Algorithmic Intelligence Lab

Optimization Techniques

Al602: Recent Advances in Deep Learning
Lecture 1

Slide made by

Insu Han, Seunghyun Lee and Younggyo Seo
KAIST EE & Al

Algorithmic Intelligence Lab

Table of Contents

1. Introduction
* Empirical risk minimization (ERM)

2. Stochastic Gradient Descent
Gradient descent (GD) and stochastic gradient descent (SGD)
Momentum and adaptive learning rate methods

Learning rate scheduling
Large batch training

3. Normalization Techniques
* Batch Normalization
* Normalization-Free Network (NFNet)

4. Summary

Table of Contents

1. Introduction
* Empirical risk minimization (ERM)

Algorithmic Intelligence Lab

Empirical Risk Minimization (ERM)

Given training set {(Xl, Y1)y -5 (Xn,s yn)}

Prediction function f(x;,0) =~ y; parameterized by 0

Empirical risk minimization: Find a parameter that minimizes the loss function
mm— E 0(f(x4,0),y;) = L(O)

where £ (-,-) is aloss function e.g., MSE, cross entropy,
For example, neural network has f(x,0) =0, o (6)_,0(--- o (6] x)))

01 02

Next, how to solve ERM?

Algorithmic Intelligence Lab

Table of Contents

2. Stochastic Gradient Descent
* Gradient descent (GD) and stochastic gradient descent (SGD)

Algorithmic Intelligence Lab

Gradient Descent (GD)

» Gradient descent (GD) updates parameters iteratively by taking gradient.

parameters loss function / random Initialization
I 1 Bo/n it TN
01 =0, —YVL(6;) AN N ——
— " P ——
learning rate = n Z V(O x4, yi)
i=1

* (+) Converges to global (local) minimum for convex (non-convex) problem.
* (—) Not efficient with respect to computation time and memory space for huge n.
* For example, ImageNet dataset has n =1,281,167 images for training.

1.2M of 256x256 RGB images
~ 236 GB memory

8o)]
it e
» -:‘4 f

a
bv
]
<

Next, efficient GD

Algorithmic Intelligence Lab

Stochastic Gradient Descent (SGD)

» Stochastic gradient descent (SGD) use samples to approximate GD

l — E—
VL(H) - — Vﬁ(@,xz,yz) —
> =
= % > V6%, i)

sample 1€B

* In practice, minibatch size | B| typically ranges from 32 to 512 (single machine)

* SGD can find the global solution when
1. loss function is convex
2. bounded variance
3. decreasing learning rate

* But, in many practical problems, SGD has some challenges

Algorithmic Intelligence Lab * source : https://lovesnowbest.site/2018/02/16/Improving-Deep-Neural-Networks-Assignment-2/ 7

Hard to optimize practical problems

* Main practical challenges and current solutions:
1. Loss function is nonconvex and includes local minima/critical points
2. SGD can be too noisy and might be unstable —— momentum
3. Hard to find a good learning rate ——— adaptive learning rate

bad local minima . :
critical point

loss surface of a neural net (ResNet-50)

Next, momentum

Algorithmic Intelligence Lab * source : http://www.telesens.co/loss-landscape-viz/viewer.html 8

Table of Contents

2. Stochastic Gradient Descent

* Momentum and adaptive learning rate methods

Algorithmic Intelligence Lab

Momentum Methods

1. Momentum gradient descent
* Add decaying previous gradients (momentum).

0i11 =0 —my m; = pmy;_1 +yVL(6;)
momintum preservation ratio 1 € [0, 1]

* Equivalent to moving average with the fraction u of previous update.
0;1 =0 — v (VL(6;) + uVL(0:_1) + n°VL(Or_2) + -)

* (4) Momentum reduces the oscillation and accelerates the convergence.
SGD A

friction to vertical fluctuation

SGD + momentum < v

acceleration to left

Algorithmic Intelligence Lab 10

Momentum Methods: Nesterov’s Momentum

1. Momentum gradient descent
* Add decaying previous gradients (momentum).

011 =0, —my m; = pumy;_1 +yVL (Ht)
momintum preservation ratio 1 € [0, 1]

* (—) Momentum can fail to converge even for simple convex optimizations.

* Nesterov’s accelerated gradient (NAG) [Nesterov’83] uses gradient for
approximate future position, i.e.,

my < pmy_ +YyVL (0, — pm;_)

Momentum update: Nesterov Momentum

YVL(0; — pm;_1)

Gradient “lookahead” gradient

Velocity .
Velocity

actual step
p{my_q actual step

-
>

Gradient ’yVL(Ht)

Algorithmic Intelligence Lab * source : Nesterov. “A method for solving the convex programming problem with convergence rate O(1/k”2).” 1983 11

Momentum Methods: Nesterov’s Momentum

1. Momentum gradient descent
* Add decaying previous gradients (momentum).

0i11 =0 —my m; = pmy;_1 +yVL(6;)
momintum preservation ratio 1 € [0, 1]

* Nesterov’s accelerated gradient (NAG) [Nesterov’83] uses gradient for
approximate future position, i.e.,

m; < pmy_q +yVL (0, — pmy;_)

= compute_gradi
= mu * m + learning_rate * dtheta

= theta - m

Quiz: fill in the pseudo code of Nesterov’ accelerated gradient

Algorithmic Intelligence Lab 12

Adaptive Learning Rate Methods: AdaGrad, RMSProp

2. Adaptively changing learning rate (AdaGrad, RMSProp)
* AdaGrad [Duchi’11] downscales a learning rate by magnitude of previous gradients.

041 =6, — 7=VL(0) Vi1 = vy + VL (0;)
!

sum of all previous squared gradients

* (—) the learning rate strictly decreases and becomes too small for large iterations.

* RMSProp [Tieleman’12] uses the moving averages of squared gradient.

