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Due to the existence of large-scale pretrained T2I models, many following works 
focused on extending the capability beyond image generation

 
From now on, we explore recent topics in leveraging T2I models for

• Image editing (or image-to-image translation) using text
• Personalization

• Controllable generation

• Virtual try-on
• Text-to-3D generation

Text-to-Image Diffusion Models

2



Algorithmic Intelligence Lab

Due to the existence of large-scale pretrained T2I models, many following works 
focused on extending the capability beyond image generation

 
From now on, we explore recent topics in leveraging T2I models for

• Image editing (or image-to-image translation) using text
• Personalization

• Controllable generation

• Virtual try-on
• Text-to-3D generation

Text-to-Image Diffusion Models

3



Algorithmic Intelligence Lab

Prompt-to-Prompt [Hertz et al., 2023]
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Prompt-to-Prompt Image Editing with Cross-Attention Control [Hertz et al., 2023]
Motivation: Image editing is challenging in text-driven synthesis diffusion models

• Small modification in text prompt leads to different outcome
• Prior works require a spatial mask for localized image editing

Contribution: Textual editing method via Prompt-to-Prompt manipulations
• Text-only editing (w/o spatial mask) based on cross-attention maps
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Prompt-to-Prompt [Hertz et al., 2023]
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Cross-attention maps: High-dim tensors binding pixels and tokens from the prompt
• Contain semantic relations which affects the generated images

Observation: Spatial layout and geometry depend on the cross-attention maps
• Pixels are more attracted to the words describing them (e.g., bear)

• How to utilize cross-attention maps for image editing?
• Inject the attention maps of original prompt to the modified prompt
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Prompt-to-Prompt [Hertz et al., 2023]
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Main Idea: Injecting cross-attention maps during the diffusion process
• Word swap: attention injection of the source image 

• E.g., “a big bicycle” → “a big car”

• Prompt refinement: attention injection over the common tokens
• E.g., “a castle” → “children drawing of a castle”

• Attention Re-weight: increase / decrease the attention weights of specified tokens
• E.g., more or less ”fluffy” on “a fluffy ball” 
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Prompt-to-Prompt [Hertz et al., 2023]
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Prompt-to-Prompt edits high-quality images with only text modification 

Prompt
Refinement

Word Swap

Attention
Re-weighting
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InstructPix2Pix [Brooks et al., 2023]
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InstructPix2Pix: Learning to Follow Image Editing Instructions [Brooks et al., 2023]
Motivation: Image editing with detailed prompt or extra information are cumbersome

• How about editing images with human instructions (e.g., make it big)?

Contribution: Fine-tune a generative model to follow human instructions
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InstructPix2Pix [Brooks et al., 2023]
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Main Idea: Treat instruction-based image editing as a supervised problem
• Dataset generation: Text editing instructions and images before/after the edit 

• Two large-scale models on different modalities: GPT-3 and Stable Diffusion
• GPT-3:  Fine-tuned to produce the instructions and the edited caption
• Stable Diffusion: Transform a pair of captions into a pair of images (w/ p2p)
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InstructPix2Pix [Brooks et al., 2023]
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Main Idea: Treat instruction-based image editing as a supervised problem
• Dataset generation: Text editing instructions and images before/after the edit 

• Two large-scale models on different modalities: GPT-3 and Stable Diffusion
• GPT-3:  Fine-tuned to produce the instructions and the edited caption
• Stable Diffusion: Transform a pair of captions into a pair of images (with PtP)

• Training: Train Stable diffusion on generated paired dataset

• Classifier-free guidance for two conditionings
• Leverage classifier-free guidance w.r.t.  input image 𝒄𝑰 and text instruction 𝒄𝑻 

: Text instruction conditioning: Input image conditioning
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InstructPix2Pix [Brooks et al., 2023]
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InstructPix2Pix performs many challenging edits 
• E.g., replacing object, changing seasons, replacing backgrounds and etc.

