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Goal: Approximating the Partition Function

Graphical model (GM) is associated with factor graph G = (V ,E) with
vertices V = X ∪F with discrete variables X and factors F.

p(x) =
1
Z

∏
α∈F

fα(xα),

Z :=
∑
x∈XE

∏
α∈F

fα(xα),

•Partition function Z is #P-hard to compute.
•We consider Forney-style GMs, where |N (v)| = 2 for all v ∈ X.

Weighted Mini-Bucket Elimination

Bucket elimination (BE) computes exact Z by sequential elimination:

1. Pick variable xv and neighboring factors (bucket) Bv.
2. Update new factor fBv as follows:

fBv(xBv) =
∑
xv

∏
fα∈Bv

fα(xα),

however size of fBv may grow exponentially large.

Weighted mini-bucket elimination (WMBE) approximates BE:

2?. If |Bv| > ibound, update new factors {fBrv}
Rv
r=1 as follows:

fBrv(xBrv) =
(∑
xv

∏
fα∈Brv

|fα(xα)|
1
wr

)wr
,

for r = 1, · · · ,Rv where
∑Rv
r=1wr = 1, {Brv}

Rv
r=1 is partition of Bv.

WMBE upper-bounds Z based on Hölder’s inequality:∑
xv

∏
fα∈Bv

fα(xα) ≤
Rv∏
r=1

(∑
xv

∏
fα∈Brv

|fα(xα)|
1
wr

)wr
.

Gauge Transformation of Graphical Models

Gauge transformation (GT) is Z-invariant linear transformation for
factors, changing distribution of the GM.

•Defined by set of matrices G = {Gvα : (v,α) ∈ E}, termed gauges:

Gvα =


Gvα(1,1) · · · Gvα(1,d)

... . . . ...
Gvα(d,1) · · · Gvα(d,d)

 ,
where G>vαGvβ = I for N (v) = {α,β}.

•Each factor is transformed as follows:

f̂α(xα;Gα) =
∑
x′α

fα(x′α)
∏

v∈N (α)

Gvα(xv,x
′
v).

•Reduce to original GM when Gvα = I for all Gvα ∈ G.

Contribution

We propose Gauge transformation (GT) framework for improving
the accuracy of WMBE algorithm.

•outperforms existing variational schemes for WMBE.
•generalizes the reparameterization framework.

Gauged Weighted Mini-Bucket Elimination

We propose Gauged WMBE algorithm, which minimize the upper
bound of WMBE ZWMBE:

maximize
G

ZWMBE(G)

such that G>vαGvβ = I ∀v ∈ X,N (v) = {α,β}.

•Becomes unconstrained by plugging Gvβ← (G−1
vα)>.

•Gradient descent for optimization:
1. Initialize gauges via Gvα← I.
2. Update Gauge gradients for all Gvα via message passing:

Gvα(x′v,x
′′
v ) ← Gvα(x′v,x

′′
v )−µ

∂ logZWMBE(G)
∂Gvα(x′v,x′′v )

,

3. Gauge-transform GM, i.e., fα(xα)← f̂ (x;Gα). Go to step 1.

Theoretical Results

1. GT is generalization for reparameterization of GMs, defined on set
of vectors θ = {θvα : (v,α) ∈ E}:

f̂α(xα;θα) =
∏

v∈N (α)

exp(θvα(xi))fα(xα),

where θvα +θvβ = 0 for N (v) = α,β.
2. Unlike GT, reparameterization fails in binary symmetric GMs, where

distribution is invariant to ‘flipping’ of variables.

Experimental Results

1. We compare our algorithm with other upper-
bounding algorithms for Z:
•WMBE optimized with Gauge (WMBE-G), Hölder

weight (WMBE-w), reparameterization (WMBE-θ)
•Tree reweighted belief propagation (TRBP)
•Mini-bucket elimination (MBE)

UAI 2014 Linkage dataset
ibound = 6.

Ising grid GMs, ibound = 4 Ising grid GMs, ibound = 6 3-regular GMs, ibound = 4 3-regular GMs, ibound = 6

2. To measure effectiveness of optimizing over parameters, we optimize
each pair of parameters in one by one.

Ising grid GMs, ibound = 4 Ising grid GMs, ibound = 6 3-regular GMs, ibound = 4 3-regular GMs, ibound = 6

Conclusion

•We developed a new scalable gauge-variational approach improv-
ing the bound of WMBE algorithm.

•Generalization to non-Forney style or continuous models would
be interesting.


