=

expert expert
weight  output

MoE layer [Shazeer et al., 2017] applied on LSTM
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GLaM: Efficient Scaling of Language Models with Mixture-of-Experts

* GLaM (Generalist Language Model) [pu et al., 2022]
* Intuition: Can we decouple the computation cost from the model size?
* The key idea is to introduce Mixture-of-Experts (MoE) layers

* In this work, MoE layer is applied to the FFN layer of Transformers

» 2 experts are selected, providing O(number of experts”2) combination of FFN layers,
providing more flexibility

[ Encoder output ]

— Add & Norm
|
Feed Forward FFN
— Add & Norm
|
Multi-Head Attention
— Add &INorm
=0 (ER MoE layer added to Transformers.
j 2 experts (FFNs) are selected out of 64.
— Add & Norm
|
Multi-Head Attention

—

[ Input & Positional embeddings ]
|
roses are red violets are blue
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GLaM: Efficient Scaling of Language Models with Mixture-of-Experts

* GLaM (Generalist Language Model) [pu et al., 2022]

* Enables efficient scaling, while keeping the computation small
* Largest GLaM model (64B/64E) has 1.2T parameters
* However, only 96.6B are activated per prediction

GLaM Model  Type

Tparams

nact—params

0.1B Dense 130M 130M
0.1B/64E MoE 1.9B 145M
1.7B Dense 1.7B 1.700B
1.7B/32E MoE 20B 1.878B
1.7B/64E MoE 27B 1.879B
1.7B/128E MoE 53B 1.881B
1.7B/256E MoE 105B 1.886B
8B Dense 8.7B 8.7B

8B/64E MoE 143B 9.8B

137B Dense 137B 137B

64B/64E MoE 1.2T 96.6B

Number of total parameters and activated parameters
for each GLaM model (base dense size / number of experts)

Algorithmic Intelligence Lab

83



GLaM: Efficient Scaling of Language Models with Mixture-of-Experts

* GLaM (Generalist Language Model) [pu et al., 2022]
* GLaM outperforms GPT-3 while requiring less computation

GPT-3 GLaM relative

o FLOPs /token (G) 350 180 -48.6%
e Train energy (MWh) 1287 456 —64.6%
P Zero-shot 56.9 62.7 +10.2%
) = : y One-shot 616 655 +6.3%
on average Few-shot 652 681 +4.4%

* Models trained with mixture-of-experts successfully scale
* Achieves higher performance using similar FLOPs per token prediction

Algorithmic Intelligence Lab
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FlashAttention: Fast and Memory-Efficient Exact Attention with I0-Awareness

* FlashAttention [pao et al., 2022]
* Motivation: HBM access is the bottleneck in self-attention operation

* Memory hierarchy
* GPU memory hierarchy comprises multiple forms of memory of different size and speed
* On-chip SRAM is much smaller, but faster than high bandwidth memory (HBM)

S\ SRAM: 19TB/s (20 MB)
SRAM

LB\ HEBM: 1.5 TB/s (40 GB)
HBM

Compute Compute Compute Compute

SRAM SRAM

WETL N1 TeTa"A DRAM: 12.8 GB/s
(CPU DRAM) (>1TB)

Memory Hierarchy with
GPU #1 GPU #N Bandwidth & Memory Size
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FlashAttention: Fast and Memory-Efficient Exact Attention with I0-Awareness

* FlashAttention [Dao et al., 2022]

* Motivation: HBM access is the bottleneck in self-attention operation
* Typical GPU operation

1. Load inputs from HBM to registers and SRAM
2. Compute

3. Write outputs to HBM

* Turns out: Most operations in self-attention are memory-bounded
* More time is spent on 10 to HBM, not the compute itself

. @O\Y\AW lﬂ\HA
:19TB/s (20 MB) r 0(7,{_.

HBM: 1.5 TB/s (40 GB)

(=[]
0000 || 0 Oon
: 12.8 GB/s oooo HEBE
(>1TB) oooo <&— %
oooao AN NN mEL
Memory Hierarchy with M e,mor\y QomPuOL@
Bandwidth & Memory Size (DRAH) (SRAM +Compre)
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FlashAttention: Fast and Memory-Efficient Exact Attention with I0-Awareness

* FlashAttention [Dao et al., 2022]

* |dea: Utilize kernel fusion to reduce HBM access
* Access HBM only once, and perform multiple operations in a row

Memor) Compie.  Memory) Compite
— U —
o nnn d
— L L
AN NN A 4
—
pa ek |
g
O 0O QO o
—
0000 j Y i,
0010 F~70 | I | 0
Computation Computation
without operator fusion with operator fusion
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FlashAttention: Fast and Memory-Efficient Exact Attention with I0-Awareness

* FlashAttention [Dao et al., 2022]
* ldea: Utilize kernel fusion to reduce HBM access
* Access HBM only once, and perform multiple operations in a row
* However, SRAM memory is much smaller than HBM

* The full attention matrix does not fit in SRAM
* Key intuition: compute self-attention by parts, without materializing the large attention
matrix (Tiling)
* This introduces a few challenges in the context of model training

Outer Loop
Memery Compite Memory Compite wr
Copy Block to SRAM
I‘I_:I I‘? - U —_— d . Outer Loop ViNXd
<~ |J T =
ANNN A )G | T
— . | o
—A—A__A_A_ b \L 8 Compute Block %
o b s S |
O Q0 0 £ $
—
0000 j Y i,
010 01 ) 10 101 0 Output to HBM
sm(QK")V:Nxd
Inner Loop
Computation Computation Self-attention
without operator fusion with operator fusion computed with tiling
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FlashAttention: Fast and Memory-Efficient Exact Attention with I0-Awareness

* FlashAttention [Dao et al., 2022]

* Challenge 1: Computing softmax without full input access
* Solution: Decompose large softmax into smaller ones by scaling

* With scaling, exact softmax results can be obtained after computing each block
independently

softmax([A;,A,]) = [a softmax(A,), p softmax(A,)]

Vi

softmax([A;, A,]) [V
2

] = a softmax(A,) V| + f softmax(A,) V,
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FlashAttention: Fast and Memory-Efficient Exact Attention with I0-Awareness