Trade-off in consistency

• Consistency with the input images (y-axis)

• Consistency with the edit (x-axis)

→ Higher image consistency
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Model Personalization
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Model Personalization: introduce new concept with a small set of user-provided         
examples and generate variations of the new concept
• Concept of interest encompasses object, faces, styles and other semantic elements

Main Challenge: Difficulty in introducing new concept into large scale models 
• Small set of data often results to overfitting or catastrophic forgetting
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Textual Inversion [Gal et al., 2023]
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An Image is Worth One Word: Personalizing Text-to-Image Generation using       
Textual Inversion [Gal et al., 2023]
Motivation: Difficulty in introducing new concepts into large scale models 

• Re-training requires huge amount of cost
• Fine-tuning on few examples leads to catastrophic forgetting

Contribution: Personalized text-to-image generation (given 3-5 images)
• Textual inversion: find new pseudo-words capturing visual semantics and details
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Main Idea: Find new pseudo-word in text embedding space (in LDMs)

• For pseudo-word 𝑺∗, directly optimize textual embedding 𝒗∗ of 𝑺∗

: Learnable new token embedding : Frozen LDM model

Textual Inversion [Gal et al., 2023]
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Textual Inversion [Gal et al., 2023]
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Textual Inversion enables capturing and recreating variations of an object
• Image synthesis guided by a caption lacks fine-grained detail (e.g., color patterns)
• Capture finer details and compose novel scenes w/ only a single token embedding 
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DreamBooth [Ruiz et al., 2023]
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DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven 
Generation [Ruiz et al., 2023]
Motivation: Lack the ability to synthesize same subjects in different context

• Output domain is limited; detailed textual description yield different appearances

Contribution: Personalization of text-to-image diffusion models (given 3-5 images)
• Fine-tuning method to implant the given subject into the model’s output domain
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Main Idea: Fine-tune text-to-image model w/ few images of a subject and class name
• Text prompt with unique identifier and the class name (e.g., a 𝑉  dog)

• Unique identifier: class-specific instance 
• Class name: prior knowledge on the subject class

However, fine-tuning text-to-image model with small set may cause: 
1. Language drift
2. Reduced output diversity

 

DreamBooth [Ruiz et al., 2023]
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Main Idea: Fine-tune text-to-image model w/ few images of a subject and class name
• Text prompt with unique identifier and the class name (e.g., a 𝑉  dog)

• Unique identifier: class-specific instance 
• Class name: prior knowledge on the subject class

• Class-specific prior preservation loss
• Supervise the model w/ own generated samples
• Leverages the semantic prior that the model has on the class

 

DreamBooth [Ruiz et al., 2023]
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• Generates image with high preservation of subject details in various context

• Generate novel views with preserving subject identity

DreamBooth [Ruiz et al., 2023]
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DreamBooth-LoRA
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• How to efficiently fine-tune large models (e.g., DreamBooth)?
• Reduce the number of trainable parameters, not fine-tuning all parameters

LoRA: Low-Rank Adaptation of Large Language Models [Hu et al., 2022]
• Freeze the original weights and update only low-rank decomposed matrices

→ LoRA enables faster and memory efficient DreamBooth fine-tuning
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Limitations
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Major challenges: Tradeoff between textual alignment and concept consistency
• Textual Inversion: word embedding is not dense enough to capture visual features

• Details of subject are often ignored; low concept consistency

• DreamBooth: often leads to overfitting and catastrophic forgetting
• Can’t generate diverse images following textual prompts; low textual alignment

Textual Inversion

V* in Times Squarea photo of V*

DreamBooth

a photo of V* V* on a beach
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DCO [Lee et al., 2024]
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DCO: Direct Consistency Optimization for Robust Customization of Text-to-Image 
Diffusion Models [Lee et al., 2024]

Motivation: Reduced ability of fine-tuned model compared to pretrained model
• Low textual alignment and compositional generation capability

Contribution: Retaining the pretrained knowledge during low-shot fine-tuning
• Novel fine-tuning objective to mitigate the forgetting behavior w/o additional data
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Main Idea: Controls the deviation between fine-tuning and pretrained models
• Consider the deviation of KL between fine-tuning model and pretrained model 

• DCO aims to control the deviation by following log-loss:

• Efficient implementation of DCO loss:

DCO [Lee et al., 2024]
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Main Idea: Controls the deviation between fine-tuning and pretrained models
• DCO directly regularize KL-divergence w.r.t. reference images

• Prior preservation loss which uses auxiliary data causes undesirable model shift

DCO [Lee et al., 2024]
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Main Idea: Controls the deviation between fine-tuning and pretrained models
• Consistency Guidance Sampling

• control over the consistency during inference in addition to classifier-free guidance

• DCO positions on a superior Pareto frontier between textual alignment and concept        
consistency
• Minimal fine-tuning retain the capability of pretrained model

DCO [Lee et al., 2024]

: classifier-free guidance
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DCO [Lee et al., 2024]

