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• Given training set 
• Prediction function                            parameterized by 
• Empirical risk minimization: Find a parameter that minimizes the loss function

where              is  a loss function e.g., MSE, cross entropy, 
• For example, neural network has

Empirical Risk Minimization (ERM)

4

Next, how to solve ERM?
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• Gradient descent (GD) updates parameters iteratively by taking gradient.

• (+) Converges to global (local) minimum for convex (non-convex) problem.
• (−) Not efficient with respect to computation time and memory space for huge #.
• For example, ImageNet dataset has $ =1,281,167 images for training.

Gradient Descent (GD)

6

parameters

learning rate

loss function

Next, efficient GD

1.2M of 256x256 RGB images
≈ 236 GB memory

random initialization
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• Stochastic gradient descent (SGD) use samples to approximate GD

• In practice, minibatch size       typically ranges from 32 to 512 (single machine)

• SGD can find the global solution when
1. loss function is convex
2. bounded variance
3. decreasing learning rate

• But, in many practical problems, SGD has some challenges

Stochastic Gradient Descent (SGD)

7* source : https://lovesnowbest.site/2018/02/16/Improving-Deep-Neural-Networks-Assignment-2/
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• Main practical challenges and current solutions:
1. Loss function is nonconvex and includes local minima/critical points
2. SGD can be too noisy and might be unstable
3. Hard to find a good learning rate

Hard to optimize practical problems

8* source : http://www.telesens.co/loss-landscape-viz/viewer.html

loss surface of a neural net (ResNet-50)

momentum
adaptive learning rate

bad local minima
critical point

Next, momentum
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1. Momentum gradient descent 
• Add decaying previous gradients (momentum).

• Equivalent to moving average with the fraction ! of previous update. 

• (+) Momentum reduces the oscillation and accelerates the convergence.

Momentum Methods 

10

momentum preservation ratio

SGD

friction to vertical fluctuation

acceleration to left
SGD + momentum 
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1. Momentum gradient descent 
• Add decaying previous gradients (momentum).

• (−) Momentum can fail to converge even for simple convex optimizations.
• Nesterov’s accelerated gradient (NAG) [Nesterov’83] uses gradient for 

approximate future position, i.e.,   

Momentum Methods: Nesterov’s Momentum

11

momentum preservation ratio

“lookahead” gradient

* source : Nesterov. “A method for solving the convex programming problem with convergence rate O(1/k^2).” 1983
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1. Momentum gradient descent 
• Add decaying previous gradients (momentum).

• Nesterov’s accelerated gradient (NAG) [Nesterov’83] uses gradient for 
approximate future position, i.e.,   

Momentum Methods: Nesterov’s Momentum

12

momentum preservation ratio

Quiz: fill in the pseudo code of Nesterov’ accelerated gradient

SGD
SGD + momentum

NAG
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Adaptive Learning Rate Methods: AdaGrad, RMSProp

13

2. Adaptively changing learning rate (AdaGrad, RMSProp)
• AdaGrad [Duchi’11] downscales a learning rate by magnitude of previous  gradients.

• (−) the learning rate strictly decreases and becomes too small for large iterations.

• RMSProp [Tieleman’12] uses the moving averages of squared gradient.

• Other variants also exist, e.g., Adadelta [Zeiler’12]

sum of all previous squared gradients

preservation ratio

* source : Duchi et al., “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.”, JMLR 2011
* source : Tieleman, Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.”, 2012

* source : Zeiler, “Adadelta: An Adaptive Learning Rate Method.”, 2012
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Adaptive Learning Rate Methods

14* source: animations from from Alec Radford’ blog

optimization on saddle point optimization on local optimum

• Visualization of algorithms

• Adaptive learning-rate methods, i.e., Adadelta and RMSprop are most suitable and 
provide the best convergence for these scenarios 

Next, momentum + adaptive learning rate
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1 + 2.  Combination of momentum and adaptive learning rate
• Adam (ADAptive Moment estimation) [Kingma’15] 

• Can be seen as momentum + RMSprop update.