* FlashAttention [Dao et al., 2022]

* Challenge 1: Computing softmax without full input access
* Solution: Decompose large softmax into smaller ones by scaling

* With scaling, exact softmax results can be obtained after computing each block
independently

softmax([A;,A,]) = [a softmax(A,), p softmax(A,)]

%
softmax([A;, A,]) [Vj = a softmax(4,) V, + f softmax(A,) V,

* Challenge 2: Backward pass requires intermediate values
* The attention matrix have to be saved, requiring extensive HBM access
e Solution: Recompute the attention matrix during the backward pass
e This approach is faster despite requiring more FLOPs, thanks to reduced HBM access

Attention Standard FLASHATTENTION
GFLOPs 66.6 75.2
HBM R/W (GB) 40.3 4.4
Runtime (ms) 41.7 7.3
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FlashAttention: Fast and Memory-Efficient Exact Attention with I0-Awareness

* FlashAttention [Dao et al., 2022]

* FlashAttention provides actual wall-clock speedup of 2-4x

* Note: Many previous approximation-based approaches focus on reducing FLOPs, and do
not display wall-clock speedup

* Memory requirement becomes linear in sequence length

* Naive attention requires quadratic memory
* FlashAttention makes training & inference with longer inputs feasible

FlashAttention Speedup, A100 FlashAttention Memory Reduction

B Dropout + Masking
mm Masking Only
B No Masking, No Dropout

N
o
L

-
w
1

w
1

Speedup (X times faster)
N

Memory Reduction (X times less)
—
o

o
I

128 256 512 1024 2048 4096 128 256 512 1024 2048 4096
Sequence Length Sequence Length
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FlashAttention: Fast and Memory-Efficient Exact Attention with I0-Awareness

* FlashAttention [Dao et al., 2022]

* FlashAttention also enables faster end-to-end training
* BERT training is 3.2x faster than Huggingface
* GPT-2 training is 2.0-3.5x faster

BERT Implementation | Training time (minutes)
Huggingface [91] 55.6+3.9
Nvidia MLPerf 1.1 [63] 200+1.5
FLASHATTENTION (ours) 174+ 14
Model implementations OpenWebText (ppl) Training time (speedup)
GPT-2 small - Huggingface (84| 18.2 9.5 days (1.0x)
GPT-2 small - Megatron-LM |[74] 18.2 4.7 days (2.0x)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5x)
GPT-2 medium - Huggingface [84] 14.2 21.0 days (1.0x)
GPT-2 medium - Megatron-LM [74] 14.3 11.5 days (1.8x)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)
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PagedAttention: Efficient Memory Management for LLM Serving

* PagedAttention (VLLM) [kwon et al., 2023]
* Motivation: Inefficient cache management in existing LLM deployment systems
e KV caching
* Auto-regressive language models generate 1 token at each forward step
* Naive forwarding recomputes the hidden states for previous tokens
* Identical computation is done multiple times, wasting compute
* Practical implementations cache the previous (key, value) pairs to reduce computation

Text: | love dogs and they are the best Prompt 1T 1 ————— » Attention —»
companions I've ever had <End> I-_Rt-aE?\e: :
VCche: . . _ _ _ _ _ ____
and —- they—7 are — <End> AR L o—] love dogs

| |
Layer2 : Layer2 : Layer2 --- Layer2 ([KCache:™ — — T T T T T T T T |
I T Wl
Layerl : Layerl : Layerl - - - Layerl Stepl i _’_!:’
A | 4 A 4 K Cache: |
Layer0 : Layer0 : LayerO - .- Layer0 LVCache: 2 —— === t_h;ll
t | t | t ot Stepn_ 77— — 1> CHERED >

| love dogs ' and - they |-> had [KCache: |
[BLHl  [BLH]  [BLH]  [BLH] LVCache: ____ = _____ |
Prompt Step 0 Step 1 Stepn KV Projection= had

(a) Auto-regressive Token Generation (b) KV Cache within Layer-0
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PagedAttention: Efficient Memory Management for LLM Serving

» PagedAttention (VLLM) [kwon et al., 2023]

* 3 sources of memory waste in typical KV cache management systems
* Reserved memory
* Pre-allocation of memory for future generation
* Memory is eventually used, but occupied even when it is not in use
* E.g. Early generation steps, where only a few KV cache is required

* Problematic for LLM serving systems, which handle multiple requests
simultaneously

1 slot for 2 slots future used ) 1 slot future used
generated token (reserved) External fragmentation (reserved)
— N ——— —
Four | score | and | seven | years | ago our |fathers [brought|iels (s BRS To - RS -1 Vo RIS (-1 V2 You | only | live | once (Il RN =X - IR -1 Vs
N Y g Y
7 KV cache states for 2038 slots never used 3 KV cache states for 507 slots never used
request A's prompt (internal fragmentation) request B’s prompt (Internal fragmentation)
Request A Request B
current iteration current iteration
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PagedAttention: Efficient Memory Management for LLM Serving

» PagedAttention (VLLM) [kwon et al., 2023]

* 3 sources of memory waste in typical KV cache management systems
* Reserved memory
* Pre-allocation of memory for future generation
* Memory is eventually used, but occupied even when it is not in use
* E.g. Early generation steps, where only a few KV cache is required

* Problematic for LLM serving systems, which handle multiple requests
simultaneously

* Internal fragmentation

e Caused by over-estimating potential maximum sequence lengths

* Memory is never used

* Amount of internal fragmentation is unknown until generation is complete
* External fragmentation

* Memory waste caused by the memory allocator

1 slot for 2 slots future used ) 1 slot future used
generated token (reserved) External fragmentation (reserved)
M ——— —
Four | score | and | seven | years | ago our |fathers [brought|iels (s BRS To - RS -1 Vo RIS (-1 V2 You | only | live | once (Il RN =X - IR -1 Vs
B ' 7 B Y Y
7 KV cache states for 2038 slots never used 3 KV cache states for 507 slots never used
request A's prompt (internal fragmentation) request B’s prompt (Internal fragmentation)
Request A Request B
current iteration current iteration
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PagedAttention: Efficient Memory Management for LLM Serving