• Generates various visual attributes as well as into various styles

• Generate images with consistent styles w/o entangling content from reference images
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DCO [Lee et al., 2024]

Models fine-tuned w/ DCO can be merged without interference
• Enables to generate custom subjects in a custom style w/o post-optimization
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StyleAligned [Hertz et al., 2023]

29

Style Aligned Image Generation via Shared Attention [Hertz et al., 2023]
Motivation: Ensuring style consistency requires fine-tuning and manual intervention to dis
entangle content and style

Contribution: Training-free style alignment among a series of generated images
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StyleAligned [Hertz et al., 2023]
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Main Idea: Manipulate self-attention for communication among generated images

• Sharing Keys and values of attention (𝐾", 𝑉") in the batch.

• Normalize 𝑄# and 𝐾# of the target image using 𝑄$ and 𝐾$ of the reference 
image using AdaIN.
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StyleAligned [Hertz et al., 2023]

31

StyleAligned can be integrated into different applications

• Style reference image is given

• Object reference images are given

Style Reference given Object reference given
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IP-Adapter [Ye et al., 2024]
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IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion 
Models [Ye et al., 2024]

Motivation: Control w/ text prompt is limited as it involves complex engineering
• Prior works (e.g., direct fine-tuning) requires large computing resources

Contribution: Extended capability of image prompting w/ lightweight adapter
• Effective adapter design to incorporate both text and image prompts
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Main Idea: Lightweight adapter via decoupled cross-attention mechanism

• Frozen image encoder (e.g., CLIP) to extract image features from image prompt
• Small trainable projection network to project into a sequence of features

• Adapter module with decoupled cross-attention to embed image features

IP-Adapter [Ye et al., 2024]

Text cross-attention Image cross-attention
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Main Idea: Lightweight adapter via decoupled cross-attention mechanism

• Frozen image encoder (e.g., CLIP) to extract image features from image prompt
• Small trainable projection network to project into a sequence of features

• Adapter module with decoupled cross-attention to embed image features

• Training: Same training objective as original T2I models w/ image-text pairs
• 10 M text-image pairs from LAION-2B and COYO-700M

IP-Adapter [Ye et al., 2024]

Text cross-attention Image cross-attention

: image features

: text features
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IP-Adapter [Ye et al., 2024]

• Generates images with high identity preservation w/ diverse prompts
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IP-Adapter [Ye et al., 2024]

• Enables incorporating additional structural conditions w/o fine-tuning
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MS-Diffusion [Wang et al., 2024]
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MS-Diffusion: Multi-subject Zero-shot Image Personalization with Layout Guida
nce [Wang et al., 2024]

Motivation: Multi-subject personalization still incur notable detail inaccuracies
• e.g., subject blending, subject-subject 

Contribution: Layout-guided zero-shot image personalization w/ multiple subjects
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Main Idea: Separately extract image features of each subject with paired data

• Dataset construction for paired data
• Stand-alone images often results ‘copy-and-paste’ artifacts
• Extract multiple frames in a video for ground truth and reference images

MS-Diffusion [Wang et al., 2024]
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Main Idea: Separately extract image features of each subject with paired data

• Dataset construction for paired data

• Grounding resampler for detailed image features
• Utilize a set of learnable tokens to distill pertinent information from image features

MS-Diffusion [Wang et al., 2024]

where 𝑓!  is image embedding and 𝑓"  is learnable query
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Main Idea: Separately extract image features of each subject with paired data

• Dataset construction for paired data

• Grounding resampler for detailed image features
• Multi-subject cross-attention

• Attention mask to minimize discordance subject and background (or among subjects)

MS-Diffusion [Wang et al., 2024]
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MS-Diffusion [Wang et al., 2024]

• Generates images preserving each identities w/o being affected
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MS-Diffusion [Wang et al., 2024]

• Generates images that adhere to layout conditions even with same categories

• Enables integrating different control conditions (e.g., depth, canny edge)
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KOSMOS-G [Pan et al., 2024]
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KOSMOS-G: Generating Images in Context with Multimodal Large Language 
Models [Pan et al., 2024]

Motivation: Prior works cannot accept interleaved multi-image and text input
Contribution: Subject-driven generation leveraging MLLMs
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Main Idea: Interleaved multi-image and text input via MLLMs (align before instruct)

• Multimodal language modeling: pretrain MLLM on multimodal corpora, …
• Image decoder aligning: align output space to image decoder’s input space

• Instruction tuning: fine-tune through a compositional generation task

KOSMOS-G [Pan et al., 2024]
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KOSMOS-G [Pan et al., 2024]

• Enable image generation in various contexts (e.g., re-contextualization, stylization)
• w/ instruction based multi-image and text input
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InstantID [Wang et al., 2024]
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InstantID : Zero-shot Identity-Preserving Generation in Seconds [Wang et al., 
2024]

Motivation: Previous methods require extensive fine-tuning and lack compatibility 
with pre-trained models.

