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Empirical Risk Minimization (ERM)

Given training set {(Xl, Y1)y -5 (Xn,s yn)}

Prediction function f(x;,0) =~ y; parameterized by 0

Empirical risk minimization: Find a parameter that minimizes the loss function
mm— E 0(f(x4,0),y;) = L(O)

where £ (-,-) is aloss function e.g., MSE, cross entropy,
For example, neural network has f(x,0) =0, o (6)_,0(--- o (6] x)))
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Next, how to solve ERM?
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2. Stochastic Gradient Descent
* Gradient descent (GD) and stochastic gradient descent (SGD)
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Gradient Descent (GD)

» Gradient descent (GD) updates parameters iteratively by taking gradient.

parameters  loss function / random Initialization
I 1 Bo/n it TN
01 =0, —YVL(6;) AN N ——
— " P ——
learning rate = n Z V(O x4, yi)
i=1

* (+) Converges to global (local) minimum for convex (non-convex) problem.
* (—) Not efficient with respect to computation time and memory space for huge n.
* For example, ImageNet dataset has n =1,281,167 images for training.

1.2M of 256x256 RGB images
~ 236 GB memory
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Next, efficient GD
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Stochastic Gradient Descent (SGD)

» Stochastic gradient descent (SGD) use samples to approximate GD

l — E—
VL(H) - — Vﬁ(@,xz,yz) —
> =
= % > V6%, i)

sample 1€B

* In practice, minibatch size | B| typically ranges from 32 to 512 (single machine)

* SGD can find the global solution when
1. loss function is convex
2. bounded variance
3. decreasing learning rate

* But, in many practical problems, SGD has some challenges

Algorithmic Intelligence Lab * source : https://lovesnowbest.site/2018/02/16/Improving-Deep-Neural-Networks-Assignment-2/ 7



Hard to optimize practical problems

* Main practical challenges and current solutions:
1. Loss function is nonconvex and includes local minima/critical points
2. SGD can be too noisy and might be unstable —— momentum
3. Hard to find a good learning rate ———  adaptive learning rate

bad local minima . :
critical point

loss surface of a neural net (ResNet-50)

Next, momentum

Algorithmic Intelligence Lab * source : http://www.telesens.co/loss-landscape-viz/viewer.html 8
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2. Stochastic Gradient Descent

* Momentum and adaptive learning rate methods
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Momentum Methods

1. Momentum gradient descent
* Add decaying previous gradients (momentum).

0i11 =0 —my m; = pmy;_1 +yVL(6;)
momintum preservation ratio 1 € [0, 1]

* Equivalent to moving average with the fraction u of previous update.
0;1 =0 — v (VL(6;) + uVL(0:_1) + n°VL(Or_2) + - )

* (4) Momentum reduces the oscillation and accelerates the convergence.
SGD A

friction to vertical fluctuation

SGD + momentum < v

acceleration to left

Algorithmic Intelligence Lab 10



Momentum Methods: Nesterov’s Momentum

1. Momentum gradient descent
* Add decaying previous gradients (momentum).

011 =0, —my m; = pumy;_1 +yVL (Ht)
momintum preservation ratio 1 € [0, 1]

* (—) Momentum can fail to converge even for simple convex optimizations.

* Nesterov’s accelerated gradient (NAG) [Nesterov’83] uses gradient for
approximate future position, i.e.,

my < pmy_ +YyVL (0, — pm;_)

Momentum update: Nesterov Momentum

YVL(0; — pm;_1)

Gradient “lookahead” gradient

Velocity .
Velocity

actual step
p{my_q actual step

-
>

Gradient ’yVL(Ht)

Algorithmic Intelligence Lab * source : Nesterov. “A method for solving the convex programming problem with convergence rate O(1/k”2).” 1983 11



Momentum Methods: Nesterov’s Momentum

1. Momentum gradient descent
* Add decaying previous gradients (momentum).

0i11 =0 —my m; = pmy;_1 +yVL(6;)
momintum preservation ratio 1 € [0, 1]

* Nesterov’s accelerated gradient (NAG) [Nesterov’83] uses gradient for
approximate future position, i.e.,

m; < pmy_q +yVL (0, — pmy;_ )

= compute_gradi
= mu * m + learning_rate * dtheta

= theta - m

Quiz: fill in the pseudo code of Nesterov’ accelerated gradient

Algorithmic Intelligence Lab 12



Adaptive Learning Rate Methods: AdaGrad, RMSProp

2. Adaptively changing learning rate (AdaGrad, RMSProp)
* AdaGrad [Duchi’11] downscales a learning rate by magnitude of previous gradients.

041 =6, — 7=VL(0) Vi1 = vy + VL (0;)
!

sum of all previous squared gradients

* (—) the learning rate strictly decreases and becomes too small for large iterations.

* RMSProp [Tieleman’12] uses the moving averages of squared gradient.

