Gauged Mini-Bucket Elimination for Approximate Inference

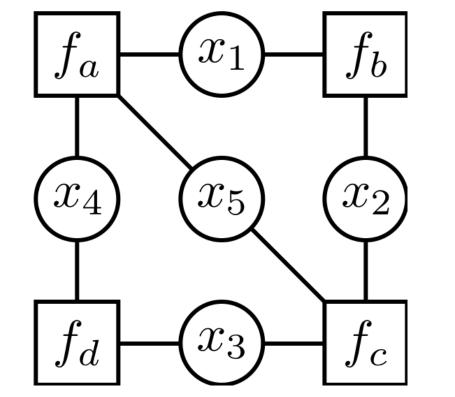
Sunsoo Ahn¹, Michael Chertkov², Jinwoo Shin¹, Adrian Weller³

¹Korea Advanced Institute of Science and Technology ²Los Alamos National Laboratory, Skolkovo Institute of Science and Technology ³University of Cambridge, The Alan Turing Institute

Goal: Approximating the Partition Function

Graphical model (GM) is associated with factor graph G = (V, E) with vertices $V = X \cup F$ with discrete variables X and factors F.

$p(\mathbf{x}) = \frac{1}{Z} \prod f_{\alpha}(\mathbf{x}_{\alpha}),$



Gauged Weighted Mini-Bucket Elimination

We propose Gauged WMBE algorithm, which minimize the upper bound of WMBE *Z*_{WMBE}:

> maximize $Z_{WMBE}(\mathcal{G})$ such that $G_{v\alpha}^{\top}G_{v\beta} = \mathbb{I} \quad \forall v \in X, N(v) = \{\alpha, \beta\}.$

• Partition function Z is #P-hard to compute. • We consider Forney-style GMs, where |N(v)| = 2 for all $v \in X$.

Weighted Mini-Bucket Elimination

Bucket elimination (BE) computes exact Z by sequential elimination:

1. Pick variable x_v and neighboring factors (bucket) B_v . 2. Update new factor f_{B_v} as follows:

> $f_{B_v}(\mathbf{x}_{B_v}) = \sum \left[\int f_{\alpha}(\mathbf{x}_{\alpha}), \right]$ $\overline{x_v} f_{\alpha} \in B_v$

however size of f_{B_v} may grow exponentially large. Weighted mini-bucket elimination (WMBE) approximates BE: 2^{*}. If $|B_v| > ibound$, update new factors $\{f_{B_v}\}_{r=1}^{R_v}$ as follows:

• Becomes unconstrained by plugging $G_{v\beta} \leftarrow (G_{v\alpha}^{-1})^{\top}$. • Gradient descent for optimization: 1. Initialize gauges via $G_{\nu\alpha} \leftarrow \mathbb{I}$. 2. Update Gauge gradients for all $G_{v\alpha}$ via message passing: $G_{v\alpha}(x'_{v}, x''_{v}) \leftarrow G_{v\alpha}(x'_{v}, x''_{v}) - \mu \frac{\partial \log Z_{\text{WMBE}}(\mathcal{G})}{\partial G_{v\alpha}(x'_{v}, x''_{v})},$ 3. Gauge-transform GM, i.e., $f_{\alpha}(\mathbf{x}_{\alpha}) \leftarrow \widehat{f}(\mathbf{x}; \mathbf{G}_{\alpha})$. Go to step 1.

Theoretical Results

1. GT is generalization for reparameterization of GMs, defined on set of vectors $\boldsymbol{\theta} = \{ \theta_{v\alpha} : (v, \alpha) \in E \}$: $\widehat{\boldsymbol{\Gamma}}$ () \prod () () () ()

$$f_{\alpha}(\mathbf{x}_{\alpha}; \boldsymbol{\theta}_{\alpha}) = \prod_{v \in N(\alpha)} \exp(\theta_{v\alpha}(x_i)) f_{\alpha}(\mathbf{x}_{\alpha}),$$

where $\theta_{v\alpha} + \theta_{v\beta} = 0$ for $N(v) = \alpha, \beta$.