• Other variants exist, e.g., Adamax [Kingma’14], Nadam [Dozat’16] 

Adaptive Learning Rate Methods: Adam

15

average of squared gradients

momentum

* source : Kingma and Ba. Adam: “A method for stochastic optimization.” ICLR 2015
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• Many learning problems optimize the loss with !" norm penalty 

• It is sometimes called “weight decay” since its gradient decays weight (for SGD):

• This equivalence does not hold for momentum/adaptive methods! (check)

• [Loshchilov’19] proposes decoupling weight decay from optimization steps

• For example, decoupled SGD with momentum iterates (also applicable to Adam)

SGD/Adam with decoupled weight decay

16

weight decaySGD on L2-norm penalty

gradient of loss with L2 penalty

weight decay

* source : Loshchilov et al., “Decoupled Weight Decay Regularization.”, ICLR 2019
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• Many learning problems optimize the loss with !" norm penalty 

• It is sometimes called “weight decay” since its gradient decays weight (for SGD)

• This equivalence does not hold for momentum/adaptive methods! (check)

• [Loshchilov’19] proposes decoupling weight decay from optimization steps

• The proposed AdamW outperforms Adam

SGD/Adam with decoupled weight decay

17* source : Loshchilov et al., “Decoupled Weight Decay Regularization.”, ICLR 2019
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Learning Rate Scheduling

19

3. Learning rate scheduling
• Learning rate is critical for minimizing loss !

* source : http://cs231n.github.io/neural-networks-3/

Too high → May ignore the narrow valley, can diverge
Too low → May fall into the local minima, slow converge
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3. Learning rate scheduling : Decay methods
• Constant learning rate often prevents convergence → needs decay!

• [Smith’17] showed “Decaying the learning rate = Increasing the batch size”

Learning Rate Scheduling: Decay

20

step decay exponential decay accuracy

• source : https://towardsdatascience.com/
* source : Smith et al., “Don't Decay the Learning Rate, Increase the Batch Size.”, ICLR 2017

https://towardsdatascience.com/
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3. Learning rate scheduling : Warm-up

• Adaptive optimizers like Adam suffer from large variance in the early training phase

• Large batch training with momentum SGD also has similar issues

• Warm-up heuristic is used to stabilize training

• RAdam [Liu'20] rectifies the variance of Adam lr, with theoretical justifications

• RAdam enjoys the benefits of warm-up, but no need to search for scheduling

Learning Rate Scheduling: Warm-up

21
* source : https://huggingface.co/transformers/main_classes/optimizer_schedules.html

* source : Liu et al., “On The Variance of The Adaptive Learning Rate and Beyond.”, ICLR 2020

“Start from a small lr,

Gradually increase it to the target lr”

Variance rectification term

(Check the paper for details!)
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3. Learning rate scheduling : Cyclical methods
• [Smith’15] proposed cyclical learning rate
• Increasing learning rate can be useful for escaping saddle points / bad local minima

• [Loshchilov’17] uses cosine cycling and warm restart
• Traverses several local minima by moving up and down the loss surface
• → suggests snapshot ensemble: ensemble over several local minima found

Learning Rate Scheduling: Cyclical 

22
* source : Smith., “Cyclical Learning Rates for Training Neural Networks.” 2015

* source : Loshchilov et al., “SGDR: Stochastic Gradient Descent with Warm Restarts.” ICLR 2017
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• Deep learning is scaling up very quickly

• Data parallelism enables large-scale training
• With k times more GPUs, global batch size increases by k
• Ignoring communication cost, k times fewer iterations per epoch

Large Batch Training: Motivation

24
* source : Mahajan, et al., “Exploring the limits of Weakly Supervised Pretraining”, ECCV 2018

* source: Yu, et al., “ImageNet Training in Minutes”, 2018

1. Aggregate 
gradient estimates

2. Synchronize
updated weights 
across workers

Larger model More computeLarger dataset

Instagram Dataset 
w/ ~1bil. images [Mahajan’18]
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• Naïvely increasing batch size → performance degradation

• In particular, generalization performance suffers

• One popular explanation: Sharp Minima Problem [Keskar’17]

• Large batch (LB) training finds a “sharp minimum”

Large Batch Training: Challenge

25
* source : Keskar et al., “On Large-batch Training for Deep Learning: Generalization Gap and Sharp Minima”, ICLR 2017

* source: Li et al., “Visualizing the Loss Landscape of Neural Nets”, NeurIPS 2018

Loss visualization along two random directions in the parameter space (VGG-9, CIFAR-10) [Li’18]

Sharp 

minimum

Sharp 

minimum

Loss

High sensitivity of training loss around aasdasd

→
is a poor minimizer for test loss
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• Naïvely increasing batch size → performance degradation
• In particular, generalization performance suffers

• One popular explanation: Sharp Minima Problem [Keskar’17]
• Caveat: this is not the same as overfitting!