Viy1 = pvg + (1 — p)VL (9t)2
|

preservation ratio /1t € [0, 1]

* Other variants also exist, e.g., Adadelta [Zeiler’12]

* source : Duchi et al., “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.”, JMLR 2011
* source : Tieleman, Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.”, 2012
Algorithmic Intelligence Lab * source : Zeiler, “Adadelta: An Adaptive Learning Rate Method.”, 2012 13



Adaptive Learning Rate Methods

* Visualization of algorithms

optimization on saddle point

-  SGD

= Momentum
= NAG

- Adagrad
Adadelta
Rmsprop

RO
SN

1.0

optimization on local optimum

- SGD

-  Momentum
-  NAG

- Adagrad
Adadelta
Rmsprop

* Adaptive learning-rate methods, i.e., Adadelta and RMSprop are most suitable and
provide the best convergence for these scenarios

Algorithmic Intelligence Lab

Next, momentum + adaptive learning rate

* source: animations from from Alec Radford’ blog
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Adaptive Learning Rate Methods: Adam

1+ 2. Combination of momentum and adaptive learning rate
* Adam (ADAptive Moment estimation) [Kingma’15]

momentum

~
Mg < 1My + (]. — [Ll)VL (Ht)

Ory1 < 0, — =m,
\/U 2
' Vi1 < /LQ’Ut\:F (1 — IuQ)VL (Ht)
average of squared gradients

e Can be seen as momentum + RMSprop update.
* Other variants exist, e.g., Adamax [Kingma’14], Nadam [Dozat’16]

N CIFAR10 ConvNet First 3 Epoches CIFAR10 ConvNet
— AdaGrad 5 — AdaGrad
— AdaGrad+dropout 07y : — AdaGrad+dropout
— SGDNesterov — SGDNesterov
2.5r : SGDNesterov+dropout 100k SGDNesterov+dropout
— Adam — Adam
Adam-+dropout Adam-+dropout

H H H H H 4 H H H H H H H i
0'6.0 0.5 1.0 15 2.0 2.5 3.0 10 0 5 10 15 20 25 30 35 40 45
iterations over entire dataset iterations over entire dataset

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

Algorithmic Intelligence Lab * source : Kingma and Ba. Adam: “A method for stochastic optimization.” ICLR 2015 15



SGD/Adam with decoupled weight decay

« Many learning problems optimize the loss with L? norm penalty
L(0) = L(6) + A[16]]2

* |t is sometimes called “weight decay” since its gradient decays weight (for SGD):

0 —nV (L(6) + A0]3) <+ (1—29\)60 —nVL(6)

SGD on L2-norm penalty v|6|3 = 26 weight decay

* This equivalence does not hold for momentum/adaptive methods! (check)
* [Loshchilov’19] proposes decoupling weight decay from optimization steps

* For example, decoupled SGD with momentum iterates (also applicable to Adam)

Myy1 < pamy + (1 — pn) (VL (0) + A6y)
gradient of loss with L2 penalty
Ht_|_1 < Ht — my — 277)\675
weight decay

Algorithmic Intelligence Lab * source : Loshchilov et al., “Decoupled Weight Decay Regularization.”, ICLR 2019 16



SGD/Adam with decoupled weight decay

Many learning problems optimize the loss with L? norm penalty
L(0) = L(6) + A[16]]2

* |t is sometimes called “weight decay” since its gradient decays weight (for SGD)

This equivalence does not hold for momentum/adaptive methods! (check)

[Loshchilov’19] proposes decoupling weight decay from optimization steps

The proposed AdamW outperforms Adam

Adam and Adamw with LR= 0 001 and dlfferent welght decays Adam and AdamW With LR=0.001 and diffefent Weight decays

10° 6 T
-J

= 55
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Algorithmic Intelligence Lab * source : Loshchilov et al., “Decoupled Weight Decay Regularization.”, ICLR 2019 17
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Learning Rate Scheduling

3. Learning rate scheduling
* Learning rate is critical for minimizing loss !

loss

low learning rate
high learning rate

>

good learning rate

epoch

Too — May ignore the narrow valley, can diverge
Too low — May fall into the local minima, slow converge

Algorithmic Intelligence Lab * source : http://cs231n.github.io/neural-networks-3/ 19



Learning Rate Scheduling: Decay

3. Learning rate scheduling : Decay methods
* Constant learning rate often prevents convergence — needs decay!

Learning rate Learning rate
010 - |earning rate - |earning rate
0.08
0.08
Y o 0.06
© 006 ®
- £ 004 £ oo 1 - Constant Ir
. N : Time-based
002 802 — Step decay
- Exponential decay
0.00 0.00 =
20 0 €0 80 100 20 0 60 &0 100
epoch epoch ® “ epochs ® ®
step decay exponential decay accuracy

* [Smith’17] showed “Decaying the learning rate = Increasing the batch size”