Viy1 = pvg + (1 — p)VL (9t)2
|

preservation ratio /1t € [0, 1]

* Other variants also exist, e.g., Adadelta [Zeiler’12]

* source : Duchi et al., “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.”, JMLR 2011
* source : Tieleman, Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.”, 2012
Algorithmic Intelligence Lab * source : Zeiler, “Adadelta: An Adaptive Learning Rate Method.”, 2012 13

Adaptive Learning Rate Methods

* Visualization of algorithms

optimization on saddle point

- SGD

= Momentum
= NAG

- Adagrad
Adadelta
Rmsprop

RO
SN

1.0

optimization on local optimum

- SGD

- Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

* Adaptive learning-rate methods, i.e., Adadelta and RMSprop are most suitable and
provide the best convergence for these scenarios

Algorithmic Intelligence Lab

Next, momentum + adaptive learning rate

* source: animations from from Alec Radford’ blog

14

Adaptive Learning Rate Methods: Adam

1+ 2. Combination of momentum and adaptive learning rate
* Adam (ADAptive Moment estimation) [Kingma’15]

momentum

~
Mg < 1My + (]. — [Ll)VL (Ht)

Ory1 < 0, — =m,
\/U 2
' Vi1 < /LQ’Ut\:F (1 — IuQ)VL (Ht)
average of squared gradients

e Can be seen as momentum + RMSprop update.
* Other variants exist, e.g., Adamax [Kingma’14], Nadam [Dozat’16]

N CIFAR10 ConvNet First 3 Epoches CIFAR10 ConvNet
— AdaGrad 5 — AdaGrad
— AdaGrad+dropout 07y : — AdaGrad+dropout
— SGDNesterov — SGDNesterov
2.5r : SGDNesterov+dropout 100k SGDNesterov+dropout
— Adam — Adam
Adam-+dropout Adam-+dropout

H H H H H 4 H H H H H H H i
0'6.0 0.5 1.0 15 2.0 2.5 3.0 10 0 5 10 15 20 25 30 35 40 45
iterations over entire dataset iterations over entire dataset

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

Algorithmic Intelligence Lab * source : Kingma and Ba. Adam: “A method for stochastic optimization.” ICLR 2015 15

SGD/Adam with decoupled weight decay

« Many learning problems optimize the loss with L? norm penalty
L(0) = L(6) + A[16]]2

* |t is sometimes called “weight decay” since its gradient decays weight (for SGD):

0 —nV (L(6) + A0]3) <+ (1—29\)60 —nVL(6)

SGD on L2-norm penalty v|6|3 = 26 weight decay

* This equivalence does not hold for momentum/adaptive methods! (check)
* [Loshchilov’19] proposes decoupling weight decay from optimization steps

* For example, decoupled SGD with momentum iterates (also applicable to Adam)

Myy1 < pamy + (1 — pn) (VL (0) + A6y)
gradient of loss with L2 penalty
Ht_|_1 < Ht — my — 277)\675
weight decay

Algorithmic Intelligence Lab * source : Loshchilov et al., “Decoupled Weight Decay Regularization.”, ICLR 2019 16

SGD/Adam with decoupled weight decay

Many learning problems optimize the loss with L? norm penalty
L(0) = L(6) + A[16]]2

* |t is sometimes called “weight decay” since its gradient decays weight (for SGD)

This equivalence does not hold for momentum/adaptive methods! (check)

[Loshchilov’19] proposes decoupling weight decay from optimization steps

The proposed AdamW outperforms Adam

Adam and Adamw with LR= 0 001 and dlfferent welght decays Adam and AdamW With LR=0.001 and diffefent Weight decays

10° 6 T
-J

= 55

g 107}

& i

2 g °

8 P

81 45

P Q

£ 10 i) ‘}‘

£ v ’ AL _‘»:

< 3 A
_— 5 A’ -

T [——Adam Adam b

10*H —— Adamw ——— AdamW S

B — 1 L L " I\ 3 n A A i A " i
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800

Epochs Epochs

Algorithmic Intelligence Lab * source : Loshchilov et al., “Decoupled Weight Decay Regularization.”, ICLR 2019 17

Table of Contents

2. Stochastic Gradient Descent

* Learning rate scheduling

Algorithmic Intelligence Lab

18

Learning Rate Scheduling

3. Learning rate scheduling
* Learning rate is critical for minimizing loss !

loss

low learning rate
high learning rate

>

good learning rate

epoch

Too — May ignore the narrow valley, can diverge
Too low — May fall into the local minima, slow converge

Algorithmic Intelligence Lab * source : http://cs231n.github.io/neural-networks-3/ 19

Learning Rate Scheduling: Decay

3. Learning rate scheduling : Decay methods
* Constant learning rate often prevents convergence — needs decay!

Learning rate Learning rate
010 - |earning rate - |earning rate
0.08
0.08
Y o 0.06
© 006 ®
- £ 004 £ oo 1 - Constant Ir
. N : Time-based
002 802 — Step decay
- Exponential decay
0.00 0.00 =
20 0 €0 80 100 20 0 60 &0 100
epoch epoch ® “ epochs ® ®
step decay exponential decay accuracy

* [Smith’17] showed “Decaying the learning rate = Increasing the batch size”

20 20

w
w

- Decaying learning rate
= Hybrid
- Increasing batch size

- Decaying learning rate
= Hybrid
- |ncreasing batch size

o
w

Training cross-entropy
-
5
&

Training cross-entropy
g

N 0 50 100 150 200 : 0 20000 40000 60000 80000
Number of epochs Number of parameter updates

e source : https://towardsdatascience.com/
Algorithmic Intelligence Lab * source : Smith et al., “Don't Decay the Learning Rate, Increase the Batch Size.”, ICLR 2017 20

https://towardsdatascience.com/

Learning Rate Scheduling: Warm-up

3. Learning rate scheduling : Warm-up
* Adaptive optimizers like Adam suffer from large variance in the early training phase

* Large batch training with momentum SGD also has similar issues
* Warm-up heuristic is used to stabilize training

;IIIIIII

1.00 A

0.75 4

0.50 4

0.25 +

0.00 4

“Start from a small Ir,
Gradually increase it to the target Ir”

T

T
"Quuemmmnn 200

T T T T
400 600 800 1000

* RAdam [Liu'20] rectifies the variance of Adam Ir, with theoretical justifications

* RAdam enjoys the benefits of warm-up, but no need to search for scheduling

Oiy1 < 0y —

92
20
88
86
84
82
80
78

Test accuracy

Algorithmic Intelligence Lab

RAdam

\

Different learning

rates lead to similar g [

performance.

0O 20 40 60 80 100 120 140 160 180

84

80
78

—m Variance rectification term

t .
/fvt (Check the paper for details!)
Adam Sensitive to the choice ~ SGD
of the learning rate.