• In particular, cannot apply early stopping to solve the problem

Large Batch Training: Challenge

26* source : Keskar et al., “On Large-batch Training for Deep Learning: Generalization Gap and Sharp Minima”, ICLR 2017

OverfittingLB Training

Generalization
Gap
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• Naïvely increasing batch size → performance degradation
• In particular, generalization performance suffers

• Another explanation: Optimization Difficulty [Goyal’18]
• [Goyal’18] suggests sharp minimum is not an inherent problem of LB training

• With careful optimization, LB training is possible w/o loss in generalization

Large Batch Training: Challenge

27* source : Goyal et al., “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, 2018

Up to batch size 8096,
No loss of validation accuracy!

ResNet-50
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• Learning rate warm-up [Goyal’18]

1. Linear scaling rule

• Given a fixed number of epochs, increasing batch size B by k times means 

k times fewer training iterations, for:

• To make up for this, learning rate must scale linearly with batch size

2. Warm-up

• During initial training phase, neural network is changing rapidly

• In this case, large learning rate can be destructive → ‘warm up’ the rate!

Large Batch Training: Learning rate warm-up

28
* source : Goyal et al., “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, 2018

* source: He et al., “Bag of Tricks for Image Classification with Convolutional Neural Networks”, CVPR 2019

Learning rate 

warm-up

Scales up to 

8096 batch size

(ImageNet, ResNet-50)
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• Layer-wise Adaptive Rate Scaling (LARS) [You’17]
• Ratio between weight and its gradient matters

• Note that standard SGD uses a fixed      for all weights 
• Observation: for LB training, weight-gradient ratio appears differently across layers!

Large Batch Training: LARS & LAMB

29
* source : You et al., “Large Batch Training of Convolutional Neural Networks”, 2017

* source: https://www.youtube.com/watch?v=kwEBP-Wbtdc&ab_channel=NUSDepartmentofComputerScience

Too large: slow learning

Too small: divergence
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• Layer-wise Adaptive Rate Scaling (LARS) [You’17]
• Solution: different learning rates for each layer

• By layer-wise scaling, vanishing/exploding gradient problem can be prevented
• Author claims noisy learning signal due to dynamic lr helps avoiding sharp minima

Large Batch Training: LARS & LAMB

30

global learning rate
local learning rate, 

where asdasas
is the trust coefficient

Scales up to 
32768 batch size

(ImageNet, ResNet-50)

* source : You et al., “Large Batch Training of Convolutional Neural Networks”, 2017
* source: https://www.youtube.com/watch?v=kwEBP-Wbtdc&ab_channel=NUSDepartmentofComputerScience
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• Layer-wise Adaptive Moments for Batch training (LAMB) [You’20]
• Warm-up [Goyal’18], LARS [You’17] both build on top of momentum-SGD
• LAMB is an extension of LARS to the ‘weight-adaptive’ optimizer Adam

• Successfully scales BERT training (batch size ~32768)
• Trains ResNet-50 with Adam to match the performance of momentum SGD

Large Batch Training: LARS & LAMB

31* source : You et al., “Large Batch Optimization for Deep Learning: Training BERT in 76 Minutes”, ICLR 2020

No loss in 
test performance



Algorithmic Intelligence Lab

• Currently, LARS & LAMB are widely adopted in the deep learning community

Large Batch Training: LARS & LAMB

32
* source : https://www.youtube.com/watch?v=kwEBP-Wbtdc&ab_channel=NUSDepartmentofComputerScience

* source : https://amitness.com/2020/03/illustrated-simclr

ImageNet/ResNet-50 Training Speed Records SimCLR uses LARS for training

LAMB enables scaling Transformer-XL to 128 GPUs
DeepSpeed (a large-scale DL optimization library)

provides a LAMB implementation

But actually…

https://www.youtube.com/watch?v=kwEBP-Wbtdc&ab_channel=NUSDepartmentofComputerScience
https://amitness.com/2020/03/illustrated-simclr
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• A recent paper [Nado’21] questions the effectiveness of LARS & LAMB

• Good performance more due to subtle implementation details
• For ResNet-50, 

• Unconventional BatchNorm hyperparameters;

• No L2-regularization on bias parameters nor on BN parameters; etc.