20 20

w
w

- Decaying learning rate
= Hybrid
- Increasing batch size

- Decaying learning rate
= Hybrid
- |ncreasing batch size

o
w

Training cross-entropy
-
5
&

Training cross-entropy
g

N 0 50 100 150 200 : 0 20000 40000 60000 80000
Number of epochs Number of parameter updates

e source : https://towardsdatascience.com/
Algorithmic Intelligence Lab * source : Smith et al., “Don't Decay the Learning Rate, Increase the Batch Size.”, ICLR 2017 20



https://towardsdatascience.com/

Learning Rate Scheduling: Warm-up

3. Learning rate scheduling : Warm-up
* Adaptive optimizers like Adam suffer from large variance in the early training phase

* Large batch training with momentum SGD also has similar issues
* Warm-up heuristic is used to stabilize training

;IIIIIII

1.00 A

0.75 4

0.50 4

0.25 +

0.00 4

“Start from a small Ir,
Gradually increase it to the target Ir”

T

T
"Quuemmmnn 200

T T T T
400 600 800 1000

* RAdam [Liu'20] rectifies the variance of Adam Ir, with theoretical justifications

* RAdam enjoys the benefits of warm-up, but no need to search for scheduling

Oiy1 < 0y —

92
20
88
86
84
82
80
78

Test accuracy

Algorithmic Intelligence Lab

RAdam

\

Different learning

rates lead to similar g [

performance.

0O 20 40 60 80 100 120 140 160 180

84

80
78

—m Variance rectification term

t .
/fvt (Check the paper for details!)
Adam Sensitive to the choice ~ SGD
of the learning rate.

= T~ — Ir=0.1
88

o6 = |r =0.03
84

82 = |r = 0.01
80

78 = |r = 0.003

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

* source : https://huggingface.co/transformers/main_classes/optimizer_schedules.html
* source : Liu et al., “On The Variance of The Adaptive Learning Rate and Beyond.”, ICLR 2020 21



Learning Rate Scheduling: Cyclical

3. Learning rate scheduling : Cyclical methods
* [Smith’15] proposed cyclical learning rate
* Increasing learning rate can be useful for escaping saddle points / bad local minima

CLR - ‘triangular' Policy CIFAR-10
0.006 T T
0.005
&
5 0004 L
2 ,
g
5 0.003 .
3
0002 0.4 ---Original learning rate
03 ---Exponential
0001 —CLR (our approach)
0 2000 4000 6000 8000 10000 0 2 3 4 5 6 7
Training Iterations Iteration

* [Loshchilov’17] uses cosine cycling and warm restart

x10'

* Traverses several local minima by moving up and down the loss surface

* — suggests snapshot ensemble: ensemble over several local minima found

0.010 051 Single Model °5+"Snapshot Ensemble
04 Standard LR Schedule = /) }} 044 Cyclic LR Schedule - A}/l
) JANN N ‘”)
0.008 03 \ 03 AN A
0.2 024
£ 0006 04 01 &
o . 114
g v 1{\ ‘
g 0 0 q Y
E ) !
3 0.004 -0.1 -0.14 A\ P
-0.2 02
0.002 R? A
-03 -0.3 e — K]
00009 - _05;3 50 _058 (7;,,‘: =2

0

Algorithmic Intelligence Lab
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* source : Loshchilov et al., “SGDR: Stochastic Gradient Descent with Warm Restarts.” ICLR 2017 22
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* source : Smith., “Cyclical Learning Rates for Training Neural Networks.” 2015
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Large Batch Training: Motivation

* Deep learning is scaling up very quickly

a5 Chart Avea | daifprine ol o 4

: 3 L II- = ll
I b | ) 1| unt‘,. un

140 e t"“"“""* i et 2

120

# Parameters (B)

BERT ROBERTa GPT-2 Turing NLG GPT-3

Instagram Dataset c
_ . loud TPU v3 Pod
w/ ~1bil. images [Mahajan’18] Model oue e

100+ petaflops

32TB HBM
2-D toroidal mesh network

Larger dataset Larger model More compute

* Data parallelism enables large-scale training
* With k times more GPUs, global batch size increases by k
* Ignoring communication cost, k times fewer iterations per epoch

2. Synchronize
updated weights
across workers

1. Aggregate sW)| |W

gradient estimates

7N
worker worker

* source : Mahajan, et al., “Exploring the limits of Weakly Supervised Pretraining”, ECCV 2018
* source: Yu, et al., “ImageNet Training in Minutes”, 2018 24
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Large Batch Training: Challenge

* Naively increasing batch size = performance degradation
* In particular, generalization performance suffers

* One popular explanation: Sharp Minima Problem [Keskar’17]
* Large batch (LB) training finds a “sharp minimum”