= T~ — Ir=0.1
88

o6 = |r =0.03
84

82 = |r = 0.01
80

78 = |r = 0.003

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

* source : https://huggingface.co/transformers/main_classes/optimizer_schedules.html
* source : Liu et al., “On The Variance of The Adaptive Learning Rate and Beyond.”, ICLR 2020 21

Learning Rate Scheduling: Cyclical

3. Learning rate scheduling : Cyclical methods
* [Smith’15] proposed cyclical learning rate
* Increasing learning rate can be useful for escaping saddle points / bad local minima

CLR - ‘triangular' Policy CIFAR-10
0.006 T T
0.005
&
5 0004 L
2 ,
g
5 0.003 .
3
0002 0.4 ---Original learning rate
03 ---Exponential
0001 —CLR (our approach)
0 2000 4000 6000 8000 10000 0 2 3 4 5 6 7
Training Iterations Iteration

* [Loshchilov’17] uses cosine cycling and warm restart

x10'

* Traverses several local minima by moving up and down the loss surface

* — suggests snapshot ensemble: ensemble over several local minima found

0.010 051 Single Model °5+"Snapshot Ensemble
04 Standard LR Schedule = /) }} 044 Cyclic LR Schedule - A}/l
) JANN N ‘”)
0.008 03 \ 03 AN A
0.2 024
£ 0006 04 01 &
o . 114
g v 1{\ ‘
g 0 0 q Y
E) !
3 0.004 -0.1 -0.14 A\ P
-0.2 02
0.002 R? A
-03 -0.3 e — K]
00009 - _05;3 50 _058 (7;,,‘: =2

0

Algorithmic Intelligence Lab

200

400 600 800
iterations

1000

* source : Loshchilov et al., “SGDR: Stochastic Gradient Descent with Warm Restarts.” ICLR 2017 22

N
40
30
20

50
40
30
20

* source : Smith., “Cyclical Learning Rates for Training Neural Networks.” 2015

Table of Contents

2. Stochastic Gradient Descent

* Large batch training

Algorithmic Intelligence Lab

23

Large Batch Training: Motivation

* Deep learning is scaling up very quickly

a5 Chart Avea | daifprine ol o 4

: 3 L II- = ll
I b |) 1| unt‘,. un

140 e t"“"“""* i et 2

120

Parameters (B)

BERT ROBERTa GPT-2 Turing NLG GPT-3

Instagram Dataset c
_ . loud TPU v3 Pod
w/ ~1bil. images [Mahajan’18] Model oue e

100+ petaflops

32TB HBM
2-D toroidal mesh network

Larger dataset Larger model More compute

* Data parallelism enables large-scale training
* With k times more GPUs, global batch size increases by k
* Ignoring communication cost, k times fewer iterations per epoch

2. Synchronize
updated weights
across workers

1. Aggregate sW)| |W

gradient estimates

7N
worker worker

* source : Mahajan, et al., “Exploring the limits of Weakly Supervised Pretraining”, ECCV 2018
* source: Yu, et al., “ImageNet Training in Minutes”, 2018 24

Algorithmic Intelligence Lab

Large Batch Training: Challenge

* Naively increasing batch size = performance degradation
* In particular, generalization performance suffers

* One popular explanation: Sharp Minima Problem [Keskar’17]
* Large batch (LB) training finds a “sharp minimum”

-050 S h arp

. minimum| 7|\ : minimum
“(e) 0.0, 128,7.37%) 0.0,[8192] 11.07% (g) Se-d. 128, 6.00% (h) 5e-4,[8192,/10.19%

Loss visualization along two random directions in the parameter space (VGG-9, CIFAR-10) [Li’18]

Training Function

! Testing Function

High sensitivity of training loss around (9:

ﬁ

rain
f(z)

Loss *
etram is a poor minimizer for test loss

Vo
\
\ /v
\ /

Flat Minimum Sharp Minimum

* source : Keskar et al., “On Large-batch Training for Deep Learning: Generalization Gap and Sharp Minima”, ICLR 2017
Algorithmic Intelligence Lab * source: Li et al., “Visualizing the Loss Landscape of Neural Nets”, NeurIPS 2018 25

Large Batch Training: Challenge

* Naively increasing batch size = performance degradation
* In particular, generalization performance suffers

* One popular explanation: Sharp Minima Problem [Keskar’17]
e Caveat: this is not the same as overfitting!
* |n particular, cannot apply early stopping to solve the problem

100
; A Training -
—
— ==
< -’
> ©
5 5 2
2 3 ’ \
g . | < ’ Testing
',I : - - SB - Training : y/
A0 e preseeees — SB-Testing | o
I
30b e, -~ LB-Training | el .
: — LB - Testing
20 l i i i Epoch
0 20 40 60 80 100
Epoch
LB Training Overfitting

Algorithmic Intelligence Lab * source : Keskar et al., “On Large-batch Training for Deep Learning: Generalization Gap and Sharp Minima”, ICLR 2017 26

Large Batch Training: Challenge

* Naively increasing batch size = performance degradation
* In particular, generalization performance suffers

* Another explanation: Optimization Difficulty [Goyal 18]
* [Goyal’18] suggests sharp minimum is not an inherent problem of LB training
* With careful optimization, LB training is possible w/o loss in generalization

NN
o
1

ResNet-50

W
(&)
T

Up to batch size 8096,
No loss of validation accuracy!

W
o
T

N
(&)

*
Y
I

]

I
. . . I 1 .
64 128 256 512 1k 2k 4k 8k 16k 32k 64k
mini-batch size

Figure 1. ImageNet top-1 validation error vs. minibatch size.

ImageNet top-1 validation error
N
o

Algorithmic Intelligence Lab * source : Goyal et al., “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, 2018 27

Large Batch Training: Learning rate warm-up

* Learning rate warm-up [Goyal’18]
1. Linear scaling rule
* Given a fixed number of epochs, increasing batch size B by k times means

k times fewer training iterations, for:
(# iters per epoch)
k

* To make up for this, learning rate must scale linearly with batch size

|Dgata| = B - (# iters per epoch) = kB -

2. Warm-up
* During initial training phase, neural network is changing rapidly
* |n this case, large learning rate can be destructive — ‘warm up’ the rate!