• Nesterov works just as well with similar modifications

• For BERT,

• Fixing BERT open source code’s bug in Adam and learning schedule leads to 
good performance

• Whether layer-wise adaptive learning rate really is useful is an open question

Large Batch Training: Sanity Check

33* source : Nado et al., “A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes”, 2021

(Batch size 32k)
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• Normalization is widely-used technique to stabilize training process
• Stabilizes training by adjusting the scale of inputs within unit variance

• Commonly used in training recent deep learning models

Normalization

35*source : https://towardsdatascience.com/regularization-part-4-2ee8e7aa60ec

transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
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• Batch Normalization: Normalize the outputs within the network

Normalization: Batch Normalization [Ioffe & Szezegy’15]

36
* source : Ioffe and Szegedy., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, arXiv 2019

* source : https://gradientscience.org/batchnorm/

Computed using samples within batch

Learnable Parameters
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• Batch Normalization: Normalize the outputs within the network

• Batch normalization stabilizes training and widely used in recent works

Normalization: Batch Normalization [Ioffe & Szezegy’15]

37
* source : Ioffe and Szegedy., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, arXiv 2019

* source : https://gradientscience.org/batchnorm/

VGG Network on CIFAR10
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Why does Batch Normalization (BN) work?

1. BN eliminates mean-shift
• Average channel means and variances at initialization
• Mean and variance grow exponentially in unnormalized network

• BN eliminates mean-shift by making mean activation zero [Brock’21]

Understanding Batch Normalization

38*source : Bjorck et al., “Understanding Batch Normalization”, NeurIPS 2018



Algorithmic Intelligence Lab

Why does Batch Normalization (BN) work?

2. BN downscales the residual branch
• BN is commonly applied to residual path of ResNet [He’16]

Understanding Batch Normalization

39

Small scale of activation 

on Residual Path

Biases the signal towards 

the skip path

• This reduces the scale of activations on residual branches at initialization

• Biases the signal towards the skip path [De & Smith’20], which enables 

stable training

3x3 Conv

Batch norm

ReLU

3x3 Conv

Batch norm

x

Identity

ReLU

+
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Why does Batch Normalization (BN) work?

3. BN has a regularizing effect
• Noise in the batch statistics acts as a regularizer [Luo’18]

• Using small batch for computing statistics leads to noise in statistics

• [Hoffer’17] show that test accuracy of batch-normalized network can 
further be improved by tuning batch size

Understanding Batch Normalization

40
*source: Hoffer et al., “Train longer, generalize better: closing the generalization gap in large batch training of neural networks”, NeurIPS 2017

*source : Luo et al., “Towards Understanding Regularization in Batch Normalization”, ICLR 2018

Computed using samples within batch
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Why does Batch Normalization (BN) work?

4. BN allows efficient large-batch training
• [Santurkar’18] show that BN smoothens the loss landscape
• This increases the largest stable learning rate [Bjorck’18]

• Which is essential to large-batch training

Understanding Batch Normalization

41

Sensitivity of Loss to learning rate

*source: Santurkar et al., “How Does Batch Normalization Help Optimization”, NeurIPS 2018
*source : Bjorck et al., “Understanding Batch Normalization”, NeurIPS 2018

* source : https://gradientscience.org/batchnorm/

Sensitivity of Gradient to learning rate
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• Layer Normalization [LN; Ba’16]
• LN normalizes over channels, instead of batch

• (+) Works well for small-batch training
• (+) Effective for sequential models

• BN requires different statistics for each time-step of RNNs

Variants of Batch Normalization: Layer Normalization

42
* source : Ba et al., “Layer Normalization”, arXiv 2016

* source : Wu and He., “Group Normalization”, ECCV 2018
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• Instance Normalization [IN; Ulyanov’16]