-050 S h arp

. minimum| 7|\ : minimum
“(e) 0.0, 128,7.37% ) 0.0,[8192] 11.07%  (g) Se-d. 128, 6.00% (h) 5e-4,[8192,/10.19%

Loss visualization along two random directions in the parameter space (VGG-9, CIFAR-10) [Li’18]

Training Function

! Testing Function

High sensitivity of training loss around (9:

ﬁ

rain
f(z)

Loss * . . ..
etram is a poor minimizer for test loss

Vo
\
\ /v
\ /

Flat Minimum Sharp Minimum

* source : Keskar et al., “On Large-batch Training for Deep Learning: Generalization Gap and Sharp Minima”, ICLR 2017
Algorithmic Intelligence Lab * source: Li et al., “Visualizing the Loss Landscape of Neural Nets”, NeurIPS 2018 25



Large Batch Training: Challenge

* Naively increasing batch size = performance degradation
* In particular, generalization performance suffers

* One popular explanation: Sharp Minima Problem [Keskar’17]
e Caveat: this is not the same as overfitting!
* |n particular, cannot apply early stopping to solve the problem

100
; A Training -
—
— ==
< -’
> ©
5 5 2
2 3 ’ \
g . | < ’ Testing
',I : - - SB - Training : y/
A0 e preseeees — SB-Testing | o
I . .. .
30b e, -~ LB-Training | el .
: — LB - Testing
20 l i i i Epoch
0 20 40 60 80 100
Epoch
LB Training Overfitting

Algorithmic Intelligence Lab * source : Keskar et al., “On Large-batch Training for Deep Learning: Generalization Gap and Sharp Minima”, ICLR 2017 26



Large Batch Training: Challenge

* Naively increasing batch size = performance degradation
* In particular, generalization performance suffers

* Another explanation: Optimization Difficulty [Goyal 18]
* [Goyal’18] suggests sharp minimum is not an inherent problem of LB training
* With careful optimization, LB training is possible w/o loss in generalization

NN
o
1

ResNet-50

W
(&)
T

Up to batch size 8096,
No loss of validation accuracy!

W
o
T

N
(&)

*
Y
I

]

I
. . . I 1 .
64 128 256 512 1k 2k 4k 8k 16k 32k 64k
mini-batch size

Figure 1. ImageNet top-1 validation error vs. minibatch size.

ImageNet top-1 validation error
N
o

Algorithmic Intelligence Lab * source : Goyal et al., “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, 2018 27



Large Batch Training: Learning rate warm-up

* Learning rate warm-up [Goyal’18]
1. Linear scaling rule
* Given a fixed number of epochs, increasing batch size B by k times means

k times fewer training iterations, for:
(# iters per epoch)
k

* To make up for this, learning rate must scale linearly with batch size

|Dgata| = B - (# iters per epoch) = kB -

2. Warm-up
* During initial training phase, neural network is changing rapidly
* |n this case, large learning rate can be destructive — ‘warm up’ the rate!

00.4 _

© —Cosine Decay

0.3 ! - Step Decay Scales up to

Learning rate /?0/2‘ : 8096 batch size

warm-up 50.1 : (ImageNet, ResNet-50)

oot} | T e e e _T==

0 20 40 60 80 100 120
Epoch

(a) Learning Rate Schedule

* source : Goyal et al., “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, 2018
Algorithmic Intelligence Lab * source: He et al., “Bag of Tricks for Image Classification with Convolutional Neural Networks”, CVPR 2019 28



Large Batch Training: LARS & LAMB

* Layer-wise Adaptive Rate Scaling (LARS) [You’17]
* Ratio between weight and its gradient matters

Bt || Too large: slow learning
0,11 =0, —YVL(O | <
o t 7 ( t) 7||VL ot || Too small: divergence

* Note that standard SGD uses a fixed Y for all weights
* Observation: for LB training, weight-gradient ratio appears differently across layers!

weights/gradients ratio in each AlexNet layer in large-batch situation

*en weights norm and gradients norm

raho betwe

yye . ayer . Ayer aye:

ln er 1D

) ) ) * source : You et al., “Large Batch Training of Convolutional Neural Networks”, 2017
Algorithmic Intelligence Lab * source: https://www.youtube.com/watch?v=kwEBP-Wbtdc&ab_channel=NUSDepartmentofComputerScience 29



Large Batch Training: LARS & LAMB

* Layer-wise Adaptive Rate Scaling (LARS) [You’17]
* Solution: different learning rates for each layer

.., =0, —~-\.VL(8.)

l Hgl ” local learning rate,
where n < 1

= || VL(HZ) || is the trust coefficient

"Y global learning rate

* By layer-wise scaling, vanishing/exploding gradient problem can be prevented
* Author claims noisy learning signal due to dynamic Ir helps avoiding sharp minima