» PagedAttention (VLLM) [kwon et al., 2023]
* |dea: Manage KV cache in non-contiguous memory
* |Inspired by virtual memory and paging in OS
* Manage KV cache in fixed-length blocks (in the figure, block size is 4)
* Logically, blocks are allocated in contiguous memory
* Physically, blocks are allocated in non-contiguous memory
* Translation from logical index to physical index is performed using a block table

Physical KV blocks
(on GPU DRAM)

Request | Prompt: “Four score and seven years ago our” Block 0

A Outputs: “fathers” — “brought’ — ... [0) 10) [0) @?
Block 1 | years | ago our | fathers

Logical KV blocks Block 2

® ® ® ® Block Table

Block 0 | Four | score and seven ; Block 3 <grought
Physical block #filled

® [©) @ @ number
Block 1 | years | ago our | fathers \(K 7 N Block 4

% ®1 @3 - 4@
Block 2 | brought N mer o Block 5
Block 3 = — Block 6

Block 7 G)Four G)score ®and (Dseven

Block 8
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PagedAttention: Efficient Memory Management for LLM Serving

» PagedAttention (VLLM) [kwon et al., 2023]
* ldea: Manage KV cache in non-contiguous memory

* The proposed design has several benefits
* (1) Near-zero memory waste in KV cache memory

KV cache usage (%)

Algorithmic Intelligence Lab

100

80 A

60 -

40 A

20

I Token states ' Reservation B Internal frag. E(x(t)(—:;Lnearlsfrag.

8.9

Orca Orca Orca vLLM
(Max) (Pow?2) (Oracle)
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PagedAttention: Efficient Memory Management for LLM Serving

» PagedAttention (VLLM) [kwon et al., 2023]
* |dea: Manage KV cache in non-contiguous memory

* The proposed design has several benefits
* (1) Near-zero memory waste in KV cache memory
* (2) Flexible sharing of KV cache enables further memory saving
* Parallel sampling (multiple outputs are generated from a single input)

Physical KV blocks

Block 0
Ref count: 2 — 1
Sample Sample
A1 4 Block years | ago our |mothers A2

Logical KV blocks { Block(2 [Copy-on-write Logical KV blocks
Block 0 | Four | score | and | seven Block 3| years | ago our | fathers| \BlockO | Four | score | and | seven
Block 1 | years ago our |fathers \ Block 4 Block 1 | years ago our |mothers
Block 5
Block 6

Block 7 | Four | score and seven

Block 8
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PagedAttention: Efficient Memory Management for LLM Serving

» PagedAttention (VLLM) [kwon et al., 2023]
* |dea: Manage KV cache in non-contiguous memory

* The proposed design has several benefits
* (1) Near-zero memory waste in KV cache memory

* (2) Flexible sharing of KV cache enables further memory saving

* Parallel sampling (multiple outputs are generated from a single input)

e Beam search

Beam candidate 0

Beam candidate 1

Beam candidate 2

Beam candidate 3
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Block 0
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y

Block 1

Block 3

\ 4

y
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— X
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X
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PagedAttention: Efficient Memory Management for LLM Serving

» PagedAttention (VLLM) [kwon et al., 2023]
* |dea: Manage KV cache in non-contiguous memory
* The proposed design has several benefits
* (1) Near-zero memory waste in KV cache memory
* (2) Flexible sharing of KV cache enables further memory saving
* Parallel sampling (multiple outputs are generated from a single input)
* Beam search
* Shared prefix (i.e. system prompt)

Sequence A Sequence B
Prompt Prompt
Translate English to French: Translate English to French:
_ ‘sea otter” => “loutre de mer” ‘sea otter” => “loutre de mer”
Shared prefix | «ennermint” => “menthe poivrée” “oeppermint” => “menthe poivrée”
“plush girafe” => “girafe en peluche” ‘plush girafe” => “girafe en peluche”
Task input | “cheese” => 9 love you” =>
Sequence A Sequence B
LLM output LLM output
Task output | “fromage” ‘Je tamie”

Algorithmic Intelligence Lab
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PagedAttention: Efficient Memory Management for LLM Serving

» PagedAttention (VLLM) [kwon et al., 2023]
* PagedAttention improves throughput by effectively minimizing memory waste
* Throughput is improved by 2-4x compared to the previous state-of-the-art systems

> —— FasterTransformer —— Orca (Max) Orca (Pow?2) —=— Orca (Oracle) —e— VLLM
(=)
g 10 1.0 1.0
O ~
5§
s 051 0.5 0.51
=) ) N
£~ 0.0 . : 0.0 " - - : - 0.0 - : : : -
<} 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 00 05 10 15 20 25
= Request rate (req/s) Request rate (req/s) Request rate (req/s)

(a) OPT-13B, 1 GPU, ShareGPT (b) OPT-66B, 4 GPUs, ShareGPT (c) OPT-175B, 8 GPUs, ShareGPT
>
Q
c
o 1.0 1.0 1.0
O ~
S g
.qu)f_,é 0.5 0.5 0.5+
© G
£~ 0.0 ! 0.0 e - - 0.0 : : - -
s 10 20 30 0 5 10 15 20 0 5 10 15 20
= Request rate (req/s) Request rate (req/s) Request rate (req/s)

(d) OPT-13B, 1 GPU, Alpaca (e) OPT-66B, 4 GPUs, Alpaca (f) OPT-175B, 8 GPUs, Alpaca
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Overview

Part 1. Basics
e RNN to LSTM

e Sequence-to-sequence Model
* Attention-based NLP Model

Part 2. Transformers and Large Language Models
* Transformer (self-attention)
e Pre-training of Transformers and Language Models

Part 3. Advanced Topics
e Techniques for improving efficiency
* Handling long inputs with Transformers

Part 4. Summary
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Handling long context with Transformers

 Common limitations of current LLMs is the limited context length

e E.g. Llama-2 can take maximum 4K tokens as inputs

* Limits the ability to handle very long sequences

* Book comprehension

* Long multi-turn chat understanding

* Repository-level code understanding

LATEST MODEL

gpt-4

gpt-4-0613

gpt-4-32k

gpt-4-32k-0613

Algorithmic Intelligence Lab

DESCRIPTION

More capable than any GPT-3.5
model, able to do more complex
tasks, and optimized for chat. Will
be updated with our latest model
iteration 2 weeks after it is released.