00.4 _

© —Cosine Decay

0.3 ! - Step Decay Scales up to

Learning rate /?0/2‘ : 8096 batch size

warm-up 50.1 : (ImageNet, ResNet-50)

oot} | T e e e _T==

0 20 40 60 80 100 120
Epoch

(a) Learning Rate Schedule

* source : Goyal et al., “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, 2018
Algorithmic Intelligence Lab * source: He et al., “Bag of Tricks for Image Classification with Convolutional Neural Networks”, CVPR 2019 28

Large Batch Training: LARS & LAMB

* Layer-wise Adaptive Rate Scaling (LARS) [You’17]
* Ratio between weight and its gradient matters

Bt || Too large: slow learning
0,11 =0, —YVL(O | <
o t 7 (t) 7||VL ot || Too small: divergence

* Note that standard SGD uses a fixed Y for all weights
* Observation: for LB training, weight-gradient ratio appears differently across layers!

weights/gradients ratio in each AlexNet layer in large-batch situation

*en weights norm and gradients norm

raho betwe

yye . ayer . Ayer aye:

ln er 1D

))) * source : You et al., “Large Batch Training of Convolutional Neural Networks”, 2017
Algorithmic Intelligence Lab * source: https://www.youtube.com/watch?v=kwEBP-Wbtdc&ab_channel=NUSDepartmentofComputerScience 29

Large Batch Training: LARS & LAMB

* Layer-wise Adaptive Rate Scaling (LARS) [You’17]
* Solution: different learning rates for each layer

.., =0, —~-\.VL(8.)

l Hgl ” local learning rate,
where n < 1

= || VL(HZ) || is the trust coefficient

"Y global learning rate

* By layer-wise scaling, vanishing/exploding gradient problem can be prevented
* Author claims noisy learning signal due to dynamic Ir helps avoiding sharp minima

AlexNet-BN with LARS, Layer 1: Convolutional, Weight AlexNet-BN with LARS, Layer 5: Convolutional, Weight
1.75 4
17.5 —— Batch 256 —— Batch 256
Batch 1024 1.50 Batch 1024
o —— Batch 8192 —— Batch 8192
s v 1.25
g g 1.00
gﬁ 10.0 g’\
c c
g 7.5 E 0.75
g s
- 5.0 0.50
25 0.25
Scales up to
0.0 0.00
0 20 40 60 80 100 0 20 40 60 80 100 H
Epochs Epochs 32768 batch size
(a) Local LR, convl-weights (c) Local LR , conv5-weights (Image N et: Res N et'SO)

))) * source : You et al., “Large Batch Training of Convolutional Neural Networks”, 2017
Algorithmic Intelligence Lab * source: https://www.youtube.com/watch?v=kwEBP-Wbtdc&ab_channel=NUSDepartmentofComputerScience 30

Large Batch Training: LARS & LAMB

* Layer-wise Adaptive Moments for Batch training (LAMB) [You’20]
* Warm-up [Goyal’18], LARS [You’17] both build on top of momentum-SGD
* LAMB is an extension of LARS to the ‘weight-adaptive’ optimizer Adam
* Successfully scales BERT training (batch size ~32768)
* Trains ResNet-50 with Adam to match the performance of momentum SGD

Table 1: We use the F1 score on SQuAﬂ- curacy metric. The baseline F1 score is the
score obtained by the pre-trained model|(BERT-Large)|provided on BERT’s public repository (as of
February 1st, 2019). We use TPUv3s in our experiments. We use the same setting as the baseline: the
first 9/10 of the total epochs used a sequence length of 128 and the last 1/10 of the total epochs used
a sequence length of 512. All the experiments run the same number of epochs. Dev set means the test
data. It is worth noting that we can achieve better results by manually tuning the hyperparameters.
The data in this table is collected from the untuned version.
Solver ‘ batch size | steps | F1 score on dev set ‘ TPUs ‘ Time

Baseline 512 1000k 90.395 16 81.4h
LAMB 512 1000k 91.752 16 82.8h
LAMB 1k 500k 91.761 32 43.2h
LAMB 2k 250k 91.946 64 21.4h No loss in
LAMB 4k 125k 91.137 128 693.6m‘/ test performance
LAMB 8k 62500 91.263 256 M
LAMB 16k 31250 91.345 y 200.0m
LAMB 32k 15625 91.475 /’1024 101.2m
LAMB 64k/32k 8599 90.584 1024 | 76.19m

Algorithmic Intelligence Lab * source : You et al., “Large Batch Optimization for Deep Learning: Training BERT in 76 Minutes”, ICLR 2020 31

Large Batch Training: LARS & LAMB

e Currently, LARS & LAMB are widely adopted in the deep learning community

| Teams I Date I Accuracy | Time | Optimizer I
Microsoft (He et al.) 12/10/2015 75.3% 29h Momentum SGD
Facebook (Goyal et al.) | 06/08/2017 | 76.3% 65m Momentum SGD
Berkeley (You et al.) 11/02/2017 75.3% 48m || LARS (You et al.)
Berkeley (You et al.) 11/07/2017 75.3% 31m ||LARS (You et al.)
PFN (Akiba et al.) 11/12/2017 | 74.9% | 15m | RMSprop + SGD
Berkeley (You et al.) 12/07/2017 74.9% 14m |JLARS (You et al.)
Tencent (Jia et al.) 07/30/2018 75.8% 6.6m |JLARS (You et al.)
Sony (Mikami et al.) 11/14/2018 75.0% 3.7m [|LARS (You et al.)
)

)

Google (Ying et al.) 11/16/2018 76.3% 2.2m ||LARS (You et al.
Fujitsu (Yamazaki et al.) | 03/29/2019 75.1% 1.25m |JLARS (You et al.
Google (Kumar et al.) 07/10/2019 75.9% 67.1s [LLARS (You et al.)

ImageNet/ResNet-50 Training Speed Records

8000
6000

4000

Examples/s

2000

Number of machines

LAMB enables scaling Transformer-XL to 128 GPUs

SimCLR Framework

Representation

Xj
h; b2
| a_ Encoder [T} Dense Relu Dense »[] —

Data Maximize
Augmentation similarity

Original _“ ——Encoder —_ T~ pense Retu pense »[TT] —
Image hj !