AlexNet-BN with LARS, Layer 1: Convolutional, Weight AlexNet-BN with LARS, Layer 5: Convolutional, Weight
1.75 4
17.5 —— Batch 256 —— Batch 256
Batch 1024 1.50 Batch 1024
o —— Batch 8192 —— Batch 8192
s v 1.25
g g 1.00
gﬁ 10.0 g’\
c c
g 7.5 E 0.75
g s
- 5.0 0.50
25 0.25
Scales up to
0.0 0.00
0 20 40 60 80 100 0 20 40 60 80 100 H
Epochs Epochs 32768 batch size
(a) Local LR, convl-weights (c) Local LR , conv5-weights (Image N et: Res N et'SO)

) ) ) * source : You et al., “Large Batch Training of Convolutional Neural Networks”, 2017
Algorithmic Intelligence Lab * source: https://www.youtube.com/watch?v=kwEBP-Wbtdc&ab_channel=NUSDepartmentofComputerScience 30



Large Batch Training: LARS & LAMB

* Layer-wise Adaptive Moments for Batch training (LAMB) [You’20]
* Warm-up [Goyal’18], LARS [You’17] both build on top of momentum-SGD
* LAMB is an extension of LARS to the ‘weight-adaptive’ optimizer Adam
* Successfully scales BERT training (batch size ~32768)
* Trains ResNet-50 with Adam to match the performance of momentum SGD

Table 1: We use the F1 score on SQuAﬂ- curacy metric. The baseline F1 score is the
score obtained by the pre-trained model|(BERT-Large)|provided on BERT’s public repository (as of
February 1st, 2019). We use TPUv3s in our experiments. We use the same setting as the baseline: the
first 9/10 of the total epochs used a sequence length of 128 and the last 1/10 of the total epochs used
a sequence length of 512. All the experiments run the same number of epochs. Dev set means the test
data. It is worth noting that we can achieve better results by manually tuning the hyperparameters.
The data in this table is collected from the untuned version.
Solver ‘ batch size | steps | F1 score on dev set ‘ TPUs ‘ Time

Baseline 512 1000k 90.395 16 81.4h
LAMB 512 1000k 91.752 16 82.8h
LAMB 1k 500k 91.761 32 43.2h
LAMB 2k 250k 91.946 64 21.4h No loss in
LAMB 4k 125k 91.137 128 693.6m‘/ test performance
LAMB 8k 62500 91.263 256 M
LAMB 16k 31250 91.345 y 200.0m
LAMB 32k 15625 91.475 /’1024 101.2m
LAMB 64k/32k 8599 90.584 1024 | 76.19m

Algorithmic Intelligence Lab * source : You et al., “Large Batch Optimization for Deep Learning: Training BERT in 76 Minutes”, ICLR 2020 31



Large Batch Training: LARS & LAMB

e Currently, LARS & LAMB are widely adopted in the deep learning community

| Teams I Date I Accuracy | Time | Optimizer I
Microsoft (He et al.) 12/10/2015 75.3% 29h Momentum SGD
Facebook (Goyal et al.) | 06/08/2017 | 76.3% 65m Momentum SGD
Berkeley (You et al.) 11/02/2017 75.3% 48m || LARS (You et al.)
Berkeley (You et al.) 11/07/2017 75.3% 31m ||LARS (You et al.)
PFN (Akiba et al.) 11/12/2017 | 74.9% | 15m | RMSprop + SGD
Berkeley (You et al.) 12/07/2017 74.9% 14m |JLARS (You et al.)
Tencent (Jia et al.) 07/30/2018 75.8% 6.6m |JLARS (You et al.)
Sony (Mikami et al.) 11/14/2018 75.0% 3.7m [|LARS (You et al.)
)

)

Google (Ying et al.) 11/16/2018 76.3% 2.2m ||LARS (You et al.
Fujitsu (Yamazaki et al.) | 03/29/2019 75.1% 1.25m |JLARS (You et al.
Google (Kumar et al.) 07/10/2019 75.9% 67.1s [LLARS (You et al.)

ImageNet/ResNet-50 Training Speed Records

8000
6000

4000

Examples/s

2000

Number of machines

LAMB enables scaling Transformer-XL to 128 GPUs

SimCLR Framework

Representation

Xj
h; b2
| a_ Encoder [T} Dense Relu Dense »[ ] —

Data Maximize
Augmentation similarity

Original _“ ——Encoder —_ T~ pense Retu pense »[TT] —
Image hj !