Snapshot of gpt -4 from June 13th
2023 with function calling data.
Unlike gpt-4, this model will not
receive updates, and will be
deprecated 3 months after a new
version is released.

Same capabilities as the standard
gpt-4 mode but with 4x the
context length. Will be updated with
our latest model iteration.

Snapshot of gpt-4-32 from June
13th 2023. Unlike gpt-4-32k, this
model will not receive updates, and
will be deprecated 3 months after a
new version is released.

MAX TOKENS

8,192 tokens

8,192 tokens

32,768 tokens|

32,768 tokens|

TRAINING DATA

Up to Sep 2021

Up to Sep 2021

Up to Sep 2021

Up to Sep 2021
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Handling long context with Transformers

3 lines of research for long-context language models:

Recurrence-based methods
* Segments long inputs, and reuses the preceding segment’s hidden states
* The hidden states serve as ‘memory’ for the current segment

Retrieval-based methods
* Encodes prior sequences as (key, value) pairs
* Uses a retrieval algorithm to extract previously encoded information

RoPE scaling methods
* Applicable to language models utilizing rotary position embeddings (RoPE)

* Interpolates the position indices, extending the context limit of existing LLMs with
minimal or no additional training
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Handling long context with Transformers

* 3lines of research for long-context language models:

* Recurrence-based methods
e Segments long inputs, and reuses the preceding segment’s hidden states
* The hidden states serve as ‘memory’ for the current segment
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Recurrence-based Methods: Transformer-XL

* Transformer-XL [pai et al., 2019]
* |dea: Split long context into segments, and attend to the previous segment
* Largest possible dependency length becomes O(network depth x segment length)
* With sophisticated implementation, computation becomes O(input length)

Segment 1 Segment 2 Limited Context Limited Context Limited Context

(a) Train phase. (b) Evaluation phase.
p

Figure 1: Tllustration of the vanilla model with a segment length 4.

Fixed (No Grad) New Segment Extended Context

(a) Training phase. (b) Evaluation phase.
gp

Figure 2: Illustration of the Transformer-XL model with a segment length 4.
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Recurrence-based Methods: Recurrent Memory Transformer

* Recurrent Memory Transformer (RMT) [Bulatov et al., 2022]
* ldea: Transformer with token-level memory storage & segment-level recurrence
* Recurrently compress information in tokens, instead of external memory
* Naturally, computation increases linearly with the input length
* Like RNNs, RMT is trained with BPTT (backpropagation through time)

[ Transformer Layers ]

i = .

1 mem ': segment 1 ! 5 ! mem E: segment 2 :
L} 1 1 1

sjuaTpeib
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Recurrence-based Methods: Recurrent Memory Transformer

e Recurrent Memory Transformer (RMT) [Bulatov et al., 2022]
* ldea: Transformer with token-level memory storage & segment-level recurrence

e Comparison to Transformer-XL
* Unlimited effective context length

* No memory overhead for maintaining state cache

Transformer-XL Recurrent Memory Transformer
e | imeadl o wwiteS{meadi | wmite JEd] NS
il L I i i i I i .
. J A )
L s Hl g $ I $ I $i .
I I S-S | By [ I ¢ | $
/ N N ~N
y ” L J \
__________ LTy NN\ TNV SN TSN IOV © UV 2 OUUUSURUUUUUA ¢ JMUUSSUNOK 00 [PUOURUUUSO  Z—
i segment 1 & segment 2 & i . segment 3 i iread: segment 1 writel Ljread: segment 2 write Ljiread: segment 3 write:
Transformer layer D cizizgtiiztzz <= EZE?Ziive Forward pass e Gradients = Stop Gradient -
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Recurrence-based Methods: Recurrent Memory Transformer

* Recurrent Memory Transformer (RMT) [Bulatov et al., 2022]
* RMT outperforms Transformer-XL in algorithmic tasks and language modeling

e Algorithmic tasks:

1.0

0.8

0.6

0.4

0.2

* Associative retrieval: Key-value retrieval task

Copy .
L0 = O =
0.8
>
o
© 0.6
3
v
v}
< 0.4
A
0.2
—® ®
1 3 6 9

Number of segments

Reverse

s

A

2
Number

O Baseline
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® ®
4 6
of segments

/\~ Transformer-XL

(a)

1.0

0.8

0.6

0.4

0.2

~#— Memory Transformer

Associative retrieval

X

2 3 4
Number of segments
(c)

- RMT BPTT-0

* Copy/Reverse: Replicating & reversing the input sequence

Table 2: Language modeling on WikiText-103. Av-
erage perplexity for the best performed variations of
RMT models reported (see full results in Appendix A.5).
Underlined values show Tr-XL and RMT models with
close results. RMT models with smaller memory sizes
achieve similar scores to Tr-XL models with larger mem-
ory. Combination of cache with recurrent memory (Tr-
XL + RMT) shows the best performance.

MODEL MEMORY  SEGMENT LEN  PPL.4gpp
TR-XL (PAPER) 150 150 24.0
BASELINE 0 150 29.95 +0.15
MEMTR 10 150 29.63 £ 0.06
TR-XL (OURS) 150 150 24.12 +0.05
TRrR-XL 25 150 25.57 £ 0.02
TRrR-XL 75 150 24.68 +0.01
RMT BPTT-3 10 150 25.04 +0.07
RMT BPTT-2 25 150 24.85 +0.31
TR-XL + RMT 7545 150 24.47 £+ 0.05
TR-XL + RMT 150+10 150 23.99 +0.09
BASELINE 0 50 39.05 £+ 0.01
TRrR-XL 100 50 25.66 + 0.01
Tr-XL 50 50 26.54 +0.01
TR-XL 25 50 27.57 £ 0.09
TR-XL 10 50 28.98 + 0.11
RMT BPTT-1 1 50 28.71 +0.03
RMT BPTT-3 10 50 26.37 +0.01
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Recurrence-based Methods: Recurrent Memory Transformer