• IN normalizes over each channel, instead of batch

• (+) Works well for small-batch training

• (+) Effective for generative models

• Can remove instance-wise difference

Variants of Batch Normalization: Instance Normalization

43

High contrast Low contrast

* source : Ulyanov et al., “Instance Normalization: The Missing Ingredient for Fast Stylization”, arXiv 2016

* source : Wu and He., “Group Normalization”, ECCV 2018
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• Group Normalization [GN; Wu’18]
• Performance of LN and IN is limited in visual recognition tasks
• LN normalizes over G group of channels, instead of batch

• Inspired by classical approaches like SIFT/HOG that utilize
group-wise features and normalization

• (+) Works well for small-batch training
• (+) Effective for visual recognition

• (-) Worse than BN in large-batch training

Variants of Batch Normalization: Group Normalization

44

Groups are decided by dividing C by G

* source : Wu and He., “Group Normalization”, ECCV 2018
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• However, BN also has practical disadvantages
1. Sensitive to batch size
2. Computationally expensive
3. Discrepancy in the behavior of model during training and inference time
4. Breaks the independence between training examples in the minibatch

Understanding Batch Normalization

46* source : Wu et al., “Group Normalization”, ECCV 2018
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• Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves

strong results on ImageNet benchmark

• NFNet removes BN but maintains the strengths of BN

• Strength 1. Eliminates mean-shift
ØNFNet introduces Scaled Weight Standardization [Brock’21a] that 

reparameterizes the convolutional layer as

(+) Computationally cheap

(+) No discrepancy in training / test behavior

(+) No dependence between batch samples

Understanding Batch Normalization

47

* source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021

* source : Qiao et al., “Micro-Batch Training with Batch-Channel Normalization and Weight Standardization”, arXiv 2019
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• Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves
strong results on ImageNet benchmark
• NFNet removes BN but maintains the strengths of BN

• Strength 2. Downscales the residual branch
ØNFNet introduces a small scalar to suppress the scale of activations on 

residual branch

Understanding Batch Normalization

48

3x3 Conv

ReLU

3x3 Conv

x

Identity

ReLU

+

xαα is set to small value 
(=0.2)

* source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021
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• Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves
strong results on ImageNet benchmark
• NFNet removes BN but maintains the strengths of BN

• Strength 3. Has a regularizing effect
ØNFNet utilizes additional regularizations

Understanding Batch Normalization

49

Dropout
[Srivastava’14]

Stochastic Depth 
[Huang’16]

* source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021
* source : Srivastava et al., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JLMR 2014

* source : Huang et al., “Deep Networks with Stochastic Depth”, ECCV 2016
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• Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves
strong results on ImageNet benchmark
• NFNet removes BN but maintains the strengths of BN

• Strength 4. Allows efficient large-batch training
ØNFNet introduces Adaptive Gradient Clipping

Understanding Batch Normalization

50

Measures how much single gradient 
update will change weight

If update is too drastic, clip the gradient

• (+) Not sensitive to clipping threshold hyperparameter 

* source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021
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• Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves
strong results on ImageNet benchmark

• NFNet removes BN but maintains the strengths of BN

Understanding Batch Normalization

51* source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021



Algorithmic Intelligence Lab

1. Introduction
• Empirical risk minimization (ERM)

2. Stochastic Gradient Descent
• Gradient descent (GD) and stochastic gradient descent (SGD)
• Momentum and adaptive learning rate methods
• Learning rate scheduling
• Large batch training

3. Normalization Techniques
• Batch Normalization
• Normalization-Free Network (NFNet)

4. Summary

Table of Contents

52



Algorithmic Intelligence Lab

• Deep learning is scaling up fast
• Accordingly, many optimization techniques have been proposed for scalable and 

efficient training

• SGD is an essential ingredient for training deep neural networks
• Momentum/adaptive optimizers are widely used
• Learning rate scheduling is often important
• Optimization becomes more tricky when scaling to large batch sizes

• Batch Normalization is also extensively used
• Chances are, there exists some variant of BN that will work for your application
• Many explanations as to why BN works
• There is a recent effort to do away with BN altogether (NFNet)

Summary

53
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