X; : %

T)
Transformed Base Encoder Projection Head
Images f() [:[0]
Downstream
tasks

SimCLR uses LARS for training

e Training Optimizers
o Fused Adam optimizer and arbitrary torch.optim.Optimizer
o Memory bandwidth optimized FP16 Optimizer
o Large Batch Training with LAMB Optimizer
o Memory efficient Training with ZeRO Optimizer
o CPU-Adam

DeepSpeed (a large-scale DL optimization library)
provides a LAMB implementation

* source : https://www.voutube.com/watch?v:kwEBP-Wbtd(l

Algorithmic Intelligence Lab

*sourcq But actually... 32

https://www.youtube.com/watch?v=kwEBP-Wbtdc&ab_channel=NUSDepartmentofComputerScience
https://amitness.com/2020/03/illustrated-simclr

Large Batch Training: Sanity Check

* Arecent paper [Nado’21] questions the effectiveness of LARS & LAMB
* Good performance more due to subtle implementation details
* For ResNet-50,
* Unconventional BatchNorm hyperparameters;
* No L2-regularization on bias parameters nor on BN parameters; etc.
* Nesterov works just as well with similar modifications
* For BERT,

* Fixing BERT open source code’s bug in Adam and learning schedule leads to
good performance

Batch size | Step budget | LAMB | Adam

Optimizer | Train Acc | Test Acc 32k 15,625 91.48 | 91.58
Nesterov 78.97% 75.93% 65k/32k 8,599 90.58 | 91.04
LARS 78.07% | 75.97% ok 7.818 — 20.46

Table 4. Using Adam for pretraining exceeds the reported perfor-
mance of LAMB in You et al. (2019) in terms of F1 score on the
downstream SQuaD v1.1 task.

Table 3. Median train and test accuracies over 50 training runs for
Nesterov momentum Configuration B and LARS. (Batch size 32k)

 Whether layer-wise adaptive learning rate really is useful is an open question

Algorithmic Intelligence Lab * source : Nado et al., “A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes”, 2021 33

Table of Contents

3. Normalization Techniques
* Batch Normalization

Algorithmic Intelligence Lab

34

Normalization

* Normalization is widely-used technique to stabilize training process
 Stabilizes training by adjusting the scale of inputs within unit variance

Data Normalization

Original data Mean subtracted Normalized variance

U
- O = N W »

| |
NOH O H N W s

—2F A X

1 | U
A W N H O H N W B

-4

3 4 -4 -3 -2 -1 0 1 2 3 4

T —

 Commonly used in training recent deep learning models

transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, ©.224, 0.225])

Algorithmic Intelligence Lab *source : https://towardsdatascience.com/regularization-part-4-2ee8e7aa60ec 35

Normalization: Batch Normalization [loffe & Szezegy’15]

* Batch Normalization: Normalize the outputs within the network

Standard Network

Adding a BatchNorm layer (between weights and activation function)

Computed using samples within batch . . & xNxCxHxW
b | 1 N H W
yichw — 7) /6 i=1 h=1w=1
O-C) 1 N H W ,
l ¢ = NHW 2= 2~ (Tichw — 1)
Learnable Parameters « i=1 h=1w=1

* source : loffe and Szegedy., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, arXiv 2019
Algorithmic Intelligence Lab * source : https://gradientscience.org/batchnorm/ 36

Normalization: Batch Normalization [loffe & Szezegy’15]

* Batch Normalization: Normalize the outputs within the network

Standard Network

Adding a BatchNorm layer (between weights and activation function)

* Batch normalization stabilizes training and widely used in recent works

Learning Rate=0.1 Learning Rate=0.5

—— Standard
—— Standard + BatchNorm

—— Standard
50

—— Standard + BatchNorm

Training Accuracy (%)
Training Accuracy (%)

0 5k 10k 15k 0 5k 10k 15k

Steps Steps
VGG Network on CIFAR10

* source : loffe and Szegedy., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, arXiv 2019
Algorithmic Intelligence Lab * source : https://gradientscience.org/batchnorm/ 37

Understanding Batch Normalization

Why does Batch Normalization (BN) work?

1. BN eliminates mean-shift
* Average channel means and variances at initialization
 Mean and variance grow exponentially in unnormalized network

45 —— channel means, with BN

channel stds, with BN
—}— channel means, w/o BN

3.0 —}— channel stds, w/o BN

1.5

0.0 *\ ‘

-1.5

Log [magnitude]

7

6 18 30 42 54 66 78 90 102 110
Layer

* BN eliminates mean-shift by making mean activation zero [Brock’21]

Algorithmic Intelligence Lab *source : Bjorck et al., “Understanding Batch Normalization”, NeurIPS 2018 38

Understanding Batch Normalization

Why does Batch Normalization (BN) work?

2. BN downscales the residual branch
* BN is commonly applied to residual path of ResNet [He’16]

* This reduces the scale of activations on residual branches at initialization

* Biases the signal towards the skip path [De & Smith’20], which enables

stable training 4
RelLU

+)«
’ IIIIIIIIIIIIIIIIIII

Batch norm

t
3x3 Conv . .
Small scale of activation 1 : : Biases the signal towards

on Residual Path RefLU P Identity | the skip path

Batch norm
1

1
1
1
1
:
: 3x3 Conv . .
1
1
1
1
1
1

Algorithmic Intelligence Lab 39

Understanding Batch Normalization

Why does Batch Normalization (BN) work?

3. BN has a regularizing effect
* Noise in the batch statistics acts as a regularizer [Luo’18]
* Using small batch for computing statistics leads to noise in statistics

Yichw = 7 -

Computed using samples within batch . & xNxOxHExwW
t_l 1 N H W
Lichw| — |Hc | He = NHW Sj Sj Sj Lichw
Oc 1 N H W
O-g — NHW 2— £ J(xichw - ,LL’L)2
1=1 h=1w=1

* [Hoffer’17] show that test accuracy of batch-normalized network can
further be improved by tuning batch size

*source: Hoffer et al., “Train longer, generalize better: closing the generalization gap in large batch training of neural networks”, NeurIPS 2017

Algorithmic Intelligence Lab

*source : Luo et al., “Towards Understanding Regularization in Batch Normalization”, ICLR 2018 40

Understanding Batch Normalization

Why does Batch Normalization (BN) work?