* Recurrent Memory Transformer (RMT) [Bulatov et al., 2022]
* BERT finetuned with RMT can extrapolate to long inputs over 1M tokens

* Evaluated with synthetic, memory-intensive tasks
* Construct long input, with a given fact hidden inside irrelevant text
* Ask question at the end of the input (6-way classification task)

m Memorize A

e by e <

1| Fact Noise ': Noise ' .1|  Noise Q |

Detect & memorize m A
PN N

: Noise ..+| Fact Noise i...i| Noise Q |

 mem SR e A

/| Factl Noise ...1| Fact2 Noise i...\|  Noise Q |

Algorithmic Intelligence Lab

Fact: Daniel went back to the hallway.
Question: Where is Daniel?
Answer: hallway

Factl: The hallway is east of the bathroom.
Fact2: The bedroom is west of the bathroom.
Question: What is the bathroom east of?
Answer: bedroom
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Recurrence-based Methods: Recurrent Memory Transformer

* Recurrent Memory Transformer (RMT) [Bulatov et al., 2022]

* BERT finetuned with RMT can extrapolate to long inputs over 1M tokens
* Evaluated with synthetic, memory-intensive tasks

* Construct long input, with a given fact hidden inside irrelevant text
* Ask question at the end of the input (6-way classification task)

Memory retrieval accuracy

GPT-4 ColLT5
100 ® o o __ P
‘I . ?“* —————————— O e °
&:: - it @ ___
o° 99 S: T e e L el .
A ik SR
- I R e O e
______________ N
80/
20,
g>)" --e-- memorize
E --o-- detect&memorize
8 - --e-- reasoning
é() 6]45 512 1024 2048 < segments - 4096
32,000 256,000 512,000 1,024,000 2,048,000
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Input size, tokens

3643.9

GPU memory, MB
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Handling long context with Transformers

* 3lines of research for long-context language models:

* Retrieval-based methods
* Encodes prior sequences as (key, value) pairs
* Uses a retrieval algorithm to extract previously encoded information
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Retrieval-based Methods

* Retrieval-based Methods

* |Instead of using the preceding segment’s hidden states, store all previous states

* When processing the current segment, retrieve the relevant information
* Enables random access to previous inputs

Database

keys and values that were previously
computed on prior training steps

Algorithmic Intelligence Lab

Store

¢.
=

Retrieve

Model

Retrieve exact values even
from the distant context
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Retrieval-based Methods: Memorizing Transformers

* Memorizing Transformers [wu et al., 2022]
* |Idea: Introduce a kNN-augmented attention layer
* All previous (key, value) pairs are stored in an external memory
* For each token, compute the hidden states in 2 different ways
* (1) Attending to the local context, as in usual self-attention
* (2) Attending to the top-k tokens in the external memory
» Use current token’s query, and external memory’s keys/values

output predictions | the

cat in | |the| |hat

to

A 4 &2 x & a

softmax

[

local attention + FFN

l

A

%444

A

4 & a4 a

A

k nearest neighbor lookup.

) kNN attention
J q

kNN & local attention + FFN

Algorithmic Intelligence Lau

A A A a A & 4 & 4 a
external memory: cached (key, value) pairs —A4444€C  local context
. ... more layers ...
Will be added to
external memory 4 L2 4 42 4
after the current
training step. A A A A4 A a
local attention + FFN J
embedding layer J
A 4 42 & a

input tokens |said

the| |cat in | |the

hat
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Retrieval-based Methods: Memorizing Transformers

* Memorizing Transformers [wu et al., 2022]
* |Idea: Introduce a kNN-augmented attention layer
* For each token, compute the hidden states in 2 different ways
* Then, combine the 2 results using a learned gate
* bg: Bias (learned per-head scalar parameter)
* Vm: Result of attending to external memory

* Vc: Result of attending to local context
* Va: Final output of the kNN-augmented attention layer

gza(bg)
Vo=Vn0g+V.0(1-yg)
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Retrieval-based Methods: Memorizing Transformers

* Memorizing Transformers [wu et al., 2022]

* |Idea: Introduce a kNN-augmented attention layer

* Experiments

* Shows high performance on 5 language modeling benchmarks

Context Memory XL cache arXiv PG19 C4(4K+) GitHub Isabelle
512 None None 3.29 13.71 17.20 3.05 3.09
2048 None None 2.69 1237 14.81 2.22 2.39
512 None 512 2.67 1234  15.38 2.26 2.46
2048 None 2048 242 11.88 14.03 2.10 2.16
512 1536 None 2.61 1250 1497 2.20 2.33
512 8192 None 249 1229 1442 2.09 2.19
512 8192 512 237 1193 14.04 2.03 2.08
512 65K 512 231 11.62 14.04 1.87 2.06
2048 8192 2048 233 11.84 13.80 1.98 2.06
2048 65K 2048 226 11.37 13.64 1.80 1.99

Algorithmic Intelligence Lab
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Retrieval-based Methods: Memorizing Transformers

* Memorizing Transformers [wu et al., 2022]
* |Idea: Introduce a kNN-augmented attention layer

* Experiments

* Shows high performance on 5 language modeling benchmarks

* Regular Transformers can be further fine-tuned to utilize memory

Algorithmic Intelligence Lab

2.8
= = Memory Fine-tuning
© — Transformer
E 2.6 = Memorizing Transformer
.%
L
224 T\ T TTTTTTTTTTTTTTMWOYTTTTITTTT
X
o
o
)
022 TN

0 300K 500K 600K

Training steps
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Retrieval-based Methods: LongMem

* LongMem [wang et al., 2023]

* Motivation: Memory transformer suffers from memory staleness during training
* Cached database suffers from distribution shift due to parameter updates
* This problem comes from coupled memory design
* Asingle model is used for encoding and fusing memory
* LongMem proposes a decoupled memory design
* Encoding and memory fusion takes place in a separate network