2. Unlike GT, reparameterization fails in binary symmetric GMs, where distribution is invariant to 'flipping' of variables.

$$f_{B_v^r}(\mathbf{x}_{B_v^r}) = \left(\sum_{x_v} \prod_{f_\alpha \in B_v^r} |f_\alpha(\mathbf{x}_\alpha)|^{\frac{1}{w_r}}\right)^{w_r},$$

for $r = 1, \dots, R_v$ where $\sum_{r=1}^{R_v} w_r = 1$, $\{B_v^r\}_{r=1}^{R_v}$ is partition of B_v .

WMBE upper-bounds *Z* based on *Hölder's inequality*:

$$\sum_{x_v} \prod_{f_\alpha \in B_v} f_\alpha(\mathbf{x}_\alpha) \le \prod_{r=1}^{R_v} \left(\sum_{x_v} \prod_{f_\alpha \in B_v^r} |f_\alpha(\mathbf{x}_\alpha)|^{\frac{1}{w_r}} \right)^{w_r}.$$

Gauge Transformation of Graphical Models

Gauge transformation (GT) is Z-invariant linear transformation for factors, changing distribution of the GM.

$$f_a + G_{1a} + x_1 + G_{1b} + G_{1b} + G_{2b} + x_2 + G_{2c} + f_c$$

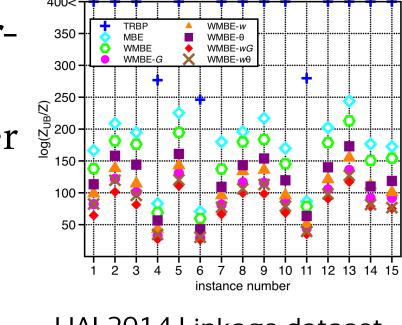
• Defined by set of matrices $\mathcal{G} = \{G_{v\alpha} : (v, \alpha) \in E\}$, termed *gauges*:

$$G_{v\alpha} = \begin{bmatrix} G_{v\alpha}(1,1) \cdots G_{v\alpha}(1,d) \\ \vdots & \cdots & \vdots \end{bmatrix},$$

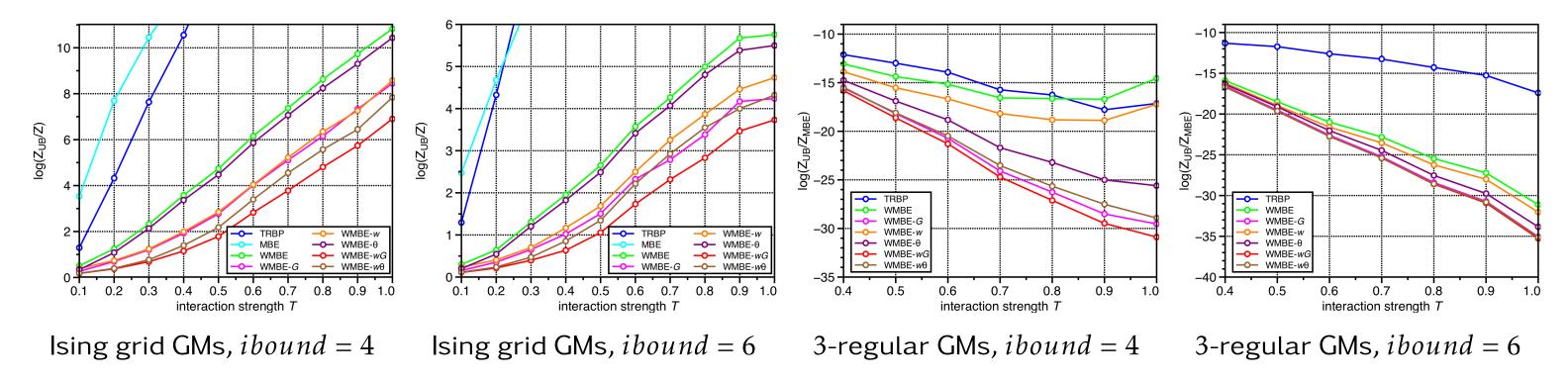
Experimental Results

1. We compare our algorithm with other upperbounding algorithms for Z:

- WMBE optimized with Gauge (WMBE-G), Hölder weight (WMBE-w), reparameterization (WMBE- θ)
- Tree reweighted belief propagation (TRBP)
- Mini-bucket elimination (MBE)