Contribution: Plug-and-play module for identity preserving generation especially   
on facial images.
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InstantID [Wang et al., 2024]
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Main Idea: Introduce a variant of ControlNet for high-fidelity facial image generation.

• IdentityNet encodes details of reference facial images with spatial control.
• Decoupled cross-attention ensures text-based control over image generation.
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InstantID [Wang et al., 2024]
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• Enable diverse image generation with face images, faithfully preserving identities.
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PhotoMaker [Li et al., 2024]
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PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding [Li 
et al., 2024]

Motivation: Facial image generations lack of identity fidelity, text controllability an
d efficiency.

Contribution: PhotoMaker ensures identity preservation, text prompt fidelity, and 
efficient personalized facial image generation.
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PhotoMaker [Li et al., 2024]
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Main Idea: Construct a dataset for training and Exploit a few input images for high ide
ntity fidelity.

• Constructs a high-quality dataset through a meticulous data collection and filter
ing pipeline.

• Use a two-layer MLP to fuse ID features and class embeddings for an overall rep
resentation of human portrait.
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PhotoMaker [Li et al., 2024]
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• Enable diverse image generation with face images, faithfully preserving identities.
• w/ text prompt for controllable image generation.
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Due to the existence of large-scale pretrained T2I models, many following works 
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ControlNet [Zhang et al., 2023]
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Adding Conditional Control to Text-to-Image Diffusion Models [Zhang et al., 2023]
Motivation: Challenges in additional control on the text-to-image diffusion models

• Text prompt is not enough for matching mental imagery; need trial-and-error cycles
• Lack of data: Available data for a specific condition is small (e.g., human pose)

Contribution: End-to-end way that learns conditional controls
• while preserving the quality and capabilities of the large model
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ControlNet [Zhang et al., 2023]
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Main Idea: End-to-end neural network with trainable copy and locked copy

• Trainable copy: Cloning of the neural network block for task-specific dataset

• Locked copy: Preserve the capability of large-scale model
Effect of zero convolution:

• Reduce number of trainable parameters
• Elimination of harmful noise in training

Zero convolution
1 × 1 convolution layer
with zero weights and bias

: trainable copy: locked copy
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ControlNet [Zhang et al., 2023]
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Main Idea: End-to-end neural network with trainable copy and locked copy

• Trainable copy: Cloning of the neural network block for task-specific dataset

• Locked copy: Preserve the capability of large-scale model
Effect of zero convolution:

• Reduce number of trainable parameters
• Elimination of harmful noise in training

Training: Fine-tune the entire diffusion model with ControlNet

: task-specific condition: text prompt
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ControlNet [Zhang et al., 2023]
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ControlNet robustly interprets content semantics in diverse input conditioning
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All-in-One Control to Text-to-Image Diffusion Models [Zhao et al., 2023]
Motivation: N ControlNets should be trained for N different conditions

• ControlNet only learn one kind of conditioning, requiring training each separately
• ControlNet can only accept one kind of conditioning at test-time

Contribution: Adapter-based generalizable ControlNet
• Learn any conditioning with same weights, and generate w/ more than 1 condition

Uni-ControlNet [Zhao et al., 2023]
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Main Idea: Use two adapters, 1) local and 2) global control adapter 

• Local control adapter: Fine spatial control (e.g., edge maps, depth map)

• Global control adapter: CLIP image embedding
Difference from ControlNet:

• Local control adapter uses multi-resolution conditioning
• Composing local control: simply concatenating works very well

Uni-ControlNet [Zhao et al., 2023]
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Main Idea: Use two adapters, 1) local and 2) global control adapter 

• Local control adapter: Fine spatial control (e.g., edge maps, depth map)

• Global control adapter: CLIP image embedding
Difference from ControlNet:

• Local control adapter uses multi-resolution conditioning
• Composing local control: simply concatenating works very well

Training strategy:
• When using both local and global control adapter, global guidance can dominate

