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SUMMARY

We consider discrete graphical models (GMs), factorizing distributions
by hyper-graph G = (V , E):

Pr(x) =
1

Z

∏
α∈E

fα(xα), where Z =
∑
x∈X V

∏
α∈E

fα(xα),

where partition function Z is essential for inference, but require
approximation algorithms:

• Markov chain Monte Carlo (MCMC): running Markov chains for samples.

• Variational inference (VI): casting computation of Z as an optimization.

• Approximate elimination: approximately summing out variables one-by-one.

Our contribution: Inspired from tensor renormalization group (Levin &
Nave, 2007), we propose bucket renormalization, an approximate
elimination framework outperforming precedessors and faster than VI.

BACKGROUND: APPROXIMATE ELMINIATION

Bucket (or variable) elimination (BE): For each vertex i ∈ V with
bucket Bi = {fα : i ∈ α, α ∈ E}, sum out variable xi as follows

fBi\{i}(xBi\{i}) =
∑
xi∈X

∏
fα∈Bi

fα(xα),

then fBi is newly added to the GM, i.e., distributive law for computing Z .

• Intractable when size of bucket |V(Bi)| gets large (i.e., tree-width).

Mini-bucket elimination (MBE, Decther & Rish, 2003): Replace
marginalization process of BE with partitioned mini-buckets {B`i }

mi

`=1:

fB`i \{i}(xB`i \{i}) = max
xi

∏
fα∈B`i

fα(xα), fBmii \{i}(xB
mi
i \{i}) =

∑
xi∈X

∏
fα∈B

mi
i

fα(xα),

for ` = 1, · · · ,mi − 1 and {fBi\{i}`}
mi

`=1 are newly added to the GM.

• MBE upper bounds Z since fBi\{i} ≤
∏mi

`=1 f̃B`i \{i} for each step.

• Complexity of MBE is determined by size of mini-buckets, bounded by
|V(B`i )| ≤ ibound + 1, where ibound is called induced tree-width bound.

CONTRIBUTION: BUCKET RENORMALIZATION

Similar to MBE, we propose two algorithms that replace the marginalization
process of BE with its approximations:

• Mini-bucket renormalization (MBR): repeatedly renormalizing
mini-buckets via rank-1 approximation of mini-buckets.

• Global-bucket renormalization (GBR): calibrating the result of MBR
based on explicit approximation error given by global-bucket.

Both algorithms perform superior to its predecessors, and still much faster
than traditional variational inference algorithms.

MINI-BUCKET RENORMALIZATION (MBR)

Fig: MBR with elimination order o = 1, 2, 3, 4, 5 and ibound = 2.

Mini-Bucket Renormalization (MBR) eliminates each vertex i ∈ V in
elimination order o, with induced tree-width bound ibound as follows:

1. Partition the bucket Bi = {fα : i ∈ α, α ∈ E} into mini-buckets {B`i }
mi

`=1

where Bi =
⋃mi

`=1B`i , B
`1
i ∩ B

`2
i = ∅ and |V(B`i )| ≤ ibound + 1.

2. For ` = 1, · · · ,mi − 1, mini-bucket B`i is renormalized by replacing i by
replicates i ` and adding singleton factors r `i , ri ` for error compensation:

B̃`i ← {fα\{i}∪{i `}|fα ∈ B`i } ∪ {r `i , ri `}.

Fig: Renormalization of mini-buckets Ba1 = {f12, f13} and Bb1 = {f15, f16}
into B̃a1 = {f1a2, f1a3, r

a
1 , r1a} and B̃b2 = {f1b5, f1b6, r

b
1 , r1b}.

3. The singleton factors r `i and ri ` are chosen by comparing the factor induced

on xBi from mini-bucket B`i and its renormalization B̃`i :

min
r `i ,ri`

∑
xB`i
∈X V(B`i )

( ∏
fα∈B`i

fα(xα)−
∑
xi`

∏
fα∈B̃`i

fα(xα)

)2

,

which is solved via rank-1 truncated singular value decomposition (SVD) in
O(|X |ibound+2) complexity, but typically faster in existing SVD solvers.

4. Variables xi , xi1, · · · , ximi−1 are summed out seperately:

fB`i \{i}(xB`i \{i}) =
∑
xi`∈X

r `i (xi `)
∏
fα∈B`i

fα(xi `, xα\{i}∪{i `}),

fBmii \{i}(xB
mi
i \{i}) =

∑
xi∈X

mi−1∏
`=1

r `i (xi `)
∏

fα∈B
mi
i

fα(xα),

for ` = 1, · · · ,mi − 1, where computation and memory are bounded by
O(|X |ibound+1) and {fB`i \{i}}

mi

`=1 are newly added to the GM.

GLOBAL-BUCKET RENORMALIZATION (GBR)

Fig: Semantics of MBR without variable marginalization

• Approximation error made at each t-th steo of MBR can be explicitly
described as a GM renormalization process:

|Zt(r
(1), · · · , r (t−1))− Zt−1(r (1), · · · , r (t))|, (1)

where r (1), · · · , r (t) indicates the choice of singleton factors and Zt

corresponds to the partition function of t-th renormalized GM, i.e.,
global-bucket, with error compensating factors r (t).

• Global-Bucket Renormalization (GBR) calibrates each MBR choice
of singleton factors r (t) by minimizing approximated value of (1), with
Zt(·) being approximated via applying MBR:

|Z̃t(s
(1), · · · , s(t−1))− Z̃t−1(s(1), · · · , s(t))|,

where s(1), · · · , s(t) indicates the GBR’s choice of singleton factors and
Z̃t ≈ Zt results from MBR.

EXPERIMENTS

Complete graph, |V| = 15 Grid graph, 15× 15 Complete graph, |V| = 15 Grid graph, 15× 15

Complete graph, |V| = 15 Promedus dataset Linkage dataset

Fig: Performance comparison to popular approximate inference algorithms.

We compare with 5 algorithms:

1. Approximate eliminations: MBE, weighted MBE (WMBE).

2. VI: belief propagation (BP), mean-field (MF), generalized BP (GBP).

Comparison was done on 2 types of GMs:

1. Ising GM (complete, grid graphs) with interaction strength ∆.

2. UAI 2014 Inference Competition datasets, named Promedus (medical
diagnosis) and Linkage (genetic linkage).
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