UAI 2014 Linkage dataset ibound = 6.

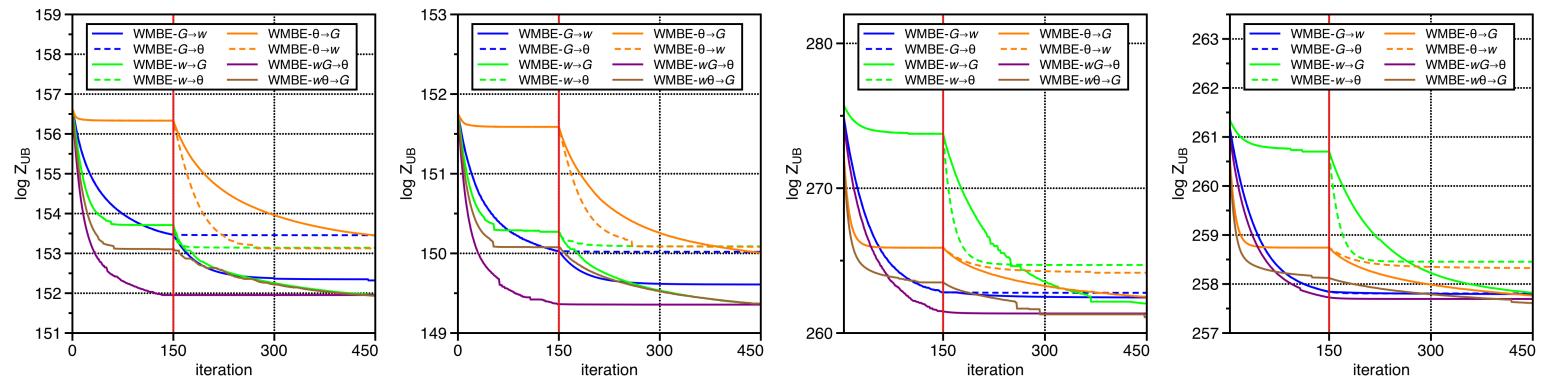


2. To measure effectiveness of optimizing over parameters, we optimize each pair of parameters in one by one.

$G_{v\alpha}(d,1)\cdots G_{v\alpha}(d,d)$ where $G_{v\alpha}^{\top}G_{v\beta} = \mathbb{I}$ for $N(v) = \{\alpha, \beta\}$. • Each factor is transformed as follows:

$$\widehat{f}_{\alpha}(\mathbf{x}_{\alpha}; \mathbf{G}_{\alpha}) = \sum_{\mathbf{x}_{\alpha}'} f_{\alpha}(\mathbf{x}_{\alpha}') \prod_{v \in N(\alpha)} G_{v\alpha}(x_{v}, x_{v}').$$

• Reduce to original GM when $G_{v\alpha} = \mathbb{I}$ for all $G_{v\alpha} \in \mathcal{G}$.



Ising grid GMs, ibound = 4Ising grid GMs, ibound = 6 3-regular GMs, *ibound* = 43-regular GMs, *ibound* = 6

Contribution

We propose Gauge transformation (GT) framework for improving the accuracy of WMBE algorithm.

• outperforms existing variational schemes for WMBE. • generalizes the **reparameterization** framework.

Conclusion

• We developed a new scalable gauge-variational approach improving the bound of WMBE algorithm. • Generalization to non-Forney style or continuous models would be interesting.