• This leads to insufficient local adapter training

• Solution: Drop each condition with some probability in each training step

Uni-ControlNet [Zhao et al., 2023]
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Uni-ControlNet effectively generalizes ControlNet to be able to learn multiple 
number of conditioning with same weights, and to accept multiple conditioning at 
test-time

Uni-ControlNet [Zhao et al., 2023]
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RPG-Master [Yang et al., 2024]
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Recaptioning, Planning, and Generating with Multimodal LLMs [Yang et al., 2024]
Motivation: T2I models poorly handle lengthy, complex prompts with multiple objects

Contribution: Planning-based training-free T2I generating/editing framework
• MLLM splits prompt into smaller sub-prompts for region-wise generation
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Main Idea: Divide prompt into small regions using MLLM, and combine regions

• Subprompt generation: MLLM splits a given complex prompt into key pieces

• Complementary regional diffusion: Prompt-weighted denoising for each region

RPG-Master [Yang et al., 2024]
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Main Idea: Divide prompt into small regions using MLLM, and combine regions

• Subprompt generation: MLLM splits a given complex prompt into key pieces

• Complementary regional diffusion: Prompt-weighted denoising for each region
Sampling using complementary regional diffusion:

• Resize each latent, concatenate, combine with latent from base prompt
• Denoise using the compositional latent

RPG-Master [Yang et al., 2024]
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Main Idea: Divide prompt into small regions using MLLM, and combine regions

• Subprompt generation: MLLM splits a given complex prompt into key pieces

• Complementary regional diffusion: Prompt-weighted denoising for each region
Sampling using complementary regional diffusion:

• Resize each latent, concatenate, combine with latent from base prompt
• Denoise using the compositional latent

Example of region division: Spatial ratios planned by MLLMs

RPG-Master [Yang et al., 2024]
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RPG-Master generates images containing multiple objects with different attributes 
and relationships flawlessly, powered by LLM-based spatial planning

RPG-Master [Yang et al., 2024]
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Self-guidance [Epstein et al., 2023]
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Diffusion Self-Guidance for Controllable Image Generation [Epstein et al., 2023]
Motivation: Text prompts are not sufficient to specify spatial relationships of objects

Contribution: Zero-shot controllable generation by manipulating attention maps
• Object position, size, shape can be modified by changing attention maps
• Training-free method
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Main Idea: Attention map control while sampling for spatially controlled generation

• Object position: Modify the centroid of the attention channel

• Object size: Modify the sum of the attention channel

Self-guidance [Epstein et al., 2023]
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Main Idea: Attention map control while sampling for spatially controlled generation

• Object position: Modify the centroid of the attention channel

• Object size: Modify the sum of the attention channel

• These equations do not necessarily modify just one object. Can we control one 
object specifically?

Self-guidance [Epstein et al., 2023]
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These equations do not necessarily modify just one object. Can we control one 
object specifically?

Solution: Just fix all other objects using these equations and change the desired one

Self-guidance [Epstein et al., 2023]
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Self-guidance is able to provide significant control over the spatial aspect of 
generation simply by directly modifying the attention channel of the internal 
representations of a diffusion model

Self-guidance [Epstein et al., 2023]
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Due to the existence of large-scale pretrained T2I models, many following works 
focused on extending the capability beyond image generation

 
From now on, we explore recent topics in leveraging T2I models for

• Image editing (or image-to-image translation) using text
• Personalization

• Controllable generation

• Virtual try-on
• Text-to-3D generation

Text-to-Image Diffusion Models

75
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LaDI-VTON [Morelli et al., 2023]
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Latent Diffusion Textual-Inversion Enhanced Virtual Try-On [Morelli et al., 2023]
Motivation: Leverage diffusion models to generate natural try-on images.

• Prior works employ GAN, which fails to produce realistic images.
• Consider virtual try-on task as an exemplar-based image inpainting.

Contribution: First work to utilize diffusion models for virtual try-on task.
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LaDI-VTON [Morelli et al., 2023]
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Main Idea: Utilize CLIP embedding space for garment conditioning.

• Frozen image encoder (CLIP) to extract garment features.

• Utilize text prompt (e.g., a photo of a model wearing {category}) to exploit T2I 
prior.

• Introduce small module to prevent distortion outside the mask region.
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LaDI-VTON [Morelli et al., 2023]
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• Generates natural images comparing to GAN-based models.

• However, it fails to preserve fine-details of garments, since it use CLIP 
embeddings for garment conditioning.

