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SUMMARY MINI-BUCKET RENORMALIZATION (MBR)

We consider discrete graphical models (GMs), factorizing distributions
by hyper-graph G = (V, £):

GLOBAL-BUCKET RENORMALIZATION (GBR)

Pr(x) = %H fa(Xa), where Z = Z H fa(Xa),

acé xc XV acé
where partition function Z is essential for inference, but require
approximation algorithms:

e Markov chain Monte Carlo (MCMC): running Markov chains for samples.
e Variational inference (VI): casting computation of Z as an optimization.
e Approximate elimination: approximately summing out variables one-by-one.

Fig: MBR with elimination order 0 = 1,2,3.4,5 and ibound = 2.

Our contribution: Inspired from tensor renormalization group (Levin & N_I'"_"B_UCket Renorma!lzatlon (MB_R) el'm'”at§5 each vertex / € V in
Nave, 2007), we propose bucket renormalization, an approximate elimination order o, with induced tree-width bound ibound as follows:
elimination framework outperforming precedessors and faster than VI. 1. Partition the bucket B; = {f, : i € @, € £} into mini-buckets {B!}",

where B; = ", B!, B* N B? = () and |V(BY)| < ibound + 1.

BACKGROUND: APPROXIMATE ELMINIATION

2. For { =1,---,m; — 1, mini-bucket B! is renormalized by replacing i by
Bucket (or variable) elimination (BE): For each vertex i € V' with replicates i* and adding singleton factors r!, r« for error compensation:

glf < {foz\{i}U{if}‘foz < B/g} U {rigv I’,-E}.

bucket B; = {f.: i € a,a € £}, sum out variable x; as follows

fBi\{i}(XBi\{i}) - Z H fo‘(xo‘)’

x;.€X f@EB,'
then fz. is newly added to the GM, i.e., distributive law for computing Z.

e Intractable when size of bucket |V(B;)| gets large (i.e., tree-width).

Fig: Semantics of MBR without variable marginalization

e Approximation error made at each t-th steo of MBR can be explicitly
described as a GM renormalization process:
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where rl1) ... 1) indicates the choice of singleton factors and Z,
corresponds to the partition function of t-th renormalized GM, i.e.,
global-bucket, with error compensating factors r{t).

¢ Global-Bucket Renormalization (GBR) calibrates each MBR choice
of singleton factors r(*) by minimizing approximated value of (1), with
Z:(-) being approximated via applying MBR:
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where st ... s() indicates the GBR’s choice of singleton factors and
Z, ~ Z; results from MBR.
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for {=1---.m;—1 and {fB,-\{i}E}Z?:'l are newly added to the GM. on xp. from mini-bucket I3; and its renormalization 3;: 5 — rem . e memeaneans
2 | = o 112 ten et o weR o wweE|| i
| . | | X i e A =
e MBE upper bounds Z since fp\in < 1,2, fBIg\{,-} for each step. min E H fa(xa) — E H fa(Xa) | N | Rl A s I I
. . . . . . r:,r. — S 14 ‘g15: Y ’ _ ° A
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Similar to MBE, we propose two algorithms that replace the marginalization 4. Variables x;, xi1, - - - , Xjm-1 are summjd out seperately: Fig: Performance comparison to popular approximate inference algorithms.
process of BE with its approximations: Tngiy(Xsgiy) = Z ri (xir) H JalXits Xa fijuginy ) We compare with 5 algorithms:
XX fo€B!

e Mini-bucket renormalization (MBR): repeatedly renormalizing

m,-—l
mini-buckets via rank-1 approximation of mini-buckets. Framm iy (Xpam () = r-g(x-z) £.(x)
B."\{i B\ i\ N a\ o )
o Global-bucket renormalization (GBRY): calibrating the result of MBR ) = 2 11 11

x,ieX (=1 faeBI{ni
based on explicit approximation error given by global-bucket. for { = 1.+ .m: — 1, where computation and memory are bounded by
: : : : ibound—+1 m;
Both algorithms perform superior to its predecessors, and still much faster O(|X]™“"%) and {fo\{i}}g:1 are newly added to the GM.

than traditional variational inference algorithms.
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1. Approximate eliminations: MBE, weighted MBE (WMBE).

2. VI: belief propagation (BP), mean-field (MF), generalized BP (GBP).
Comparison was done on 2 types of GMs:

1. Ising GM (complete, grid graphs) with interaction strength A.

2. UAI 2014 Inference Competition datasets, named Promedus (medical
diagnosis) and Linkage (genetic linkage).
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