4. BN allows efficient large-batch training
e [Santurkar’18] show that BN smoothens the loss landscape
* This increases the largest stable learning rate [Bjorck’18]
* Which is essential to large-batch training

Sensitivity of Loss to learning rate Sensitivity of Gradient to learning rate
L(xz+nVL(x)),n € [0.0504] [|[VL(z)— VL(x+nVL(x))||,n € [0.05,0.4
100 mn Standard 250 @ Standard
) m Standard + BatchNorm é oo @ Standard + BatchNorm
100 § 5: ,u Ty ~‘L HMJ ‘ A
’ 3 Steps - - ’ a Steps . o

*source: Santurkar et al., “How Does Batch Normalization Help Optimization”, NeurlPS 2018
*source : Bjorck et al., “Understanding Batch Normalization”, NeurlPS 2018

Algorithmic Intelligence Lab * source : https://gradientscience.org/batchnorm/ 41

Variants of Batch Normalization: Layer Normalization

* Layer Normalization [LN; Ba’16]

* LN normalizes over channels, instead of batch

NxCxHxW
Tichw € X

€T — -
ywhw:,)/(zcht(z; Ml)"‘ﬁ
H W

Q

Lichw

N

1
i = CHW

—_

c h w=

> 1]
= [

NME

(xichw - :uz)2

1
‘" CHW

N\
>
L
.
i
—

C

* (+) Works well for small-batch training

* (+) Effective for sequential models

* BN requires different statistics for each time-step of RNNs

Algorithmic Intelligence Lab

* source : Ba et al., “Layer Normalization”, arXiv 2016

* source : Wu and He., “Group Normalization”, ECCV 2018 42

Variants of Batch Normalization: Instance Normalization

* Instance Normalization [IN; Ulyanov’16]
* IN normalizes over each channel, instead of batch

* (+) Works well for small-batch training

 (+) Effective for generative models
* Can remove instance-wise difference

High contrast Low contrast

* source : Ulyanov et al., “Instance Normalization: The Missing Ingredient for Fast Stylization”, arXiv 2016
Algorithmic Intelligence Lab * source : Wu and He., “Group Normalization”, ECCV 2018 43

Variants of Batch Normalization: Group Normalization

* Group Normalization [GN; Wu’18]

* Performance of LN and IN is limited in visual recognition tasks
* LN normalizes over G group of channels, instead of batch

* Inspired by classical approaches like SIFT/HOG that utilize
group-wise features and normalization

Group Norm

* (+) Works well for small-batch training
* (+) Effective for visual recognition

* (-) Worse than BN in large-batch training

Algorithmic Intelligence Lab

Groups are decided by dividing C by G

36

—+Batch Norm
-|~Group Norm

0
=

error (%)
[y} [N} (O8] W
N s} [} [\

NS}
I-lk

3%}
[N}

32 16 8 4 2
batch size (images per worker)

* source : Wu and He., “Group Normalization”, ECCV 2018
44

Table of Contents

3. Normalization Techniques

* Normalization-Free Network (NFNet)

Algorithmic Intelligence Lab

45

Understanding Batch Normalization

* However, BN also has practical disadvantages
1. Sensitive to batch size
2. Computationally expensive
3. Discrepancy in the behavior of model during training and inference time
4. Breaks the independence between training examples in the minibatch

Algorithmic Intelligence Lab * source : Wu et al., “Group Normalization”, ECCV 2018 46

Understanding Batch Normalization

* Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves
strong results on ImageNet benchmark

 NFNet removes BN but maintains the strengths of BN

e Strength 1. Eliminates mean-shift

» NFNet introduces Scaled Weight Standardization [Brock’21a] that
reparameterizes the convolutional layer as

W-- _ Wij — M4
\/NUz' ’

where p; = (1/N) 32, Wij, 07 = (1/N) 3°;(Wij — i),

(1) Weight Standardization

Kernel Size

(+) Computationally cheap
(+) No discrepancy in training / test behavior
(+) No dependence between batch samples

* source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021
* source : Qiao et al., “Micro-Batch Training with Batch-Channel Normalization and Weight Standardization”, arXiv 2019 47

Understanding Batch Normalization

* Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves
strong results on ImageNet benchmark

 NFNet removes BN but maintains the strengths of BN

* Strength 2. Downscales the residual branch

» NFNet introduces a small scalar to suppress the scale of activations on

residual branch A

RelLU

+)«

ais set to small value
(=0.2) @ 0

3x3 Conv Identity
1 A
RelU

t
3x3 Conv

X

* source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021 48

Understanding Batch Normalization

* Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves
strong results on ImageNet benchmark

 NFNet removes BN but maintains the strengths of BN

» Strength 3. Has a regularizing effect
» NFNet utilizes additional regularizations

Present with Always
probability p present I
(a) At training time) At test time F
Dropout Stochastic Depth
[Srivastava’14] [Huang’16]

* source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021
* source : Srivastava et al., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JLMR 2014
Algorithmic Intelligence Lab * source : Huang et al., “Deep Networks with Stochastic Depth”, ECCV 2016 49

Understanding Batch Normalization

* Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves
strong results on ImageNet benchmark

 NFNet removes BN but maintains the strengths of BN

* Strength 4. Allows efficient large-batch training
» NFNet introduces Adaptive Gradient Clipping

Measures how much single gradient
update will change weight

| - ||~ : frobenius norm

WE|% ol ||GY
)\wa if M >)\, G' : Gradient of I-th layer

£ |Gl F W7
Gi — Gﬁ : h : ,F W' : Weight of [-th layer
{ \ otherwise. G! : i-th row of of matrix G’
L. .7l
If update is too drastic, clip the gradient Wi : i-th row of of matrix W

* (+) Not sensitive to clipping threshold hyperparameter

Algorithmic Intelligence Lab * source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021 50

Understanding Batch Normalization

* Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves

strong results on ImageNet benchmark

 NFNet removes BN but maintains the strengths of BN

87

@
o

©
vl

@
i

Lambdaf{et-152
[2

©
[

©
N

] DeIT.—2,24
¢° BoTNet-59

ImageNet Top-1 Accuracy (%)

)
=2

[}
1
1
]
1
1

]