<Limitation><Qualitative results>
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StableVITON [KIM et al., 2023]
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Learning Semantic Correspondence with Latent Diffusion Model for Virtual Try-
On [Kim et al., 2023]
Motivation: Improve garment encoding with controlnet-style encoder.

• CLIP embedding is too coarse to fully encode garments.
• Introduce controlnet-style encoder for finer conditioning of garments.

Contribution: Improved garment encoding, which is a main challenge for diffusion-
based Virtual Try-on.
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StableVITON [KIM et al., 2023]
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Main Idea: Utilize Controlnet-style SD Encoder for finer encodings for garments.

• SD Encoder to encode garment with more details.

• Introduce an auxiliary loss to prevent attention from mapping to multiple regions.

• Data augmentation to enhance generalization capabilities.
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StableVITON [KIM et al., 2023]
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• Generates natural images with preserving fine-details.

• However, it still struggles to preserve fine-details of garments, especially with 
in-the-wild images.

<Limitation><Qualitative results>
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IDM-VTON [Choi et al., 2024]
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Improving Diffusion Models for Authentic Virtual Try-on in the Wild [Choi et al., 
2024]
Motivation: Virtual Try-on for in-the-wild images, which is more practical scenarios.

• Decompose garment encoding with high and low-level features of garment.
• Customize network for particular garment by users.

Contribution: Authentic virtual try-on for in-the-wild scenarios.
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IDM-VTON [Choi et al., 2024]
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Main Idea: Decompose garment encoding with high and low-level features of garment.

• Parallel unet encoder for low-level features.

• IP-Adapter for high-level semantics.

• Effective & efficient fine-tuning network for customizing it on particular garment.
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IDM-VTON [Choi et al., 2024]
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• Generates natural images with preserving fine-details.

• Demonstrates strong performance in challenging in-the-wild scenarios.
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BootComp [Choi et al., 2024]
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Controllable Human Image Generation with Personalized Multi-Garments [Choi 
et al., 2024]
Motivation: Collecting paired data of multiple references is challenging.

• Introduce a synthetic paired data generation pipeline for multiple reference.
• Dual denoising path for composing multiple reference garment.

Contribution: Synthetic data generation, effective for controllable generation.
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BootComp [Choi et al., 2024]
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Main Idea: Synthesize multiple paired data by leveraging single paired data, which is easy 
to collect.

• Decomposition network, mapping segmented garment to garment in product view.

• Bootstrapping multiple paired data.

• Filtering strategy for high-quality data.

• Composition module for generating human images with multiple-garments.
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BootComp [Choi et al., 2024]
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• Generates human images with multiple garments.

• Diverse applications such as pose control, stylization, virtual try-on.
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Due to the existence of large-scale pretrained T2I models, many following works 
focused on extending the capability beyond image generation

 
From now on, we explore recent topics in leveraging T2I models for

• Image editing (or image-to-image translation) using text
• Personalization

• Controllable generation

• Virtual try-on
• Text-to-3D generation

Text-to-Image Diffusion Models
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• Recent, Text-to-image (T2I) diffusion models have shown impressive capabilities
• Synthesizing high-quality, realistic, diverse images with the text given as input

• How can we utilize T2I diffusion models to 3D synthesis without 3D training data?
• How can we use DMs as a critic to optimize the underlying 3D representation?

• Poole et al. (2023): Score Distillation Sampling (SDS)
• Probabilistic density distillation enabling the use of a 2D diffusion models for priors 

• DreamFusion: Optimize NeRF using T2I diffusion models with SDS 
• Optimize NeRF 𝑔(𝜃), that look like images     when rendered from random angles
• The optimized NeRF yields good images appropriate for given text prompt 
• Does not require 3D training data and no modification to the image diffusion models

DreamFusion: Text-to-3D using 2D diffusion [Poole et al., 2023]

89* source : Poole et al., DreamFusion: Text-to-3D using 2D diffusion, ICLR 2023

x = g(θ)
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• How does DreamFusion create 3D assets from text descriptions?
1. Initialization: 

NeRF is randomly initialized and trained from scratch for each caption
2. NeRF parameter updates:

DreamFusion diffuses the rendering and reconstructs it with a (frozen) Imagen

• Subtracting the injected noise produces a low variance update direction 
• Backpropagated through the rendering process to update the NeRF MLP parameters

DreamFusion: Text-to-3D using 2D diffusion [Poole et al., 2023]

