Bucket Renormalization for Approximate Inference Sungsoo Ahn¹, Michael Chertkov^{2,3}, Adrian Weller^{4,5} and Jinwoo Shin^{1,6}

¹Korea Advanced Institute of Science and Technology (KAIST), ²Los Alamos National Laboratory (LANL), ³Skolkovo Institute of Science and Technology (Skoltech), ⁴University of Cambridge, ⁵The Alan Turing Institute, ⁶AITrics

SUMMARY

We consider discrete graphical models (GMs), factorizing distributions by hyper-graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:

$$\mathsf{Pr}(\mathbf{x}) = rac{1}{Z} \prod_{lpha \in \mathcal{E}} f_{lpha}(\mathbf{x}_{lpha}), \quad ext{where} \quad Z = \sum_{\mathbf{x} \in \mathcal{X}^{\mathcal{V}}} \prod_{lpha \in \mathcal{E}} f_{lpha}(\mathbf{x}_{lpha})$$

where **partition function** Z is essential for inference, but require approximation algorithms:

- Markov chain Monte Carlo (MCMC): running Markov chains for samples.
- Variational inference (VI): casting computation of Z as an optimization.
- Approximate elimination: approximately summing out variables one-by-one.

Our contribution: Inspired from tensor renormalization group (Levin & Nave, 2007), we propose **bucket renormalization**, an approximate elimination framework outperforming precedessors and faster than VI.

BACKGROUND: APPROXIMATE ELMINIATION

Bucket (or variable) elimination (BE): For each vertex $i \in V$ with bucket $\mathcal{B}_i = \{f_\alpha : i \in \alpha, \alpha \in \mathcal{E}\}$, sum out variable x_i as follows

$$f_{\mathcal{B}_i\setminus\{i\}}(\mathbf{x}_{\mathcal{B}_i\setminus\{i\}}) = \sum_{\mathbf{x}_i\in\mathcal{X}} \prod_{f_{\alpha}\in\mathcal{B}_i} f_{\alpha}(\mathbf{x}_{\alpha}),$$

then $f_{\mathcal{B}_i}$ is newly added to the GM, i.e., distributive law for computing Z.

• Intractable when size of bucket $|\mathcal{V}(B_i)|$ gets large (i.e., tree-width).

Mini-bucket elimination (MBE, Decther & Rish, 2003): Replace marginalization process of BE with partitioned mini-buckets $\{\mathcal{B}_i^\ell\}_{\ell=1}^{m_i}$:

$$f_{\mathcal{B}_{i}^{\ell}\setminus\{i\}}(\mathbf{x}_{\mathcal{B}_{i}^{\ell}\setminus\{i\}}) = \max_{x_{i}} \prod_{f_{\alpha}\in\mathcal{B}_{i}^{\ell}} f_{\alpha}(\mathbf{x}_{\alpha}), \quad f_{\mathcal{B}_{i}^{m_{i}}\setminus\{i\}}(\mathbf{x}_{\mathcal{B}_{i}^{m_{i}}\setminus\{i\}}) = \sum_{x_{i}\in\mathcal{X}_{i}} f_{\alpha}(\mathbf{x}_{\alpha}),$$

for $\ell = 1, \cdots, m_i - 1$ and $\{f_{\mathcal{B}_i \setminus \{i\}} \ell\}_{\ell=1}^{m_i}$ are newly added to the GM.

- MBE upper bounds Z since $f_{\mathcal{B}_i \setminus \{i\}} \leq \prod_{\ell=1}^{m_i} \widetilde{f}_{\mathcal{B}_i^\ell \setminus \{i\}}$ for each step.
- Complexity of MBE is determined by size of mini-buckets, bounded by $|\mathcal{V}(\mathcal{B}_i^{\ell})| \leq ibound + 1$, where *ibound* is called induced tree-width bound.

CONTRIBUTION: BUCKET RENORMALIZATION

Similar to MBE, we propose two algorithms that replace the marginalization process of BE with its approximations:

- Mini-bucket renormalization (MBR): repeatedly renormalizing mini-buckets via rank-1 approximation of mini-buckets.
- **Global-bucket renormalization (GBR)**: calibrating the result of MBR based on explicit approximation error given by global-bucket.

Both algorithms perform superior to its predecessors, and still much faster than traditional variational inference algorithms.

Fig:

MINI-BUCKET RENORMALIZATION (MBR)

 $(\mathbf{x}_{lpha}),$

 $f_{\alpha}(\mathbf{x}_{\alpha}),$ $f_{\alpha} \in \mathcal{B}_{i}^{m_{\mu}}$

Fig: MBR with elimination order o = 1, 2, 3, 4, 5 and *ibound* = 2.