X; : %

T )
Transformed Base Encoder Projection Head
Images f() [:[0]
Downstream
tasks

SimCLR uses LARS for training

e Training Optimizers
o Fused Adam optimizer and arbitrary torch.optim.Optimizer
o Memory bandwidth optimized FP16 Optimizer
o Large Batch Training with LAMB Optimizer
o Memory efficient Training with ZeRO Optimizer
o CPU-Adam

DeepSpeed (a large-scale DL optimization library)
provides a LAMB implementation

* source : https://www.voutube.com/watch?v:kwEBP-Wbtd(l

Algorithmic Intelligence Lab
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https://www.youtube.com/watch?v=kwEBP-Wbtdc&ab_channel=NUSDepartmentofComputerScience
https://amitness.com/2020/03/illustrated-simclr

Large Batch Training: Sanity Check

* Arecent paper [Nado’21] questions the effectiveness of LARS & LAMB
* Good performance more due to subtle implementation details
* For ResNet-50,
* Unconventional BatchNorm hyperparameters;
* No L2-regularization on bias parameters nor on BN parameters; etc.
* Nesterov works just as well with similar modifications
* For BERT,

* Fixing BERT open source code’s bug in Adam and learning schedule leads to
good performance

Batch size | Step budget | LAMB | Adam

Optimizer | Train Acc | Test Acc 32k 15,625 91.48 | 91.58
Nesterov 78.97% 75.93% 65k/32k 8,599 90.58 | 91.04
LARS 78.07% | 75.97% ok 7.818 — 20.46

Table 4. Using Adam for pretraining exceeds the reported perfor-
mance of LAMB in You et al. (2019) in terms of F1 score on the
downstream SQuaD v1.1 task.

Table 3. Median train and test accuracies over 50 training runs for
Nesterov momentum Configuration B and LARS. (Batch size 32k)

 Whether layer-wise adaptive learning rate really is useful is an open question

Algorithmic Intelligence Lab * source : Nado et al., “A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes”, 2021 33



Table of Contents

3. Normalization Techniques
* Batch Normalization

Algorithmic Intelligence Lab

34



Normalization

* Normalization is widely-used technique to stabilize training process
 Stabilizes training by adjusting the scale of inputs within unit variance

Data Normalization

Original data Mean subtracted Normalized variance

U
- O = N W »

| |
NOH O H N W s

—2F A X

1 | U
A W N H O H N W B

-4

3 4 -4 -3 -2 -1 0 1 2 3 4

T —

 Commonly used in training recent deep learning models

transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, ©.224, 0.225])

Algorithmic Intelligence Lab *source : https://towardsdatascience.com/regularization-part-4-2ee8e7aa60ec 35



Normalization: Batch Normalization [loffe & Szezegy’15]

* Batch Normalization: Normalize the outputs within the network

Standard Network

Adding a BatchNorm layer (between weights and activation function)

Computed using samples within batch . . & xNxCxHxW
b | 1 N H W
yichw — 7 ) /6 i=1 h=1w=1
O-C ) 1 N H W ,
l ¢ = NHW 2= 2~ (Tichw — 1)
Learnable Parameters « i=1 h=1w=1

* source : loffe and Szegedy., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, arXiv 2019
Algorithmic Intelligence Lab * source : https://gradientscience.org/batchnorm/ 36



Normalization: Batch Normalization [loffe & Szezegy’15]

* Batch Normalization: Normalize the outputs within the network

Standard Network

Adding a BatchNorm layer (between weights and activation function)

* Batch normalization stabilizes training and widely used in recent works

Learning Rate=0.1 Learning Rate=0.5

—— Standard
—— Standard + BatchNorm

—— Standard
50

—— Standard + BatchNorm

Training Accuracy (%)
Training Accuracy (%)

0 5k 10k 15k 0 5k 10k 15k

Steps Steps
VGG Network on CIFAR10

* source : loffe and Szegedy., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, arXiv 2019
Algorithmic Intelligence Lab * source : https://gradientscience.org/batchnorm/ 37



Understanding Batch Normalization

Why does Batch Normalization (BN) work?

1. BN eliminates mean-shift
* Average channel means and variances at initialization
 Mean and variance grow exponentially in unnormalized network

45 —— channel means, with BN

channel stds, with BN
—}— channel means, w/o BN

3.0 —}— channel stds, w/o BN

1.5

0.0 *\ ‘

-1.5

Log [ magnitude ]

7

6 18 30 42 54 66 78 90 102 110
Layer

* BN eliminates mean-shift by making mean activation zero [Brock’21]

Algorithmic Intelligence Lab *source : Bjorck et al., “Understanding Batch Normalization”, NeurIPS 2018 38



Understanding Batch Normalization

Why does Batch Normalization (BN) work?

2. BN downscales the residual branch
* BN is commonly applied to residual path of ResNet [He’16]

* This reduces the scale of activations on residual branches at initialization

* Biases the signal towards the skip path [De & Smith’20], which enables

stable training 4
RelLU

+ )«
’ IIIIIIIIIIIIIIIIIII

Batch norm

t
3x3 Conv . .
Small scale of activation 1 : : Biases the signal towards

on Residual Path RefLU P Identity | the skip path

Batch norm
1

1
1
1
1
:
: 3x3 Conv . .
1
1
1
1
1
1
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Understanding Batch Normalization

Why does Batch Normalization (BN) work?