90* source : Poole et al., DreamFusion: Text-to-3D using 2D diffusion, ICLR 2023

prediction of injected noise injected noise
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• Score distillation sampling enables sampling in parameter space, not pixel space
• create 3D models that look like good images when rendered from random angles
1. Training objective of diffusion models is as follows:

2. Minimize the diffusion model training loss w.r.t a generated data point

3. Gradient of the training objective becomes:

4. Score Distillation Sampling

DreamFusion: Text-to-3D using 2D diffusion [Poole et al., 2023]

91* source : Poole et al., DreamFusion: Text-to-3D using 2D diffusion, ICLR 2023

x = g(θ)

: θ∗ = argminθLDiff(φ,x = g(θ))
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• DreamFusion generates coherent 3D scenes from a variety of text prompts

DreamFusion: Text-to-3D using 2D diffusion [Poole et al., 2023]

92* source : Poole et al., DreamFusion: Text-to-3D using 2D diffusion, ICLR 2023
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Magic3D [Lin et al., ‘23]

• DreamFusion is of low resolution (e.g., 64x64)

• Magic3D upscale text-to-3D model by two stage coarse-to-fine optimization
• Stage 1. generate low-resolution NeRF using SDS
• Stage 2. export to 3D mesh and use high-res. LDM for high-resolution 3D mesh

Magic3D 
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Comparison with DreamFusion

Magic3D 
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ProlificDreamer [Wang et al. ‘23]

• SDS suffers from over-saturated image because of high guidance scale 

• ProlificDreamer resolves this problem by using variational score distillation (VSD)
• ProlificDreamer generates high-quality text-to-3D model

ProlificDreamer 
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Variational Score Distillation (VSD)

• VSD uses Wasserstein gradient flow of variational inference problem

• Since we do not know the score of rendered noisy images, it trains additional 
diffusion model on rendered images

• The final VSD update is given as follows:

ProlificDreamer 
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<latexit sha1_base64="lVTAemALPE4eBxT/XIpuMIqGIE8="></latexit>

q⇤ = argmin
q

DKL(qkp)
<latexit sha1_base64="gScVWvbP4SA4A2AtdJf2AcjGHok="></latexit>

dxt

dt
= r log p(xt)�r log qt(xt)

(a) SDS [33] (CFG = 7.5) (b) SDS [33] (CFG = 100)

(c) Ancestral sampling [27] (CFG = 7.5) (d) VSD (CFG = 7.5, ours)

Figure 3: Samples of different methods in 2D space. Similarly to ancestral sampling, VSD generates
realistic images with a common CFG weight of 7.5 and outperforms SDS significantly. The prompts
from left to right are hamburger, horse, and a monster truck, respectively. See details in Appendix H.

(function) space at each time ⌧ � 0 as {µ⌧}⌧�0 with µ1 = µ⇤. Then we can sample ✓⌧ from µ⌧ by
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where qµ⌧
t is the corresponding noisy distribution at diffusion time t w.r.t. µ⌧ at ODE time ⌧ .

According to Theorem 2, we can simulate the ODE in Eq. (7) for a large enough ⌧ to approximately
sample from the desired distribution µ⇤. The ODE involves the score function of noisy real im-
ages and that of noisy rendered images at each time5 ⌧ . The score function of noisy real images
��trxt log pt(xt|y) can be approximated by the pretrained diffusion model ✏pretrain(xt, t, y). The
score function of noisy rendered images ��trxt log q

µ⌧
t (xt|c, y) is estimated by another noise

prediction network ✏�(xt, t, c, y), which is trained on the rendered images by {✓(i)}ni=1 with the
standard diffusion objective (see Eq. (1)):
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In practice, we parameterize ✏� by either a small U-Net [38] or a LoRA (Low-rank adaptation [18, 39])
of the pretrained model ✏pretrain(xt, t, y), and add additional camera parameter c to the condition
embeddings in the network. In most cases, we find that using LoRA can greatly improve the fidelity
of the obtained samples (e.g., see results in Fig. 1). We believe that it is because LoRA is designed
for efficient few-shot fine-tuning and can leverage the prior information in ✏pretrain (the information of
both images and text corresponding to y).

Note that at each ODE time ⌧ , we need to ensure ✏� matches the current distribution qµ⌧
t . Thus, we

optimize ✏� and ✓(i) alternately, and each particle ✓(i) is updated by ✓(i)  ✓(i) � ⌘r✓LVSD(✓(i)),
where ⌘ > 0 is the step size (learning rate). According to Theorem 2, the corresponding gradient is
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where xt = ↵tg(✓, c)+�t✏. We show the approach of VSD in Fig. 3 (see pseudo code in Appendix F).