JEffNet-B2

80

< EffNet-B5

o« °DelT-384

Fa NFNet-F5

F3

JLambdaNet-420
- BoTNet-128-T7

0.0 0.2 0.4

Algorithmic Intelligence Lab

1.4

O:G 0.8 1.0 1.2
Training Latency (s/step) on TPUv3, Batch Size per Device = 32

* source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021 51

Model | #FLOPs #Params | Top-1 Top-5 | TPUv3 Train GPU Train
ResNet-50 410B 260M | 786 943 | 41.6ms 35.3ms

EffNet-BO 0.39B 53M | 771 933 | 5l.lms 44.8ms

SENet-50 409B 280M | 794 946 | 64.3ms 59.4ms

NFNet-FO 12388 71.5M | 83.6 968 | 73.3ms 56.7ms

EffNet-B3 L80B 12.0M | 81.6 957 | 129.5ms 116.6ms
LambdaNet-152 - 51.5M | 830 963 | 138.3ms 135.2ms
SENet-152 19.04B 66.6M | 83.1 964 | 149.9ms 151.2ms
BoTNet-110 1090B 54.7M | 828 963 | 181.3ms -

| NFNet-F1 3554B 132.6M | 847 97.1 | 1585ms 133.9ms |
EffNet-B4 420B 19.0M | 829 964 | 2459ms 221.6ms
BoTNet-128-T5 19.30B___75.M | 835 96.5 | 355.2ms =

[NFNet-F2 62.59B 193.8M | 85.1 97.3 | 2958ms 226.3ms |
SENet-350 52.90B 115.2M | 83.8 96.6 | 593.6ms -
EffNet-BS 9.90B 30.0M | 83.7 967 | 450.5ms 458.9ms
LambdaNet-350 - 105.8M | 84.5 97.0 | 4714ms -
BoTNet-77-T6 2330B 539M | 840 967 | 578.1ms -

| NFNet-F3 11476B 2549M | 857 97.5 | 5322ms 524.5ms |
LambdaNet-420 - 1248M | 84.8 970 | 593.9ms -
EffNet-B6 19.00B 43.0M | 840 968 | 775.7ms 868.2ms
BoTNet-128-T7 45.80B 75IM | 847 97.0 | 804.5ms -

[NFNet-F4 21524B 316.IM | 859 97.6 | 1033.3ms 1190.6ms |
EffNet-B7 37.00B 66.0M | 84.7 97.0 | 1397.0ms 1753.3ms
DelT 1000 epochs — 87.0M 85.2 — — —
EffNet-B8+MaxUp | 62.50B 87.4M 85.8 — — —

| NFNet-F5 289.76B 377.2M | 860 97.6 | 1398.5ms 2177.1ms |
NFNet-F5+#SAM | 289.76B 377.2M | 86.3 97.9 | 1958.0ms -
NFNet-F6+SAM | 377.28B 4384M | 865 979 | 2774.lms -~

Table of Contents

1. Introduction
* Empirical risk minimization (ERM)

2. Stochastic Gradient Descent
e Gradient descent (GD) and stochastic gradient descent (SGD)
* Momentum and adaptive learning rate methods
e Learning rate scheduling
e Large batch training

3. Normalization Techniques
e Batch Normalization
* Normalization-Free Network (NFNet)

4. Summary

Algorithmic Intelligence Lab

52

Summary

* Deep learning is scaling up fast

* Accordingly, many optimization techniques have been proposed for scalable and
efficient training

* SGD is an essential ingredient for training deep neural networks
 Momentum/adaptive optimizers are widely used
* Learning rate scheduling is often important
* Optimization becomes more tricky when scaling to large batch sizes

* Batch Normalization is also extensively used
* Chances are, there exists some variant of BN that will work for your application
* Many explanations as to why BN works
* There is a recent effort to do away with BN altogether (NFNet)

53

References

» [Nesterov’ 1983] Nesterov. “A method of solving a convex programming problem with convergence rate O(1/k”2).”
1983
link: http://mpawankumar.info/teaching/cdt-big-data/nesterov83.pdf

* [Duchi et al 2011] “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
link : http://www.jmlr.org/papers/volumel12/duchilla/duchilla.pdf

* [Tieleman’ 2012] Geoff Hinton’s Lecture 6e of Coursera Class
link : http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture slides lec6.pdf

* [Zeiler’ 2012] Zeiler, M. D. “ADADELTA: An Adaptive Learning Rate Method”
link : https://arxiv.org/pdf/1212.5701.pdf

* [Kingma and Ba., 2015] Kingma, D., Ba, J. “Adam: A method for stochastic optimization.” ICLR 2015
link : https://arxiv.org/pdf/1412.6980.pdf

* [Dozat’ 2016] Dozat, T. “Incorporating Nesterov Momentum into Adam.” ICLR Workshop 2016
link : http://cs229.stanford.edu/proj2015/054_report.pdf

* [Loshchilov et al., 2019] Loshchilov, 1., Hutter, F. “Decoupled Weight Decay Regularization.” ICLR 2019.
link : https://arxiv.org/pdf/1711.05101.pdf

* [Smith et al., 2017] Smith, Samuel L., Pieter-Jan Kindermans, Quoc V. Le. “Don't Decay the Learning Rate, Increase the
Batch Size.” ICLR 2017.
link : https://openreview.net/pdf?id=B1Yy1BxCZ

* [Liuetal., 2020] Liu, L., Jiang, H., He, P., Chen, W,, Liu, X., Gao, J., Han, J. “On the Variance of the Adaptive Learning
Rate and Beyond.” ICLR 2020.
link: https://arxiv.org/pdf/1908.03265.pdf

* [Smith’ 2015] Smith, Leslie N. "Cyclical learning rates for training neural networks.”
link : https://arxiv.org/pdf/1506.01186.pdf

* [Loshchilov et al., 2017] Loshchilov, I., Hutter, F. “SGDR: Stochastic Gradient Descent with Warm Restarts.” ICLR 2017.
link : https://arxiv.org/pdf/1608.03983.pdf

Algorithmic Intelligence Lab

http://mpawankumar.info/teaching/cdt-big-data/nesterov83.pdf
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/pdf/1212.5701.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://cs229.stanford.edu/proj2015/054_report.pdf
https://arxiv.org/pdf/1711.05101.pdf
https://openreview.net/pdf?id=B1Yy1BxCZ
https://arxiv.org/pdf/1908.03265.pdf
https://arxiv.org/pdf/1506.01186.pdf
https://arxiv.org/pdf/1608.03983.pdf

References

[Mahajan et al., 2018] Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., Maaten, L.