Cached Memory Bank with Key, Value Pairs

____________________________________ —Long-Memory Retrieval—> KeR;;r;er:/ : (\j,;:t:s
R S S L L A |
T T T T Search
_Attn Keys  Attn Keys | Attn Keys r— _—~| ———————————————— 3 " Fusi
‘and Values' andValues: -+  and Values' ~ Attention Query emory Fusion
(SegA) = (SegB)  (Seg2) - of Current Inputs
. Y
Large Language Model Residual Residual SideNet
(Frozen) & Connections (Trainable) A
A B [ C D | . .Y Z]|

Long Sequence Inputs
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Retrieval-based Methods: LongMem

* LongMem [wang et al., 2023]

* Proposed decoupled memory design

e Use a frozen LLM for encoding

* Train another network (SideNet) to perform memory fusion and language generation
* The benefits of such design includes:

» Utilization of strong encoding capability of a frozen LLM

» Effectively bypassing the memory staleness challenge

Cached Memory Bank with Key, Value Pairs

___________________________________ —Long-Memory Retrieval—> KeR;;r;er:/ : ‘\j,:}:t:s
e 0o no_ R S a2 |
T T T T Search
_Attn Keys  Attn Keys | Attn Keys r— _—~| ———————————————— 3 " Fusi
‘and Values' andValues: -+  and Values' ~ Attention Query emory Fusion
(SegA) = (SegB) . (Seg2) - of Current Inputs
. Y
Large Language Model Residual Residual SideNet
(Frozen) & Connections (Trainable) A
A B [ C (D | . | Y Z]

Long Sequence Inputs
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Retrieval-based Methods: LongMem

* LongMem [wang et al., 2023]

* LongMem shows improved language modeling performance
* Note: MemTRM refers to Memory Transformers

Model In-Context In-Memory PG-22 ArXiv
Len. Len. 5Kk-10k  10k-100k 100k-500k S500k-1IM >1IM

GPT-2* 1k N/A 22.78 24.39 24.12 24.97 18.07 | 11.05

MemTRM 1k 65K 21.77 23.56 23.23 24.16 17.39 | 10.81

LONGMEM 1k 65k | 21.29 23.01 22.55 23.35 16.71 | 10.05

* LongMem also shows improved performance on ChapterBreak benchmark
* |dentifying true chapter beginnings among false ones

In-Context In-Memory ChapterBreak,,3
Model #Params Len. Len. ctx-4dk  ctx-6k ctx-8k
GPT-2-XL' [RWCT19] 1.5B 1K N/A 24% 24% 24%
GPT-3' [BMR "20] 175B 2K N/A 28% 28% 28%
LocalTRM' [RSVG21] 516M 8K N/A 24% 24% 24%
RoutTRM' [RSVG21] 490M 8K N/A 25% 24% 24%
Bigbird' [ZGD™20] 128M 4K N/A 26% 26% 26%
GPT-2* 407M 1K N/A 184% 184% 18.4%
MemTRM 407M 1K 00 283% 28.7% 28.7%
LONGMEM 558M 1K 00 37.7% 39.4% 40.5%
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Retrieval-based Methods: Unlimiformer

e Unlimiformer [Bertsch et al., 2023]
* TL;DR: Retrieval-based language model that does not require fine-tuning

e Basic approach is similar to Memory Transformers
* Separately encode multiple segments, and store the hidden states in external memory
* Use kNN search to retrieve relevant tokens

Index of one long input Retrieved
+ + + hidden states
Encoder kNN Search f

Decoder Layer

Encode Chunﬁ_j T M query
c— Cross attention

A

Input: ' a b c d e f
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Retrieval-based Methods: Unlimiformer

e Unlimiformer [Bertsch et al., 2023]

* Unlimiformer applies knn retrieval on cross-attention
* Retrieved tokens serve as usual encoder outputs

* Memory fusion does not require gating, thus introducing no additional parameter

* This allows Unlimiformer to work without fine-tuning

Index of one long input Retrieved
+ + * hidden states
Encoder kNN Search ¢

Encodechunﬁ_j T L query
\

Input: ' a b c d e f
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Decoder Layer

Cross attention

A
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Retrieval-based Methods: Unlimiformer

e Unlimiformer [Bertsch et al., 2023]
e Attention reformulation

* Originally, attention keys & values have to be stored for every layer/attention head

* Memory requirement is further reduced through attention reformulation

* Only a single vector has to be stored for every token

* This allows memory retrieval to take place at every layer
* Note: Memory Transformers apply retrieval on a single layer

QK*

Algorithmic Intelligence Lab

(haWq) (ReWi) '
(deq) ng_heT
(deqWI;r) heT

Q/K: Query/key vector

Wq/WEk: layer- & head-specific linear layers
he: encoder hidden state

hd: decoder hidden state
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Retrieval-based Methods: Unlimiformer

e Unlimiformer [Bertsch et al., 2023]

e Unlimiformer extends the context limit without fine-tuning

e Evaluated on summarization benchmarks

Base model Training method ROUGE 1/2/L/BERTScore
GovReport SummScreen
BARTp;se Standard finetuning 48.7/19.2/228/64.3 29.7/6.2/17.7/56.3
BARTy,5c +test SLED (Ivgi et al., 2022) 45.8/16.1/20.2/62.7 27.5/5.5/16.7/55.9
BARTy,¢c +test Unlimiformer 49.7/19.6/22.0/64.8 309/6.5/182/57.5
BARTpase +early stop w/ Unlimiformer  51.0/20.5/21.5/65.1 32.1/6.8/18.6/57.6

* Performance is further improved with fine-tuning

Train chunked

BARTpase 46.2/17.8/21.7/63.3 28.1/5.6/17.0/55.6
BARTy ;5 +test Unlimiformer 53.4/225/225/66.0 29.3/6.6/17.6/57.0
PRIMERA Standard finetuning 55.1/239/2597670 323/7.1/18.3/57:1
PRIMERA +test Unlimiformer 56.5/24.8/26.3/67.7 33.3/7.7/19.1/57.6

Algorithmic Intelligence Lab
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Retrieval-based Methods: Unlimiformer

e Unlimiformer [Bertsch et al., 2023]

* Unlimiformer can handle extremely long (book-level) context
* Evaluated on BookSum (average input length ~143k tokens)