3.3 Comparison with SDS

We now systematically compare VSD with SDS in both theory and practice.

SDS as a speical case of VSD. Theoretically, comparing the update rules of SDS (Eq. (3)) and VDS
(Eq. (9)), SDS is a special case of VSD by using a single-point Dirac distribution µ(✓|y) ⇡ �(✓�✓(1))

5Note that we have two variables of time: one is the diffusion time t 2 [0, T ] and the other is the gradient
flow time ⌧ , corresponding to the optimization iteration for each ✓.
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ProlificDreamer implementation

• Two-stage alternating update
• Update NeRF (or 3D mesh) using VSD gradient update

• Update diffusion model using LoRA

ProlificDreamer 
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(a) SDS [33] (CFG = 7.5) (b) SDS [33] (CFG = 100)

(c) Ancestral sampling [27] (CFG = 7.5) (d) VSD (CFG = 7.5, ours)

Figure 3: Samples of different methods in 2D space. Similarly to ancestral sampling, VSD generates
realistic images with a common CFG weight of 7.5 and outperforms SDS significantly. The prompts
from left to right are hamburger, horse, and a monster truck, respectively. See details in Appendix H.
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of the pretrained model ✏pretrain(xt, t, y), and add additional camera parameter c to the condition
embeddings in the network. In most cases, we find that using LoRA can greatly improve the fidelity
of the obtained samples (e.g., see results in Fig. 1). We believe that it is because LoRA is designed
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where xt = ↵tg(✓, c)+�t✏. We show the approach of VSD in Fig. 3 (see pseudo code in Appendix F).

3.3 Comparison with SDS

We now systematically compare VSD with SDS in both theory and practice.

SDS as a speical case of VSD. Theoretically, comparing the update rules of SDS (Eq. (3)) and VDS
(Eq. (9)), SDS is a special case of VSD by using a single-point Dirac distribution µ(✓|y) ⇡ �(✓�✓(1))
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VSD allows low guidance scale in generation

• Sharp image generation with low classifier-free guidance scale, unlike SDS

ProlificDreamer 
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Comparison with baseline

ProlificDreamer 
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DreamFlow [Lee et al. ‘23]

• Score distillation methods suffer from content-shifting problem due to random 
timestep sampling during update

• In contrast, diffusion model samples with decreasing timestep schedule

• DreamFlow proposes to approximate probability flow for 3D optimization
• This improves convergence speed and quality

DreamFlow 
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Approximate Probability Flow ODE 

• Use predetermined timestep schedule (same as diffusion model) and update 
the 3D model with probability flow generated by pretrained diffusion model

• Amortized update (i.e., update multiple views at once) for 3D consistency

DreamFlow 
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Coarse-to-fine optimization

• Similar to Magic3D, DreamFlow use coarse-to-fine optimization

• Three stage update
• Stage 1. NeRF optimization with large timesteps (res. 256x256)
• Stage 2. 3D mesh fine-tuning with mid-timesteps (res. 512x512)
• Stage 3. 3D mesh refinement with SDXL refiner (res. 1024x1024) 

DreamFlow 
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Comparison with baselines

DreamFlow 

103



Algorithmic Intelligence Lab

MULTI-VIEW DIFFUSION FOR 3D GENERATION [Shi et al. ‘23]

• Existing 2D-lifting methods suffer from multi-view inconsistencies, while 3D 
generative models lack generalizability due to limited data.

• Proposed a multi-view diffusion model, fine-tuning 2D diffusion model with 
multi-view awareness.

MVDream
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Multi-view Consistent Image Generation

• Extends 2D self-attention into 3D by connecting all views within the same
attention layer.

Camera Embeddings

• Encodes camera parameters (e.g., position, orientation) into the model for 
viewpoint awareness.

Training loss function

• Balances multi-view consistency and generalizability by integrating 3D-rendered 
datasets and large-scale 2D datasets.

MVDream
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Text-to-3D generation.

• Multi-View Diffusion Prior
• Uses a multi-view diffusion model to guide Score Distillation Sampling (SDS) for 

consistent 3D object generation.

• Improved Efficiency and Quality
• Enhances geometry and texture quality using advanced loss techniques like x0-

reconstruction and CFG rescaling.

MVDream
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MVDream generates multi-view consistent and high-quality 3D representations, 
following text prompts. 

MVDream
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Comparison with baselines.

MVDream
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