Mini-Bucket Renormalization (MBR) eliminates each vertex $i \in V$ in elimination order o, with induced tree-width bound *ibound* as follows:

- 1. Partition the bucket $\mathcal{B}_i = \{f_\alpha : i \in \alpha, \alpha \in \mathcal{E}\}$ into mini-buckets $\{\mathcal{B}_i^\ell\}_{\ell=1}^{m_i}$ where $\mathcal{B}_i = \bigcup_{\ell=1}^{m_i} \mathcal{B}_i^{\ell}$, $\mathcal{B}_i^{\ell_1} \cap \mathcal{B}_i^{\ell_2} = \emptyset$ and $|\mathcal{V}(\mathcal{B}_i^{\ell})| \leq ibound + 1$.
- 2. For $\ell = 1, \dots, m_i 1$, mini-bucket \mathcal{B}_i^{ℓ} is renormalized by replacing *i* by replicates i^{ℓ} and adding singleton factors r_i^{ℓ} , $r_{i^{\ell}}$ for error compensation:

$$\mathcal{B}_i^\ell \leftarrow \{f_{\alpha \setminus \{i\} \cup \{i^\ell\}} | f_\alpha \in \mathcal{B}_i^\ell$$

3. The singleton factors r_i^{ℓ} and $r_{i^{\ell}}$ are chosen by comparing the factor induced on $\mathbf{x}_{\mathcal{B}_i}$ from mini-bucket \mathcal{B}_i^{ℓ} and its renormalization \mathcal{B}_i^{ℓ} :

$$\min_{\mathbf{x}_i^\ell, r_i^\ell} \sum_{\mathbf{x}_{\mathcal{B}_i^\ell} \in \mathcal{X}^{\mathcal{V}(\mathcal{B}_i^\ell)}} \left(\prod_{f_lpha \in \mathcal{B}_i^\ell} f_lpha(\mathbf{x}_lpha) - \sum_{\mathbf{x}_i^\ell} \prod_{f_lpha \in \widetilde{\mathcal{B}}_i^\ell} f_lpha(\mathbf{x}_lpha)
ight)^2.$$

which is solved via rank-1 truncated singular value decomposition (SVD) in $O(|\mathcal{X}|^{ibound+2})$ complexity, but typically faster in existing SVD solvers.

4. Variables $x_i, x_{i^1}, \dots, x_{i^{m_i-1}}$ are summed out seperately:

$$egin{aligned} &f_{\mathcal{B}_i^\ell ackslash \{i\}}(\mathbf{x}_{\mathcal{B}_i^\ell ackslash \{i\}}) = \sum_{x_i \in \mathcal{X}} r_i^\ell(x_{i^\ell}) \prod_{f_lpha \in \mathcal{B}_i^\ell} f_lpha(x_{i^\ell}, \mathbf{x}_{lpha ackslash \{i\}}) \ &f_{\mathcal{B}_i^{m_i} ackslash \{i\}}(\mathbf{x}_{\mathcal{B}_i^{m_i} ackslash \{i\}}) = \sum_{x_i \in \mathcal{X}} \prod_{\ell=1}^{m_i-1} r_i^\ell(x_{i^\ell}) \prod_{f_lpha \in \mathcal{B}_i^{m_i}} f_lpha(\mathbf{x}_lpha), \end{aligned}$$

for $\ell = 1, \dots, m_i - 1$, where computation and memory are bounded by $O(|\mathcal{X}|^{ibound+1})$ and $\{f_{\mathcal{B}_{i}^{\ell}\setminus\{i\}}\}_{\ell=1}^{m_{i}}$ are newly added to the GM.

- $\cup \{\mathbf{r}_i^\ell, \mathbf{r}_{i^\ell}\}.$

 $\cup\{i^\ell\},$

GLOBAL-BUCKET RENORMALIZATION (GBR)

described as a GM renormalization process:

$$|Z_t(r^{(1)},\cdots,$$

where $r^{(1)}, \dots, r^{(t)}$ indicates the choice of singleton factors and Z_t corresponds to the partition function of *t*-th renormalized GM, i.e., global-bucket, with error compensating factors $r^{(t)}$.

 $Z_t(\cdot)$ being approximated via applying MBR:

$$|\widetilde{Z}_t(s^{(1)},\cdots,s^{(t-1)})-\widetilde{Z}_{t-1}(s^{(1)},\cdots,s^{(t)})|,$$

where $s^{(1)}, \dots, s^{(t)}$ indicates the GBR's choice of singleton factors and $Z_t \approx Z_t$ results from MBR.

Fig: Performance comparison to popular approximate inference algorithms.

We compare with 5 algorithms:

- 1. Approximate eliminations: MBE, weighted MBE (WMBE). 2. VI: belief propagation (BP), mean-field (MF), generalized BP (GBP). Comparison was done on 2 types of GMs:

- 1. Ising GM (complete, grid graphs) with interaction strength Δ . 2. UAI 2014 Inference Competition datasets, named Promedus (medical diagnosis) and Linkage (genetic linkage).

Fig: Semantics of MBR without variable marginalization

• Approximation error made at each *t*-th steo of MBR can be explicitly

 $, r^{(t-1)}) - Z_{t-1}(r^{(1)}, \cdots, r^{(t)})|,$

(1)

• Global-Bucket Renormalization (GBR) calibrates each MBR choice of singleton factors $r^{(t)}$ by minimizing approximated value of (1), with