Base model Training method ROUGE 1/2/L EntMent
BARTy < Hierarchical (KryScinski et al., 2021) 30.0/6.0/11.0 -
BARTp:se Standard finetuning 36.4/7.6/15.3 10.0
BARTpAse +test Unlimiformer 355/7.7/154  21.9
BARTLase +early stop w/ Unlimiformer 355/7.7/154 21.9
BART, e Memorizing Transformers 35.6/6.4/14.6 10.1
BARTy < Unlimiformer (random-encoded training) 37.3/6.7/15.2  20.8
BARTLase Unlimiformer (alternating training) 36.7/7.3/15.5 20.3
PRIMERA Standard finetuning 38.6/7.2/15.6 11.6
PRIMERA +test Unlimiformer 38.3/7.5/159 18.9
PRIMERA +early stop w/ Unlimiformer 395/73/158 222
PRIMERA Unlimiformer (retrieval training) 379/82/163 255
PRIMERA Unlimiformer (random-encoded training) 39.5/7.1/15.9 19.7

Algorithmic Intelligence Lab
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Handling long context with Transformers

* 3lines of research for long-context language models:

* ROPE scaling methods
* Applicable to language models utilizing rotary position embeddings (RoPE)

* Interpolates the position indices, extending the context limit of existing LLMs with
minimal or no additional training
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RoPE Scaling Methods

* Rotary Position Embeddings (ROPE) [su et al., 2021]

* |dea: Rotate the hidden states according to the token’s position
* View a pair of hidden state values as a complex number
* Rotate each pair by a different frequency 6,
* Captures the relative positional information between each token
* One of the most widely-used positional embeddings for modern LLMs
* Including Llama, GPT-NeoX, and PaLM

1 m
X2 \
[ 1] X2
(X1, X3) D:
1 (x'3, x'5)
X1 X1
m
d=2
enhanced ([0 ++- LI 1 [ R e e
Transformer [_[ [ [ |- [T [ 1] 2 |_|_|_|_|'"|_I_l_|_|
wit (I -+ (0 3 —, [ro--1m
Rotary [ [ []--- [ [ [N a Ll Ll e L LT ]
Position [T [ [ ]--- [ [T} LI LT -l LT T]
Embedding [T ++~ [T I0I0 6 9 R W 8
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RoPE Scaling Methods

* Rotary Position Embeddings (ROPE) [su et al., 2021]
* |dea: Rotate the hidden states according to the token’s position
* Mathematical formulation of RoPE is given as follows
* m: position id
* W: linear projection matrix (query, key)
* xm: hidden states
* d: hidden state dimension

(cos m@; —sinmb; 0 0 0 0 \
sinmf;  cosmby 0 0 0 0
B 0 0 cosmby —sinmbs 0 0
Fw (Xm,m, 0;) = 0 0 sinmfs cosmby, - -- 0 0 W
0 0 0 0 o cosmbg s —sinmby o
\ 0 0 0 0 <+ sinmbg;,  cosmbg)o

f; = 10000~20=1/d j € [1,2,---,d/2]
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RoPE Scaling Methods: Linear Interpolation

* Positional Interpolation (i.e. linear interpolation) [chen et al., 2023]
* Motivation: Naively finetuning LLMs for longer context shows limited success
* Primarily due to introduction of new position ids, unseen while training
* lIdea: Instead of extrapolating, interpolate the position ids
* L: Original context length, L': Extended context length

f{7V (Xm7m7 91) - fW (X’ma %ma 02)

0.5

RoPE

00 Pret-trained range seen Range

-0.5

2048 4096

Normal Extrapolation

0.5

RoPE

0.0 Prettrained range

-0.5

0 - ) 4096
Position Interpolation Position

f'(x, m) = f(x, m/2)
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RoPE Scaling Methods: Linear Interpolation

* Positional Interpolation (i.e. linear interpolation) [chen et al., 2023]

* Interpolation effectively extends Llama context length with minimal training

* Fine-tuning possible with ~1000 steps

Model

Evaluation Context Window Size

Size Context Window Method 2048 4096 8192 16384 32768
7B 2048 None 720 >10% >103 >10® > 103
7B 8192 FT 7.21 7.34 7.69 - -
7B 8192 P1 7.13 6.96 6.95 - -
7B 16384 P1 7.11 6.93 6.82 6.83 -
7B 32768 PI 7.23 7.04 6.91 6.80 6.77
13B 2048 None 6.59 - - - -
13B 8192 FT 6.56 6.57 6.69 - -
13B 8192 P1 6.55 6.42 6.42 - -
13B 16384 P1 6.56 6.42 6.31 6.32 -
13B 32768 P1 6.54 6.40 6.28 6.18 6.09
33B 2048 None 5.82 - - - -
33B 8192 FT 5.88 5.99 6.21 - -
33B 8192 PI 5.82 5.69 5.71 - -
33B 16384 PI 5.87 5.74 5.67 5.68 -
65B 2048 None 5.49 - - - -
65B 8192 P1 542 5.32 5.37 - -
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RoPE Scaling Methods: NTK-aware Scaling

* NTK-aware Scaling [bloc97, 2023]

* Motivation: Linear interpolation sacrifices high-frequency information
* Position embeddings of adjacent tokens become indistinguishable
* Such inspiration comes from the neural tangent kernel (NTK) theory

* Asimple solution is to scale each dimension differently
* Position interpolation scales every dimension uniformly by a factor s (=L/L)
* Scale high frequencies more, and low frequencies less
* This work uses a simple base scaling to implement this

f; = 10000~20—1/d j € [1,2,--- ,d/2]

¥

>—2(¢—1)/d

o — (10000><sd% de,2,---,d/2

base is scaled according to
the scaling factors
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RoPE Scaling Methods: NTK-aware Scaling

* NTK-aware Scaling [bloc97, 2023]
* NTK-aware scaling extends the context limit without any finetuning
* Llama-7b model maintains low perplexity for longer context
* This scaling method was used for training Code Llama, which has 100k context limit

8.0 . T T
| —— scale = 1 (LLaMA 7b 2048, no finetuning)

=== scale = 4 (previous method, no finetuning)
7.5 1
1

—— a = 8 (this method, no finetuning)