3. BN has a regularizing effect
* Noise in the batch statistics acts as a regularizer [Luo’18]
* Using small batch for computing statistics leads to noise in statistics

Yichw = 7 -

Computed using samples within batch . & xNxOxHExwW
t_l 1 N H W
Lichw| — |Hc | He = NHW Sj Sj Sj Lichw
Oc 1 N H W
O-g — NHW 2— £ J(xichw - ,LL’L)2
1=1 h=1w=1

* [Hoffer’17] show that test accuracy of batch-normalized network can
further be improved by tuning batch size

*source: Hoffer et al., “Train longer, generalize better: closing the generalization gap in large batch training of neural networks”, NeurIPS 2017
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Understanding Batch Normalization

Why does Batch Normalization (BN) work?

4. BN allows efficient large-batch training
e [Santurkar’18] show that BN smoothens the loss landscape
* This increases the largest stable learning rate [Bjorck’18]
* Which is essential to large-batch training

Sensitivity of Loss to learning rate Sensitivity of Gradient to learning rate
L(xz+nVL(x)),n € [0.0504] [|[VL(z)— VL(x+nVL(x))||,n € [0.05,0.4
100 mn Standard 250 @ Standard
) m Standard + BatchNorm é oo @ Standard + BatchNorm
100 § 5: ,u Ty ~‘L HMJ ‘ A
’ 3 Steps - - ’ a Steps . o

*source: Santurkar et al., “How Does Batch Normalization Help Optimization”, NeurlPS 2018
*source : Bjorck et al., “Understanding Batch Normalization”, NeurlPS 2018
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Variants of Batch Normalization: Layer Normalization

* Layer Normalization [LN; Ba’16]

* LN normalizes over channels, instead of batch

NxCxHxW
Tichw € X

€T — -
ywhw:,)/( zcht(z; Ml)"‘ﬁ
H W

Q

Lichw

N

1
i = CHW

—_

c h w=

> 1]
= [

NME

(xichw - :uz)2

1
‘" CHW

N\
>
L
.
i
—

C

* (+) Works well for small-batch training

* (+) Effective for sequential models

* BN requires different statistics for each time-step of RNNs
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* source : Ba et al., “Layer Normalization”, arXiv 2016
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Variants of Batch Normalization: Instance Normalization

* Instance Normalization [IN; Ulyanov’16]
* IN normalizes over each channel, instead of batch

* (+) Works well for small-batch training

 (+) Effective for generative models
* Can remove instance-wise difference

High contrast Low contrast

* source : Ulyanov et al., “Instance Normalization: The Missing Ingredient for Fast Stylization”, arXiv 2016
Algorithmic Intelligence Lab * source : Wu and He., “Group Normalization”, ECCV 2018 43



Variants of Batch Normalization: Group Normalization

* Group Normalization [GN; Wu’18]

* Performance of LN and IN is limited in visual recognition tasks
* LN normalizes over G group of channels, instead of batch

* Inspired by classical approaches like SIFT/HOG that utilize
group-wise features and normalization

Group Norm

* (+) Works well for small-batch training
* (+) Effective for visual recognition

* (-) Worse than BN in large-batch training

Algorithmic Intelligence Lab

Groups are decided by dividing C by G

36

—+Batch Norm
-|~Group Norm

0
=

error (%)
[y} [N} (O8] W
N s} [} [\
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3%}
[N}

32 16 8 4 2
batch size (images per worker)

* source : Wu and He., “Group Normalization”, ECCV 2018
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3. Normalization Techniques

* Normalization-Free Network (NFNet)
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Understanding Batch Normalization

* However, BN also has practical disadvantages
1. Sensitive to batch size
2. Computationally expensive
3. Discrepancy in the behavior of model during training and inference time
4. Breaks the independence between training examples in the minibatch

Algorithmic Intelligence Lab * source : Wu et al., “Group Normalization”, ECCV 2018 46



Understanding Batch Normalization

* Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves
strong results on ImageNet benchmark

 NFNet removes BN but maintains the strengths of BN

e Strength 1. Eliminates mean-shift

» NFNet introduces Scaled Weight Standardization [Brock’21a] that
reparameterizes the convolutional layer as

W-- _ Wij — M4
\/NUz' ’

where p; = (1/N) 32, Wij, 07 = (1/N) 3°;(Wij — i),

(1) Weight Standardization

Kernel Size

(+) Computationally cheap
(+) No discrepancy in training / test behavior
(+) No dependence between batch samples

* source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021
* source : Qiao et al., “Micro-Batch Training with Batch-Channel Normalization and Weight Standardization”, arXiv 2019 47



Understanding Batch Normalization

* Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves
strong results on ImageNet benchmark