“Exploring the Limits of Weakly Supervised Pretraining.” ECCV 2018.
link: https://arxiv.org/pdf/1805.00932.pdf

[Yuetal., 2018] You, Y., Zhang, Z., Hsieh, C., Demmel, J., Keutzer, K. “ImageNet Training in Minutes.” 2018
link: https://arxiv.org/pdf/1709.05011.pdf

[Keskar et al., 2017] Keskar, N., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P. “On Large-Batch Training for Deep
Learning: Generalization Gap and Sharp Minima.” ICLR 2017
link: https://arxiv.org/pdf/1609.04836.pdf

[Li et al., 2018] Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T. “Visualizing the Loss Landscape of Neural Nets.”
NeurlPS 2018
link: https://arxiv.org/pdf/1712.09913.pdf

[Goyal et al., 2018] Goyal, P,, Dollar, P., Girshick, R., Noordhuis, P., Wesolowski, L., Aapo, K., Tulloch, A., Jia, Y., He, K.
“Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour.” 2018
link: https://arxiv.org/pdf/1706.02677.pdf

[He et al., 2019] He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M. “Bag of Tricks for Image Classification with
Convolutional Neural Networks.” CVPR 2019
link: https://arxiv.org/pdf/1812.01187.pdf

[You et al.,, 2017] You, Y., Gitman, |., Ginsburg, B. “Large Batch Training of Convolutional Networks.” 2017
link: https://arxiv.org/pdf/1708.03888.pdf

[You et al., 2020] You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., Song, X., Demmel, J., Keutzer, K., Hsieh, C.

“Large Batch Optimization for Deep Learning: Training BERT in 76 minutes.” ICLR 2020
link: https://arxiv.org/pdf/1904.00962.pdf

[Nado et al., 2021] Nado, Z., Gilmer, J., Shallue, C., Anil, R., Dahl, G. “A Large Batch Optimizer Reality Check: Traditional,

Generic Optimizers Suffice Across Batch Sizes.” 2021
link: https://arxiv.org/pdf/2102.06356.pdf

Algorithmic Intelligence Lab

55

https://arxiv.org/pdf/1805.00932.pdf
https://arxiv.org/pdf/1709.05011.pdf
https://arxiv.org/pdf/1609.04836.pdf
https://arxiv.org/pdf/1712.09913.pdf
https://arxiv.org/pdf/1706.02677.pdf
https://arxiv.org/pdf/1812.01187.pdf
https://arxiv.org/pdf/1708.03888.pdf
https://arxiv.org/pdf/1904.00962.pdf
https://arxiv.org/pdf/2102.06356.pdf

References

[loffe and Szegedy., 2015] loffe, S., Szegedy, C. “Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift.” 2015.
link: https://arxiv.org/pdf/1502.03167.pdf

[He et al., 2016] He, K., Zhang, X., Ren, S., Sun, J. “Deep Residual Learning for Image Recognition.” CVPR 2016.
link: https://arxiv.org/pdf/1512.03385.pdf

[De and Smith., 2020] De, S., Smith, S. “Batch Normalization Biases Residual Blocks Towards the Identity Function in
Deep Networks.” NeurlPS 2020.
link: https://arxiv.org/pdf/2002.10444.pdf

[Brock et al., 2021a] Brock, A., De, S., Smith, S. “Characterizing Signal Propagation to Close the Performance Gap in
Unnormalized ResNets.” ICLR 2021.
link: https://arxiv.org/pdf/2101.08692.pdf

[Luo et al., 2018] Luo, P, Wang, X., Shao, W., Peng, Z. “Towards Understanding Regularization in Batch Normalization.”
ICLR 2018
link: https://arxiv.org/pdf/1809.00846.pdf

[Hoffer et al., 2017] Hoffer, E., Hubara, I., Soudry, D. “Train longer, generalize better: closing the generalization gap in
large batch training of neural networks.” NeurlPS 2017
link: https://arxiv.org/pdf/1705.08741.pdf

[Santukar et al., 2018] Santurkar, S., Tsipras, D., llyas, A., Madry, A. “How Does Batch Normalization Help
Optimization?” NeurlPS 2018
link: https://arxiv.org/pdf/1805.11604.pdf

[Bjorck et al., 2018] Bjorck, J., Gomes, C., Selman, B., Weinberger, K. “Understanding Batch Normalization.” NeurlIPS
2018
link: https://arxiv.org/pdf/1806.02375.pdf

[Wu and He, 2018] Wu, Y., He, K. “Group Normalization.” ECCV 2018.
link: https://arxiv.org/pdf/1803.08494.pdf

Algorithmic Intelligence Lab

56

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/2002.10444.pdf
https://arxiv.org/pdf/2101.08692.pdf
https://arxiv.org/pdf/1809.00846.pdf
https://arxiv.org/pdf/1705.08741.pdf
https://arxiv.org/pdf/1805.11604.pdf
https://arxiv.org/pdf/1806.02375.pdf
https://arxiv.org/pdf/1803.08494.pdf

References

* [Brock et al., 2021b] Brock, A., De, S., Smith, S., Simonyan, K. “High-Performance Large-Scale Image Recognition

Without Normalization.” 2021.
link: https://arxiv.org/pdf/2102.06171.pdf

* [Qiaoetal., 2019] Qiao, S., Wang, H., Liu, C., Shen, W.,, Yuille, A. “Micro-Batch Training with Batch-Channel
Normalization and Weight Standardization.” 2019.
link: https://arxiv.org/pdf/1903.10520.pdf

* [Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, ., Salakhutdinov, R. “Dropout: A Simple
Way to Prevent Neural Networks from Overfitting.” JLMR 2014.
link: https://imlr.org/papers/volumel5/srivastaval4a/srivastaval4a.pdf

* [Huang et al. 2016] Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K. “Deep Networks with Stochastic Depth.” ECCV

2016.
link: https://arxiv.org/pdf/1603.09382.pdf

Algorithmic Intelligence Lab

57

https://arxiv.org/pdf/2102.06171.pdf
https://arxiv.org/pdf/1903.10520.pdf
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://arxiv.org/pdf/1603.09382.pdf