7.0 1

6.5 1

5.5 1

5.0 T

4.5 A

4-0 T T T T T T T
0 2000 4000 6000 8000 10000 12000

Context length

previous method: linear scaling
this method: NTK-aware scaling
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ROPE Scaling Methods: NTK-by-parts Scaling

* NTK-by-parts Scaling [bloc97, 2023]
* Investigates deeper into the different characteristics of each dimension

* Key idea is to consider the RoPE embedding wavelength
* The number of tokens needed for the RoPE embedding to perform a full rotation (2m).
* Wavelength for dimension i is defined as follows

A = 28 =271 x 100002~ 1)/d
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ROPE Scaling Methods: NTK-by-parts Scaling

* NTK-by-parts Scaling [bloc97, 2023]
* Investigates deeper into the different characteristics of each dimension
* Dimensions with A > L (L: model’s original context limit)
* The embedding does not perform a full rotation
* Position embeddings are unique
* Intuition: The absolute positional information remains intact
* Dimensions with A <<L
* The embedding rotates multiple times within the context limit
* Position embeddings are not unique
* Intuition: Only relative positional information can be modeled
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ROPE Scaling Methods: NTK-by-parts Scaling

* NTK-by-parts Scaling [bloc97, 2023]

* ldea: Interpolate only the dimensions with long wavelengths
e L: Original context length, L': Extended context length
* a, B are hyperparameters

No interpolation rO, if L/)\Z <
0; = (1 — ) %9i+7i(91 vi = 4 1, if L/X\; >0
: : : L/)\;i—« .
Linear interpolation \ “B—a otherwise

* Dimensions with A > L
* These dimensions model the global position information
e Use linear interpolation
* Dimensions with A <<L
* These dimensions model the relative position information
* Use no interpolation
* Dimensions in between
e Use a bit of both methods, by mixing them with a ramp function
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RoPE Scaling Methods: NTK-by-parts Scaling

* NTK-by-parts Scaling [bloc97, 2023]
* The ‘by-parts’ modification further improves NTK-based scaling

5.2

5.0 A

4.8 A

PPL

4.6

4.4 -

4.2
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ROPE Scaling Methods: YaRN

* YaRN (Yet another RoPE ExtensioN method) [peng et al., 2023]
* TL;DR: NTK-by-parts with temperature scaling
* Remark: NTK and NTK-by-parts scaling were also formally introduced in this paper
* NTK-by-parts scaling empirically smooths the attention weights
* Scaling the attention weights by a factor of t helps, making the weights ‘spikier’

e Empirically, the following formula works well for Llama and Llama-2 models

1
\/; =0.1ln(s) +1
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ROPE Scaling Methods: YaRN

* YaRN (Yet another RoPE ExtensioN method) [peng et al., 2023]

* Fine-tuning with YaRN is efficient and effective
* Training data consists of 400M tokens (0.1% of original training corpus)

* Training done with only 400 steps
* YaRN extends the context limit of Llama-2 to 64k/128k tokens

* Original model has a limit of 4k tokens

Extension Trained Context Evaluation Context Window Size

Method Tokens Window 2048 4096 6144 8192 10240

Pl (s =2) 1B 8k 392 351 351 3.34 8.07

NTK (6 = 20k) 1B 8k 420 3.75 374 3.59 6.24

YaRN (s = 2) 400M 8k 391 350 351 3.35 6.04

Model Model Context Extension Evaluation Context Window Size

Size Name Window Method 8192 32768 65536 98304 131072
7B Together 32k PI 3.50 264 >102 >10% > 104
7B Code Llama 100k NTK 3.71 2.74 2.55 2.54 2.71
7B YaRN (s = 16) 64k  YaRN 3.51 265 242 >10' > 10!
7B  YaRN (s = 32) 128k YaRN 3.56 2.70 2.45 2.36 2.37
13B Code Llama 100k NTK 3.54 2.63 2.41 2.37 2.54
13B  YaRN (s = 16) 64k  YaRN 3.25 250 229 >10' > 10!
13B  YaRN (s = 32) 128k YaRN 3.29 2.53 2.31 2.23 2.24
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ROPE Scaling Methods: YaRN

* YaRN (Yet another RoPE ExtensioN method) [peng et al., 2023]
* YaRN-finetuned models show minimal performance degradation on short inputs

Model

Model

Context

Extension

Size Name Window  Method ARC-c Hellaswag MMLU TruthfulQA

7B Llama 2 4k None 53.1 77.8 43.8 39.0

7B Together 32k PI 47.6 76.1 43.3 39.2

7B Code Llama 100k NTK 39.9 60.8 31.1 37.8

7B YaRN (s = 16) 64k YaRN 52.3 78.8 42.5 38.2

7B YaRN (s = 32) 128k YaRN 52.1 78.4 41.7 37.3
13B Llama 2 4k None 59.4 82.1 55.8 37.4
13B Code Llama 100k NTK 40.9 63.4 32.8 43.8
13B  YaRN (s = 16) 64k YaRN 58.1 82.3 52.8 37.8
13B  YaRN (s = 32) 128k YaRN 58.0 82.2 51.9 37.3
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Overview

Part 1. Basics

* RNN to LSTM
e Sequence-to-sequence Model
* Attention-based NLP Model

Part 2. Transformers and Large Language Models
* Transformer (self-attention)
e Pre-training of Transformers and Language Models

Part 3. Advanced Topics
e Techniques for improving efficiency
* Handling long inputs with Transformers

Part 4. Summary
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Summary

For language, specified model which can capture temporal dependency is a key

Previously, RNN architectures have developed in a way that
* Can better model long-term dependency & Robust to vanishing gradient problems
* Seq2seq model with attention makes breakthroughs in machine translation
* |t leads to the model only composed with attention — Transformer

* Transformer significantly improves the performance on many sequential tasks

* With pre-training using large model and data, one can get 1) standard initialization
point for many NLP task (BERT) and 2) strong language generator (GPT)

e Various techniques are emerging to address the remaining practical challenges
* Improving efficiency in training and deployment
* Extending the language models to handle longer inputs
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