 NFNet removes BN but maintains the strengths of BN

* Strength 2. Downscales the residual branch

» NFNet introduces a small scalar to suppress the scale of activations on

residual branch A

RelLU

+ )«

ais set to small value
(=0.2) @ 0

3x3 Conv Identity
1 A
RelU

t
3x3 Conv

X

* source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021 48



Understanding Batch Normalization

* Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves
strong results on ImageNet benchmark

 NFNet removes BN but maintains the strengths of BN

» Strength 3. Has a regularizing effect
» NFNet utilizes additional regularizations

Present with Always
probability p present I
(a) At training time ) At test time F
Dropout Stochastic Depth
[Srivastava’14] [Huang’16]

* source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021
* source : Srivastava et al., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JLMR 2014
Algorithmic Intelligence Lab * source : Huang et al., “Deep Networks with Stochastic Depth”, ECCV 2016 49



Understanding Batch Normalization

* Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves
strong results on ImageNet benchmark

 NFNet removes BN but maintains the strengths of BN

* Strength 4. Allows efficient large-batch training
» NFNet introduces Adaptive Gradient Clipping

Measures how much single gradient
update will change weight

| - ||~ : frobenius norm

WE|% ol ||GY
)\wa if M > )\, G' : Gradient of I-th layer

£ |Gl F W7
Gi — Gﬁ : h : ,F W' : Weight of [-th layer
{ \ otherwise. G! : i-th row of of matrix G’
L. .7l
If update is too drastic, clip the gradient Wi : i-th row of of matrix W

* (+) Not sensitive to clipping threshold hyperparameter

Algorithmic Intelligence Lab * source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021 50



Understanding Batch Normalization

* Recently, [Brock’21b] proposed NFNet that does not utilize BN but achieves

strong results on ImageNet benchmark

 NFNet removes BN but maintains the strengths of BN
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1.4

O:G 0.8 1.0 1.2
Training Latency (s/step) on TPUv3, Batch Size per Device = 32

* source : Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021 51

Model | #FLOPs  #Params | Top-1  Top-5 | TPUv3 Train  GPU Train
ResNet-50 410B 260M | 786 943 |  41.6ms 35.3ms

EffNet-BO 0.39B 53M | 771 933 | 5l.lms 44.8ms

SENet-50 409B  280M | 794 946 |  64.3ms 59.4ms

NFNet-FO 12388 71.5M | 83.6 968 | 73.3ms 56.7ms

EffNet-B3 L80B  12.0M | 81.6 957 | 129.5ms  116.6ms
LambdaNet-152 - 51.5M | 830 963 | 138.3ms  135.2ms
SENet-152 19.04B  66.6M | 83.1 964 | 149.9ms  151.2ms
BoTNet-110 1090B  54.7M | 828 963 | 181.3ms -

| NFNet-F1 3554B  132.6M | 847 97.1 | 1585ms  133.9ms |
EffNet-B4 420B  19.0M | 829 964 | 2459ms  221.6ms
BoTNet-128-T5 19.30B___75.M | 835 96.5 | 355.2ms =

[ NFNet-F2 62.59B  193.8M | 85.1 97.3 | 2958ms  226.3ms |
SENet-350 52.90B  115.2M | 83.8  96.6 | 593.6ms -
EffNet-BS 9.90B  30.0M | 83.7 967 | 450.5ms  458.9ms
LambdaNet-350 - 105.8M | 84.5  97.0 | 4714ms -
BoTNet-77-T6 2330B  539M | 840 967 | 578.1ms -

| NFNet-F3 11476B  2549M | 857 97.5 | 5322ms  524.5ms |
LambdaNet-420 - 1248M | 84.8 970 | 593.9ms -
EffNet-B6 19.00B  43.0M | 840 968 | 775.7ms  868.2ms
BoTNet-128-T7 45.80B  75IM | 847 97.0 | 804.5ms -

[ NFNet-F4 21524B  316.IM | 859 97.6 | 1033.3ms  1190.6ms |
EffNet-B7 37.00B  66.0M | 84.7 97.0 | 1397.0ms  1753.3ms
DelT 1000 epochs — 87.0M 85.2 — — —
EffNet-B8+MaxUp | 62.50B 87.4M 85.8 — — —

| NFNet-F5 289.76B  377.2M | 860  97.6 | 1398.5ms  2177.1ms |
NFNet-F5+#SAM | 289.76B  377.2M | 86.3  97.9 | 1958.0ms -
NFNet-F6+SAM | 377.28B  4384M | 865 979 | 2774.lms -~
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Summary

* Deep learning is scaling up fast

* Accordingly, many optimization techniques have been proposed for scalable and
efficient training

* SGD is an essential ingredient for training deep neural networks
 Momentum/adaptive optimizers are widely used
* Learning rate scheduling is often important
* Optimization becomes more tricky when scaling to large batch sizes

* Batch Normalization is also extensively used
* Chances are, there exists some variant of BN that will work for your application
* Many explanations as to why BN works
* There is a recent effort to do away with BN altogether (NFNet)
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